Fast algorithm and sharp degree bounds for one block quantifier elimination over the reals

Huu Phuoc LE, Mohab SAFEY EL DIN

LIP6, Sorbonne Université

MAX Seminar May 10, 2021

A basic semi-algebraic set: the set of real solutions of $f_1 = \cdots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

A basic semi-algebraic set: the set of real solutions of $f_1 = \dots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3 - y\}$$

A basic semi-algebraic set: the set of real solutions of $f_1 = \cdots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3 - y\}$$

Projection on the y-axis:

$$(\exists x: x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

0	(
<i>y</i>	- \

A basic semi-algebraic set: the set of real solutions of $f_1 = \cdots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3 - y\}$$

Projection on the *y*-axis:

$$(\exists x: x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

Tarski's theorem (1951)

\cap	
\mathbf{O}	
y	
	- N

A basic semi-algebraic set: the set of real solutions of $f_1 = \cdots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3 - y\}$$

Projection on the *y*-axis:

$$(\exists x: x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

Tarski's theorem (1951)

One block QE:
$$\exists x : \Psi(x, y) \text{ is true}$$
 quantified

A basic semi-algebraic set: the set of real solutions of $f_1 = \cdots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3 - y\}$$

Projection on the *y*-axis:

$$(\exists x: x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

Tarski's theorem (1951)

One block QE:
$$\underbrace{\exists x : \Psi(x, y) \text{ is true}}_{\text{quantified}} \Leftrightarrow \underbrace{\Phi(y) \text{ is true}}_{\text{quantifier-free}}$$

A basic semi-algebraic set: the set of real solutions of $f_1 = \cdots = f_s = 0, g_1 \bullet 0, \dots, g_v \bullet 0,$ with $\bullet \in \{>, \ge\}, f_i, g_j \in \mathbb{R}[x_1, \dots, x_n].$

A semi-algebraic set is a finite union of basic semi-algebraic sets.

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3 - y\}$$

Projection on the *y*-axis:

$$(\exists x: x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

Tarski's theorem (1951)

One block QE:
$$\exists x : \Psi(x, y) \text{ is true}_{quantified} \Leftrightarrow \underbrace{\Phi(y) \text{ is true}}_{quantifier-free}$$
Algorithms, Complexity, Implementation

Motivations

Many applications

- Perspective-Three-Point Problem
 [Faugère, Moroz, Rouillier, Safey El Din '08]
- Kuramoto model of synchronization [Kuramoto '75; Harris, Hauenstein, Szanto '20]
- Dynamic of epidemics

[Chauvin, Müller, Weber '94]

• Program verification

[Kapur '06]

• Economics [Mulligan, Davenport, England '18]

Motivations

Many applications

- Perspective-Three-Point Problem
 [Faugère, Moroz, Rouillier, Safey El Din '08]
- Kuramoto model of synchronization [Kuramoto '75; Harris, Hauenstein, Szanto '20]
- Dynamic of epidemics

[Chauvin, Müller, Weber '94]

• Program verification

[Kapur '06]

• Economics [Mulligan, Davenport, England '18]

Experimental mathematics

Counter-examples for a conjecture in [Huisman '03]

↔ Compute a hyperplane that intersects a smooth curve at only real points.

(on-going work with Plaumann, Manevich and Safey El Din)

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and s polynomials of degree bounded by D

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and s polynomials of degree bounded by D

• [Tarski '51]: Decidable but not bounded by any finite tower of exponents.

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and s polynomials of degree bounded by D

- [Tarski '51]: Decidable but not bounded by any finite tower of exponents.
- CAD [Collins '76] and variants: [Arnon, Collins, McCallum '84; McCallum '88, '99; Hong '90; Collins, Hong '91; Brown '01;...]
 Doubly exponential in the number of variables.

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and *s* polynomials of degree bounded by *D*

- [Tarski '51]: Decidable but not bounded by any finite tower of exponents.
- CAD [Collins '76] and variants: [Arnon, Collins, McCallum '84; McCallum '88, '99; Hong '90; Collins, Hong '91; Brown '01;...]
 Doubly exponential in the number of variables.

 Algorithms exploiting the block structure of variables: [Grigoryev '88; Heintz, Roy, Solernó '90; Renegar '92; Basu, Pollack, Roy '96] Doubly exponential in the number of blocks.

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and *s* polynomials of degree bounded by *D*

- [Tarski '51]: Decidable but not bounded by any finite tower of exponents.
- CAD [Collins '76] and variants: [Arnon, Collins, McCallum '84; McCallum '88, '99; Hong '90; Collins, Hong '91; Brown '01;...]
 Doubly exponential in the number of variables.
- Algorithms exploiting the block structure of variables: [Grigoryev '88; Heintz, Roy, Solernó '90; Renegar '92; Basu, Pollack, Roy '96] Doubly exponential in the number of blocks.

One-block: singly exponential

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and *s* polynomials of degree bounded by *D*

- [Tarski '51]: Decidable but not bounded by any finite tower of exponents.
- CAD [Collins '76] and variants: [Arnon, Collins, McCallum '84; McCallum '88, '99; Hong '90; Collins, Hong '91; Brown '01;...]
 Doubly exponential in the number of variables.
- Algorithms exploiting the block structure of variables: [Grigoryev '88; Heintz, Roy, Solernó '90; Renegar '92; Basu, Pollack, Roy '96] Doubly exponential in the number of blocks.

One-block: singly exponential (hidden constant in the exponent)

 \rightarrow Difficult to obtain efficient implementation

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and *s* polynomials of degree bounded by *D*

- [Tarski '51]: Decidable but not bounded by any finite tower of exponents.
- CAD [Collins '76] and variants: [Arnon, Collins, McCallum '84; McCallum '88, '99; Hong '90; Collins, Hong '91; Brown '01;...]
 Doubly exponential in the number of variables.
- Algorithms exploiting the block structure of variables: [Grigoryev '88; Heintz, Roy, Solernó '90; Renegar '92; Basu, Pollack, Roy '96] Doubly exponential in the number of blocks.

One-block: singly exponential (hidden constant in the exponent)

- \rightarrow Difficult to obtain efficient implementation
- A variant of QE [Hong, Safey El Din '09, '12] Hypotheses: radicality, smoothness, **properness**. Output an **almost equivalent** formula.

 $(sD)^{2^{O(n+t)}}$

 $s^{n+1}D^{O(nt)}$

Practical algorithm. No complexity analysis.

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ and *s* polynomials of degree bounded by *D*

- [Tarski '51]: Decidable but not bounded by any finite tower of exponents.
- CAD [Collins '76] and variants: [Arnon, Collins, McCallum '84; McCallum '88, '99; Hong '90; Collins, Hong '91; Brown '01;...]
 Doubly exponential in the number of variables.
- Algorithms exploiting the block structure of variables: [Grigoryev '88; Heintz, Roy, Solernó '90; Renegar '92; Basu, Pollack, Roy '96] Doubly exponential in the number of blocks.

One-block: singly exponential (hidden constant in the exponent)

- \rightarrow Difficult to obtain efficient implementation
- A variant of QE [Hong, Safey El Din '09, '12] Hypotheses: radicality, smoothness, **properness**. Output an **almost equivalent** formula.

We need a practical algorithm and better complexity analysis!

 $(sD)^{2^{O(n+t)}}$

 $s^{n+1}D^{O(nt)}$

Practical algorithm. No complexity analysis.

A semi-algebraic formula Ψ defined in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$

For almost every $\eta \in \mathbb{C}^t$:

- The sets of complex solutions of S_i(x, η) are finite.
- If η ∈ ℝ^t, the union of solutions intersects every connected component of {x ∈ ℝⁿ | Ψ(x, η) is true}.

Let
$$f = \{f_1, \dots, f_s\} \subset \mathbb{Q}[\mathbf{x}, \mathbf{y}]$$

 $\mathcal{V} = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{n+t} \mid f_1 = \dots = f_s = 0\}$
 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$
 $\pi : (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{y}$

Let
$$\boldsymbol{f} = \{f_1, \dots, f_s\} \subset \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$$

 $\mathcal{V} = \{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{C}^{n+t} \mid f_1 = \dots = f_s = 0\}$
 $\boldsymbol{x} = (x_1, \dots, x_n), \, \boldsymbol{y} = (y_1, \dots, y_t)$
 $\boldsymbol{x} = (x_1, \dots, x_n), \, \boldsymbol{y} = (y_1, \dots, y_t)$

Regularity assumptions

- f generates a radical ideal in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$
- $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional
- + $\pi(\mathcal{V}\cap\mathbb{R}^{n+t})$ has non-zero measure in \mathbb{R}^t

Let
$$\mathbf{f} = \{f_1, \dots, f_s\} \subset \mathbb{Q}[\mathbf{x}, \mathbf{y}]$$

 $\mathcal{V} = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{n+t} \mid f_1 = \dots = f_s = 0\}$
 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$
 $\pi : (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{y}$

Regularity assumptions

- f generates a radical ideal in $\mathbb{Q}[x, y]$
- $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional
- $\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$ has non-zero measure in \mathbb{R}^t

Our main problem \longrightarrow Weaker variant of one block QE

Compute a semi-algebraic formula defining a **dense** subset in the **interior** of $\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$

Let
$$\mathbf{f} = \{f_1, \dots, f_s\} \subset \mathbb{Q}[\mathbf{x}, \mathbf{y}]$$

 $\mathcal{V} = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{n+t} \mid f_1 = \dots = f_s = 0\}$
 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$
 $\pi : (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{y}$

Regularity assumptions

- f generates a radical ideal in $\mathbb{Q}[x, y]$
- $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional
- $\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$ has non-zero measure in \mathbb{R}^t

Our main problem \longrightarrow Weaker variant of one block QE

Compute a semi-algebraic formula defining a **dense** subset in the **interior** of $\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$

$$(\exists x: x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

Let
$$\mathbf{f} = \{f_1, \dots, f_s\} \subset \mathbb{Q}[\mathbf{x}, \mathbf{y}]$$

 $\mathcal{V} = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{n+t} \mid f_1 = \dots = f_s = 0\}$
 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$
 $\pi : (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{y}$

Regularity assumptions

- f generates a radical ideal in $\mathbb{Q}[x, y]$
- $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional
- $\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$ has non-zero measure in \mathbb{R}^t

Our main problem \longrightarrow Weaker variant of one block QE

Compute a semi-algebraic formula defining a **dense** subset in the **interior** of $\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$

$$(\exists x : x^2 = y^3 - y) \Leftrightarrow (y^3 - y \ge 0)$$

Weaker output: $(y^3 - y > 0)$

(almost equivalent)

New algorithm for our variant of one block QE

- In: f satisfies regularity assumptions
- Out: A formula Φ defining a *dense* subset of the *interior* of π(V ∩ ℝ^{n+t})

Solve examples that are out of reach of the state-of-the-art software.

New algorithm for our variant of one block QE

- In: *f* satisfies *regularity assumptions*
- Out: A formula Φ defining a *dense* subset of the *interior* of π(V ∩ ℝ^{n+t})

Solve examples that are out of reach of the state-of-the-art software.

t	n	S	NEW QE	MAPLE	MATHEMATICA
2	3	2	7 s	> 120 h	> 120 h
2	4	2	2 m	> 120 h	> 120 h
2	5	2	20 m	> 120 h	> 120 h
2	6	2	3 h	> 120 h	> 120 h
2	7	2	8 h	> 120 h	$> 120 \ h$
3	3	2	2 m	> 120 h	> 120 h
3	4	2	25 m	> 120 h	> 120 h
3	5	2	10 h	$> 120 \ h$	> 120 h
4	3	2	30 m	> 120 h	$> 120 \ h$

Random dense systems with D = 2

New algorithm for our variant of one block QE

- In: *f* satisfies *regularity assumptions*
- Out: A formula Φ defining a *dense* subset of the *interior* of π(V ∩ ℝ^{n+t})

Solve examples that are out of reach of the state-of-the-art software.

t	n	S	NEW QE	MAPLE	MATHEMATICA
2	3	2	7 s	> 120 h	> 120 h
2	4	2	2 m	> 120 h	> 120 h
2	5	2	20 m	> 120 h	> 120 h
2	6	2	3 h	> 120 h	> 120 h
2	7	2	8 h	$> 120 \ h$	> 120 h
3	3	2	2 m	> 120 h	> 120 h
3	4	2	25 m	> 120 h	> 120 h
3	5	2	10 h	$> 120 \ {\rm h}$	> 120 h
4	3	2	30 m	> 120 h	> 120 h

Random dense systems with D = 2

New algorithm for real root classification

- Construct a matrix **H** with entries in $\mathbb{Q}(\mathbf{y})$.
- Get semi-algebraic formulas as minors of H.
- Evaluate the formulas using H (fast).

New algorithm for our variant of one block QE

- In: *f* satisfies *regularity assumptions*
- Out: A formula Φ defining a *dense* subset of the *interior* of π(V ∩ ℝ^{n+t})

Solve examples that are out of reach of the state-of-the-art software.

New algorithm for real root classification
--

- Construct a matrix H with entries in $\mathbb{Q}(\mathbf{y})$.
- Get semi-algebraic formulas as minors of H.
- Evaluate the formulas using **H** (fast).

t	n	S	NEW QE	MAPLE	MATHEMATICA
2	3	2	7 s	> 120 h	> 120 h
2	4	2	2 m	> 120 h	> 120 h
2	5	2	20 m	> 120 h	> 120 h
2	6	2	3 h	> 120 h	> 120 h
2	7	2	8 h	$> 120 \ h$	> 120 h
3	3	2	2 m	> 120 h	> 120 h
3	4	2	25 m	> 120 h	> 120 h
3	5	2	10 h	$> 120 \ h$	> 120 h
4	3	2	30 m	> 120 h	> 120 h

Random dense systems with D = 2

t	D	NEW RRC	MAPLE[RF]	MAPLE[RC]
2	[3, 2]	5 s	1 m	12 s
2	[2, 2, 2]	34 s	17m	2 m
2	[3, 3]	3 m	2 h	5 m
3	[2, 2]	27 s	36 s	12 m
3	[3, 2]	3 h	86 h	37 h
3	[2, 2, 2]	32 h	> 120 h	> 120 h
3	[4, 2]	90 h	> 120 h	> 120 h
4	[2, 2]	8 m	> 120 h	> 120 h

Random dense systems

RF: RootFinding RC: RegularChains

Generic input $f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$ with deg $(f_i) \leq D$

Complexity results

Generic input $f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$ with deg $(f_i) \leq D$

Degree bound of polynomials in the output Φ

$$\mathfrak{B}=2nD^s(D-1)^{n-s+1}inom{n}{s-1}\qquad \in O\left(nD^ninom{n}{s-1}
ight)$$

Complexity results

Generic input
$$f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$$
 with deg $(f_i) \leq D$

Degree bound of polynomials in the output Φ

$$\mathfrak{B} = 2nD^{s}(D-1)^{n-s+1} inom{n}{s-1} \qquad \in O\left(nD^{n}inom{n}{s-1}
ight)$$

Arithmetic complexity for one block QE

$$O^{\sim}\left(8^t \mathfrak{B}^{\mathbf{3}t} \begin{pmatrix} t + \mathfrak{B} \\ t \end{pmatrix}\right)$$
Complexity results

Generic input
$$f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$$
 with $\deg(f_i) \leq D$

Degree bound of polynomials in the output Φ

$$\mathfrak{B} = 2nD^{s}(D-1)^{n-s+1} inom{n}{s-1} \qquad \in O\left(nD^{n}inom{n}{s-1}
ight)$$

Arithmetic complexity for one block QE

$$O^{\sim}\left(8^{t} \mathfrak{B}^{\mathbf{3}t}\left(t+\mathfrak{B}\atop t\right)\right)$$

- · Explicit constant in the exponent
- For D = 2 and s is fixed: \mathfrak{B} is polynomial in n

First step: Reduction to dimension zero

Input: $f \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$

- f generates a radical ideal in $\mathbb{Q}[x, y]$
- + $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional

•
$$\pi(\mathcal{V} \cap \mathbb{R}^{n+t})$$
 has non-zero measure in \mathbb{R}^t

First step: Reduction to dimension zero

Input: $f \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$

- f generates a radical ideal in $\mathbb{Q}[x, y]$
- + $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional

+
$$\pi(\mathcal{V}\cap\mathbb{R}^{n+t})$$
 has non-zero measure in \mathbb{R}^t

Output: $S_1, \ldots, S_{d+1} \subset \mathbb{Q}[x, y]$

For almost every $\eta \in \mathbb{C}^t$:

- The sets of complex solutions of $S_i(x,\eta)$ are finite.
- If η ∈ ℝ^t, their union intersects every component of V(f(x, η)) ∩ ℝⁿ.

First step: Reduction to dimension zero

Input: $f \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$

- f generates a radical ideal in $\mathbb{Q}[x, y]$
- + $\ensuremath{\mathcal{V}}$ is smooth and equi-dimensional

•
$$\pi(\mathcal{V}\cap\mathbb{R}^{n+t})$$
 has non-zero measure in \mathbb{R}^t

Output: $S_1, \ldots, S_{d+1} \subset \mathbb{Q}[x, y]$

For almost every $\eta \in \mathbb{C}^t$:

- The sets of complex solutions of $S_i(x,\eta)$ are finite.
- If η ∈ ℝ^t, their union intersects every component of V(f(x, η)) ∩ ℝⁿ.

Real root finding algorithm [Safey El Din - Schost '03] **Compute points per connected components**

Compute points per connected components

Compute points per connected components

Bounded components

Compute points per connected components

Bounded components

Unbounded components

Compute points per connected components

Bounded components

Unbounded components

Compute points per connected components

Bounded components

Unbounded components

Non-proper points

Compute points per connected components

Bounded components

Unbounded components

Non-proper points

Compute points per connected components

Bounded components

Unbounded components

Non-proper points

Consider **y** as parameters

Compute points per connected components

Bounded components

Unbounded components

Non-proper points

Consider **y** as parameters

Generic $A \in GL(n, \mathbb{Q})$

 $f \mapsto f^A = f(A \cdot x, y)$: ensure properness

Compute points per connected components

Bounded components

Unbounded components

Non-proper points

Consider **y** as parameters

Generic $A \in \operatorname{GL}(n, \mathbb{Q})$ $\pi_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i)$ $f \mapsto f^A = f(A \cdot x, y)$: ensure properness $\operatorname{crit}(\pi_i, f^A)$: critical locus of π_i on $V(f^A)$

Compute points per connected components

Bounded components

Unbounded components

Non-proper points

Consider **y** as parameters

Generic $A \in GL(n, \mathbb{Q})$ $f \mapsto f^A = f(A \cdot x, y)$: ensure properness $\pi_i : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_i)$ $\operatorname{crit}(\pi_i, f^A)$: critical locus of π_i on $V(f^A)$

 S_i defines $\operatorname{crit}(\pi_i, f^A) \cap \pi_{i-1}^{-1}(0, \ldots, 0)$

Geometric results

For generic A, S_i generates a radical zero-dimensional ideal in $\mathbb{Q}(\mathbf{y})[\mathbf{x}]$.

For almost every $\eta \in \mathbb{C}^t$:

- The vanishing set of each $S_i(x, \eta)$ is finite.
- If $\eta \in \mathbb{R}^{t}$, their union intersects every component of $V(f(x, \eta)) \cap \mathbb{R}^{n}$.

Geometric results

For generic A, S_i generates a radical zero-dimensional ideal in $\mathbb{Q}(\mathbf{y})[\mathbf{x}]$.

For almost every $\eta \in \mathbb{C}^t$:

- The vanishing set of each $S_i(x, \eta)$ is finite.
- If $\eta \in \mathbb{R}^{t}$, their union intersects every component of $V(f(x, \eta)) \cap \mathbb{R}^{n}$.

S_i is a determinantal system: Useful for complexity analysis!

Second step: Classify real roots of S_i

 S_i generates a radical zero-dimensional ideal in $\mathbb{Q}(\mathbf{y})[\mathbf{x}]$

Second step: Classify real roots of S_i

 S_i generates a radical zero-dimensional ideal in $\mathbb{Q}(\mathbf{y})[\mathbf{x}]$

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

Degree overhead

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

• Border polynomials and Discriminant variety: [Yang, Xia '05; Lazard, Rouillier '07]

Degree overhead

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

• Border polynomials and Discriminant variety: [Yang, Xia '05; Lazard, Rouillier '07]

Compute $w \in \mathbb{Q}[y]$ s.t. the number of real roots of $S(x, \eta)$ is invariant over each connected component of $\mathbb{R}^t \setminus V(w)$.

Degree overhead

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

• Border polynomials and Discriminant variety: [Yang, Xia '05; Lazard, Rouillier '07] Degree overhead

Compute $w \in \mathbb{Q}[y]$ s.t. the number of real roots of $S(x, \eta)$ is invariant over each connected component of $\mathbb{R}^t \setminus V(w)$.

- No intermediate projection.
- Obtain formulas by **CAD** of $\mathbb{R}^t \setminus V(w)$.

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

• Border polynomials and Discriminant variety: [Yang, Xia '05; Lazard, Rouillier '07] **Degree overhead**

Compute $w \in \mathbb{Q}[y]$ s.t. the number of real roots of $S(x, \eta)$ is invariant over each connected component of $\mathbb{R}^t \setminus V(w)$.

- No intermediate projection.
- Obtain formulas by **CAD** of $\mathbb{R}^t \setminus V(w)$.

Doubly exponential in *t*

 Sturm-based algorithms: Univariate polynomials with parameters [González-Vega, Recio, Lombardi, Roy '98; Liang, Jeffrey, Moreno Maza '08]

$$V(\mathbf{S}) = \left\{ q(x_n) = 0, x_1 = \frac{v_1(x_n)}{q'(x_n)}, \dots, x_{n-1} = \frac{v_1(x_n)}{q'(x_n)} \right\}$$

where $q, v_1, \ldots, v_{n-1} \in \mathbb{Q}[\mathbf{y}][x_n]$

Classify real roots of $q(x_n)$: Sturm's sequence.

• Border polynomials and Discriminant variety: [Yang, Xia '05; Lazard, Rouillier '07] **Degree overhead**

Compute $w \in \mathbb{Q}[y]$ s.t. the number of real roots of $S(x, \eta)$ is invariant over each connected component of $\mathbb{R}^t \setminus V(w)$.

- No intermediate projection.
- Obtain formulas by **CAD** of $\mathbb{R}^t \setminus V(w)$.

Doubly exponential in *t*

An alternative to Sturm's theorem: Hermite's quadratic forms

Ch. Hermite

Root counting using quadratic forms [Hermite 1856] Multivariate Hermite's quadratic forms: [Pedersen '91; Pedersen, Roy, Szpirglas '93; Rouillier '99; Basu, Pollack, Roy '06] Use Hermite matrices for parametric systems:

[Henrion '10; Netzer, Plaumann, Thom '11; L. and Safey El Din '20]

Ch. Hermite

Root counting using quadratic forms [Hermite 1856] Multivariate Hermite's quadratic forms: [Pedersen '91; Pedersen, Roy, Szpirglas '93; Rouillier '99; Basu, Pollack, Roy '06] Use Hermite matrices for parametric systems:

[Henrion '10; Netzer, Plaumann, Thom '11; L. and Safey El Din '20]

Given a field \mathbb{K} , $S \subset \mathbb{K}[x]$ of dimension 0

 $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S} \rangle$ is a vector space of finite dimension δ

Ch. Hermite

Root counting using quadratic forms [Hermite 1856] Multivariate Hermite's quadratic forms: [Pedersen '91; Pedersen, Roy, Szpirglas '93; Rouillier '99; Basu, Pollack, Roy '06] Use Hermite matrices for parametric systems:

[Henrion '10; Netzer, Plaumann, Thom '11; L. and Safey El Din '20]

Given a field \mathbb{K} , $S \subset \mathbb{K}[x]$ of dimension 0

 $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S} \rangle$ is a vector space of finite dimension δ

Multiplication linear map \mathcal{L}_p $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S} \rangle \to \mathbb{K}[\mathbf{x}]/\langle \mathbf{S} \rangle,$ $q \mapsto \mathbf{p} \cdot q$

Ch. Hermite

Root counting using quadratic forms [Hermite 1856] Multivariate Hermite's quadratic forms: [Pedersen '91; Pedersen, Roy, Szpirglas '93; Rouillier '99; Basu, Pollack, Roy '06] Use Hermite matrices for parametric systems:

[Henrion '10; Netzer, Plaumann, Thom '11; L. and Safey El Din '20]

Given a field \mathbb{K} , $S \subset \mathbb{K}[x]$ of dimension 0

 $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S} \rangle$ is a vector space of finite dimension δ

Multiplication linear map \mathcal{L}_p $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S}
angle o \mathbb{K}[\mathbf{x}]/\langle \mathbf{S}
angle,$ $q \mapsto \mathbf{p} \cdot q$ Hermite's quadratic form of \pmb{S} $p,q\in\mathbb{K}[\pmb{x}]/\langle\pmb{S}
angle,$ $(p,q)\mapsto ext{trace}(\mathcal{L}_{p\cdot q})$

Ch. Hermite

Root counting using quadratic forms [Hermite 1856] Multivariate Hermite's quadratic forms: [Pedersen '91; Pedersen, Roy, Szpirglas '93; Rouillier '99; Basu, Pollack, Roy '06] Use Hermite matrices for parametric systems:

[Henrion '10; Netzer, Plaumann, Thom '11; L. and Safey El Din '20]

Given a field \mathbb{K} , $S \subset \mathbb{K}[x]$ of dimension 0

 $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S} \rangle$ is a vector space of finite dimension δ

Multiplication linear map \mathcal{L}_p $\mathbb{K}[\mathbf{x}]/\langle \mathbf{S}
angle o \mathbb{K}[\mathbf{x}]/\langle \mathbf{S}
angle,$ $q \mapsto p \cdot q$

Hermite's quadratic form of
$$\pmb{S}$$
 $p,q\in\mathbb{K}[\pmb{x}]/\langle\pmb{S}
angle,$ $(p,q)\mapsto ext{trace}(\mathcal{L}_{p\cdot q})$

Fix a basis $M = \{m_1, \ldots, m_\delta\}$. The Hermite matrix of **S** w.r.t. **M** is

$$\boldsymbol{H} = (\underbrace{\operatorname{trace}(\mathcal{L}_{m_k \cdot m_\ell})}_{\in \mathbb{K}}))_{1 \leq k, \ell \leq \delta}.$$

Take $\mathbb{K} = \mathbb{Q}(y)$ as coefficient field, **S** is zero-dimensional in $\mathbb{Q}(y)[x]$

Fix some basis $M = \{m_1, \ldots, m_\delta\}$ of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$

$$\boldsymbol{H} = (\operatorname{trace}(\mathcal{L}_{m_k \cdot m_\ell}))_{1 \leq k, \ell \leq \delta}$$

Take $\mathbb{K} = \mathbb{Q}(y)$ as coefficient field, **S** is zero-dimensional in $\mathbb{Q}(y)[x]$

Fix some basis $\pmb{M} = \{m_1, \ldots, m_\delta\}$ of $\mathbb{Q}(\pmb{y})[\pmb{x}]/\langle \pmb{S}
angle$

$$\boldsymbol{H} = (\operatorname{trace}(\mathcal{L}_{m_k \cdot m_\ell}))_{1 \leq k, \ell \leq \delta}$$

Choose a basis M of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$?

 $G \subset \mathbb{Q}[x, y]$: the reduced Gröbner basis of S w.r.t. grevlex(x) \succ grevlex(y)

 $M = \{$ monomials in x that are irreducible by $G \}$
Take $\mathbb{K} = \mathbb{Q}(y)$ as coefficient field, **S** is zero-dimensional in $\mathbb{Q}(y)[x]$

Fix some basis $M = \{m_1, \ldots, m_\delta\}$ of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]/\langle \boldsymbol{S} \rangle$

$$\boldsymbol{H} = (\operatorname{trace}(\mathcal{L}_{m_k \cdot m_\ell}))_{1 \leq k, \ell \leq \delta}$$

Choose a basis M of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$?

 $G \subset \mathbb{Q}[x, y]$: the reduced Gröbner basis of S w.r.t. grevlex(x) \succ grevlex(y)

 $M = \{$ monomials in x that are irreducible by $G \}$

Specialization property

Take $\mathbb{K} = \mathbb{Q}(y)$ as coefficient field, **S** is zero-dimensional in $\mathbb{Q}(y)[x]$

Fix some basis $M = \{m_1, \ldots, m_\delta\}$ of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]/\langle \boldsymbol{S}
angle$

$$\boldsymbol{H} = (\operatorname{trace}(\mathcal{L}_{m_k \cdot m_\ell}))_{1 \leq k, \ell \leq \delta}$$

Choose a basis *M* of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$?

 $G \subset \mathbb{Q}[x, y]$: the reduced Gröbner basis of S w.r.t. grevlex(x) \succ grevlex(y)

 $M = \{$ monomials in x that are irreducible by $G \}$

Specialization property

 $w_{\infty} = \prod_{g \in G} \text{leadingcoeff}(g, \mathbf{x}) \in \mathbb{Q}[\mathbf{y}]$

H specializes well if $w_{\infty}(\eta) \neq 0$

Take $\mathbb{K} = \mathbb{Q}(y)$ as coefficient field, **S** is zero-dimensional in $\mathbb{Q}(y)[x]$

Fix some basis $M = \{m_1, \ldots, m_\delta\}$ of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]/\langle \boldsymbol{S} \rangle$

$$\boldsymbol{H} = (\operatorname{trace}(\mathcal{L}_{m_k \cdot m_\ell}))_{1 \leq k, \ell \leq \delta}$$

Choose a basis *M* of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$?

 $G \subset \mathbb{Q}[x, y]$: the reduced Gröbner basis of S w.r.t. grevlex(x) \succ grevlex(y)

 $M = \{$ monomials in x that are irreducible by $G \}$

Specialization property

 $w_{\infty} = \prod_{g \in G} \text{leadingcoeff}(g, \mathbf{x}) \in \mathbb{Q}[\mathbf{y}]$

H specializes well if $w_{\infty}(\eta) \neq 0$

Number of complex roots of $S(x, \eta)$ = Rank of $H(\eta)$

Number of real roots of $S(x, \eta)$ = Signature of $H(\eta)$

 $V(\boldsymbol{w_{\infty}}) \in \mathbb{C}^{t}$ contains:

- Non-proper points.
- Projection of components of dimension < t.

 $V(\boldsymbol{w_{\infty}}) \in \mathbb{C}^{t}$ contains:

- Non-proper points.
- Projection of components of dimension < t.

det $H(\eta) = 0$ and $w_{\infty}(\eta) \neq 0$

• rank $H(\eta) < \delta = \dim \mathbb{C}[\mathbf{x}] / \langle \mathbf{S}(\mathbf{x}, \eta) \rangle$

↔ Roots with multiplicities appear.

 $V(w_{\infty}) \in \mathbb{C}^{t}$ contains: • Non-proper points. • Projection of components of dimension < t. $\det H(\eta) = 0$ and $w_{\infty}(\eta) \neq 0$ • rank $H(\eta) < \delta = \dim \mathbb{C}[\mathbf{x}]/\langle S(\mathbf{x}, \eta) \rangle$ \rightsquigarrow Roots with multiplicities appear.

Theorem

Proof uses Thom's isotopy lemma

Number of real roots of $S(x, \eta)$ is invariant over each connected component of the set defined by $w_{\infty} \neq 0$ and det $H \neq 0$.

 $V(w_{\infty}) \in \mathbb{C}^{t}$ contains: • Non-proper points. • Projection of components of dimension < t. $\det H(\eta) = 0$ and $w_{\infty}(\eta) \neq 0$ • rank $H(\eta) < \delta = \dim \mathbb{C}[\mathbf{x}]/\langle S(\mathbf{x}, \eta) \rangle$ \rightsquigarrow Roots with multiplicities appear.

Theorem

Proof uses Thom's isotopy lemma

Number of real roots of $S(x, \eta)$ is invariant over each connected component of the set defined by $w_{\infty} \neq 0$ and det $H \neq 0$.

Compare with Maple:

- Discriminant variety (DV)
- Border polynomial (BP)

 $V(w_{\infty}) \in \mathbb{C}^{t}$ contains: • Non-proper points. • Projection of components of dimension < t. $\det H(\eta) = 0$ and $w_{\infty}(\eta) \neq 0$ • rank $H(\eta) < \delta = \dim \mathbb{C}[\mathbf{x}]/\langle \mathbf{S}(\mathbf{x}, \eta) \rangle$ \rightsquigarrow Roots with multiplicities appear.

Theorem

Proof uses Thom's isotopy lemma

Number of real roots of $S(x, \eta)$ is invariant over each connected component of the set defined by $w_{\infty} \neq 0$ and det $H \neq 0$.

Compare with Maple:

- Discriminant variety (DV)
- Border polynomial (BP)

Random dense systems \longrightarrow

t	D	HERMITE	MAPLE[DV]	MAPLE[BP]
2	[2, 2, 2]	.6 s	17 m	23 s
2	[3, 3]	1.1 s	2 h	8 s
3	[3, 2]	.4 s	2 h	3 s
3	[2, 2, 2]	8 s	> 120 h	20 m
3	[4, 2]	12 s	> 120 h	15 m

For
$$\eta \in \mathbb{R}^t$$
 s.t. $w_{\infty}(\eta) \neq 0$:
Number of real roots of $S(x, \eta) = \underbrace{\text{Signature of } H(\eta)}_{\text{signs of principal minors } M_1, \dots, M_{\delta} \text{ of } H}$

For $\eta \in \mathbb{R}^t$ s.t. $w_{\infty}(\eta) \neq 0$:

Number of real roots of $S(x, \eta)$ =

Signature of
$$H(\eta)$$

signs of principal minors M_1, \ldots, M_δ of H

Algorithm

1. Compute points per connected components of the set defined by

 $M_1 \neq 0 \land \ldots \land M_\delta \neq 0 \land \boldsymbol{w_{\infty}} \neq 0.$

For $\eta \in \mathbb{R}^t$ s.t. $w_{\infty}(\eta) \neq 0$:

Number of real roots of $S(x, \eta)$ =

Signature of
$$H(\eta)$$

signs of principal minors M_1, \ldots, M_δ of H

Algorithm

1. Compute points per connected components of the set defined by

$$M_1 \neq 0 \land \ldots \land M_\delta \neq 0 \land \boldsymbol{w_{\infty}} \neq 0.$$

2. Evaluate the signs of M_1, \ldots, M_{δ} and the signature of H at those points.

For $\eta \in \mathbb{R}^t$ s.t. $w_{\infty}(\eta) \neq 0$:

Number of real roots of $S(x, \eta)$ =

Signature of
$$H(\eta)$$

signs of principal minors M_1, \ldots, M_δ of H

Algorithm

1. Compute points per connected components of the set defined by

$$M_1 \neq 0 \land \ldots \land M_\delta \neq 0 \land \boldsymbol{w_{\infty}} \neq 0.$$

- 2. Evaluate the signs of M_1, \ldots, M_{δ} and the signature of H at those points.
- 3. Return the sign conditions that yield positive signature for H.

Output for one block QE!

For $\eta \in \mathbb{R}^t$ s.t. $w_{\infty}(\eta) \neq 0$:

Number of real roots of $S(x, \eta)$ =

Signature of
$$H(\eta)$$

signs of principal minors M_1, \ldots, M_δ of H

Algorithm

1. Compute points per connected components of the set defined by

$$M_1 \neq 0 \land \ldots \land M_\delta \neq 0 \land \boldsymbol{w_{\infty}} \neq 0.$$

- 2. Evaluate the signs of M_1, \ldots, M_{δ} and the signature of H at those points.
- 3. Return the sign conditions that yield positive signature for H.

Output for one block QE!

If we want also the real root classification:

3'. Return all the sign conditions and the corresponding number of real solutions.

Choice of bases for quotient rings

We use grevlex Gröbner bases for constructing Hermite matrices

Complexity? Calls to RRC are the **main cost \$\sim Computing sample points? \$\sim Degree bound for minors of Hermite matrices?**

Complexity? Calls to RRC are the **main cost** \rightsquigarrow Computing sample points? \rightsquigarrow **Degree bound** for minors of Hermite matrices?

Generic input:
$$f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$$
 $(\deg(f_i) \leq D)$

 Complexity?
 Calls to RRC are the main cost
 \rightsquigarrow Computing sample points?

 \rightsquigarrow Degree bound for minors of Hermite matrices?

Generic input:
$$f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$$
 $(\deg(f_i) \leq D)$

Classifying real roots of S (a determinantal system)

- $M = \{m_1, \ldots, m_\delta\}$: grevlex basis of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$
- $H = (h_{k,\ell})_{1 \le k,\ell \le \delta}$ $h_{k,\ell} = \operatorname{trace} (\mathcal{L}_{m_k \cdot m_\ell})$

 Complexity?
 Calls to RRC are the main cost
 \rightsquigarrow Computing sample points?

 \rightsquigarrow Degree bound for minors of Hermite matrices?

Generic input:
$$f = (f_1, \ldots, f_s) \subset \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_t]$$
 $(\deg(f_i) \leq D)$

Classifying real roots of S (a determinantal system)

- $M = \{m_1, \ldots, m_\delta\}$: grevlex basis of $\mathbb{Q}(\mathbf{y})[\mathbf{x}]/\langle \mathbf{S} \rangle$
- $H = (h_{k,\ell})_{1 \le k,\ell \le \delta}$ $h_{k,\ell} = \operatorname{trace} (\mathcal{L}_{m_k \cdot m_\ell})$

Complexity for one block QE

• Sharp degree bound for the minors of H:

$$\mathfrak{B} = D^{s}(D-1)^{n-s} \left(2(n-s)(D-1)\binom{n-1}{s-2} + (n(D-2)+s)\binom{n-1}{s-1} \right)$$

· Arithmetic complexity

[L., Safey El Din '20]

$$O^{\sim}\left(8^{t}\mathfrak{B}^{3t}\left(t+\mathfrak{B}\right)\right)$$

1. Generic f $\Rightarrow S$ in Noether position \rightarrow Entries of H are in $\mathbb{Q}[y]$ $\deg(h_{k,\ell}) \leq \deg(m_k) + \deg(m_\ell)$ $\deg(\det(H)) \leq 2\sum_{m \in M} \deg(m)$

1.

Generic f $\rightsquigarrow S$ in Noether position Entries of H are in $\mathbb{Q}[\mathbf{y}]$ deg $(\mathbf{h}_{k,\ell}) \leq \deg(m_k) + \deg(m_\ell)$

$$\deg(\det(\boldsymbol{H})) \le 2\sum_{m\in \boldsymbol{M}} \deg(m)$$

2. Hilbert series of $\langle {\it S}
angle$ in $\mathbb{Q}({\it y})[{\it x}]$: $ext{HS}(z) = \sum_{i=0}^\infty {\it c}_i \cdot z^i$

1.

Generic f \rightsquigarrow *S* in Noether position Entries of H are in $\mathbb{Q}[\mathbf{y}]$ deg $(\mathbf{h}_{k,\ell}) \leq \deg(m_k) + \deg(m_\ell)$

$$\deg(\det(\boldsymbol{H})) \le 2\sum_{m\in \boldsymbol{M}} \deg(m)$$

2. Hilbert series of $\langle S \rangle$ in $\mathbb{Q}(\mathbf{y})[\mathbf{x}]$: $\operatorname{HS}(z) = \sum_{i=0}^{\infty} c_i \cdot z^i$ *M* from **grevlex**: $c_i = |\{m \in M \mid \deg(m) = i\}|$

1. Generic f $\rightsquigarrow S$ in Noether position

Entries of H are in $\mathbb{Q}[y]$ deg $(h_{k,\ell}) \leq \deg(m_k) + \deg(m_\ell)$

$$\deg(\det(\mathbf{H})) \le 2\sum_{m\in \mathbf{M}} \deg(m)$$

2. Hilbert series of $\langle \pmb{s} \rangle$ in $\mathbb{Q}(\pmb{y})[\pmb{x}]$: $\mathrm{HS}(z) = \sum_{i=0}^{\infty} \pmb{c_i} \cdot z^i$

M from **grevlex**: $c_i = |\{m \in M | \deg(m) = i\}|$

$$\mathrm{HS}'(1) = \sum_{i} i \cdot \mathbf{c}_{i} = \sum_{m \in \mathbf{M}} \mathrm{deg}(m)$$

1. Generic f $\rightsquigarrow S$ in Noether position

Entries of H are in $\mathbb{Q}[y]$ deg $(h_{k,\ell}) \leq \deg(m_k) + \deg(m_\ell)$

$$\deg(\det(\boldsymbol{H})) \leq 2\sum_{m\in \boldsymbol{M}} \deg(m)$$

2. Hilbert series of $\langle \pmb{s}
angle$ in $\mathbb{Q}(\pmb{y})[\pmb{x}]$: $ext{HS}(\pmb{z}) = \sum_{i=0}^{\infty} \pmb{c_i} \cdot \pmb{z^i}$

M from grevlex: $c_i = |\{m \in M \mid \deg(m) = i\}|$

$$\mathrm{HS}'(1) = \sum_{i} i \cdot c_{i} = \sum_{m \in M} \mathrm{deg}(m)$$

 $\deg(\det \boldsymbol{H}) < 2 \text{ HS}'(1)$

[Faugère, Safey El Din, Spaenlehauer '13]

$$\mathrm{HS}(z) = \frac{\det(A(z^{D-1}))}{z^{(D-1)\binom{s-1}{2}}} \frac{(1-z^D)^s (1-z^{D-1})^{n-s}}{(1-z)^n}$$

where A(z) is the $(s-1) \times (s-1)$ matrix whose (i, j)-th entry is $\sum_k {\binom{s-i}{k} \binom{n-1-j}{k} z^k}$

[Faugère, Safey El Din, Spaenlehauer '13]

$$\mathrm{HS}(z) = \frac{\det(A(z^{D-1}))}{z^{(D-1)\binom{s-1}{2}}} \frac{(1-z^D)^s (1-z^{D-1})^{n-s}}{(1-z)^n}$$

where A(z) is the $(s-1) \times (s-1)$ matrix whose (i,j)-th entry is $\sum_k {\binom{s-i}{k} \binom{n-1-j}{k} z^k}$

[Faugère, Safey El Din, Spaenlehauer '13]

$$\mathrm{HS}(z) = \frac{\det(A(z^{D-1}))}{z^{(D-1)\binom{s-1}{2}}} \frac{(1-z^D)^s (1-z^{D-1})^{n-s}}{(1-z)^n}$$

where A(z) is the $(s-1) \times (s-1)$ matrix whose (i,j)-th entry is $\sum_k {\binom{s-i}{k} \binom{n-1-j}{k} z^k}$

$$HS'(1) = D^{s}(D-1)^{n-s} \left((n-s)(D-1)\binom{n-1}{s-2} + \frac{1}{2}(n(D-2)+s)\binom{n-1}{s-1} \right)$$

Experiments

mplemented in	Maple with	FGB, RAGLIB,	MSOLVE

Intel Xeon Gold 6244 3.6GHz + 754GB RAM

 ∞ : stopped after 5 days

t	D	HERMITE				MAPLE[RF]			MAPLE[RC]			
		MAT	DET	SP	total	DEG	DV	CAD	total	BP	RRC	total
2	[2, 2]	.07 s	.01 s	.3 s	.4 s	8	.1 s	.3 s	.4 s	.1 s	1 s	1.1 s
2	[3, 2]	.1 s	.2 s	4.8 s	5 s	18	1 m	5 s	1 m	.3 s	12 s	12 s
2	[2, 2, 2]	.3 s	.3 s	33 s	34 s	24	17m	32 s	17m	23 s	2 m	2 m
2	[3, 3]	.3 s	.8 s	3 m	3 m	36	2 h	4 m	2 h	8 s	4 m	4 m
3	[2, 2]	.1 s	.02 s	26 s	27 s	8	1 s	35 s	36 s	.2 s	12m	12m
3	[3, 2]	.2 s	.2 s	3 h	3 h	18	2 h	84 h	86 h	3 s	37 h	37 h
3	[2, 2, 2]	.5 s	7 s	32 h	32 h	24	∞	∞	∞	20m	∞	∞
3	[4, 2]	.6 s	12 s	90 h	90 h	32	∞	∞	∞	12m	∞	∞
4	[2, 2]	.2 s	.1 s	8 m	8 m	8	4 s	∞	∞	1 s	∞	∞

Random dense systems with n = s (RRC)

t	n	s	MAT+DET	SP	TOTAL	DEG	MAPLE[RF]	MAPLE[RC]
3	6	6	1 h.	85 h.	86 h	48	∞	∞

Kuramoto model for 4 oscillators

MAT: compute Hermite matrices DET: compute the minors SP: compute sample points DEG: highest degree in the output RF[DV]: RootFinding[DiscriminantVariety] RF[CAD]: RootFinding[RRC] RC[BP]: RegularChains[BorderPolynomial] RC[RRC]: RegularChains[RRC]

Experiments

t	n	s	MAT+DET	SP	TOTAL	DEG	MAPLE	MATHEMATICA
2	3	2	1 s	6 s	7 s	24	∞	∞
2	4	2	9 s	2 m	2 m	40	∞	∞
2	5	2	2 m	18 m	20 m	56	∞	∞
2	6	2	20 m	2.5 h	3 h	72	∞	∞
2	7	2	1.5 h	6.5 h	8 h	88	∞	∞
3	3	2	6 s.	2 m.	2 m	24	∞	∞
3	4	2	5 m.	20 m.	25 m	40	∞	∞
3	5	2	2 h.	8 h.	10 h	56	∞	∞
4	3	2	40 s.	30 m.	30 m	24	∞	∞
4	4	2	5 h.	45 h.	50 h	40	∞	∞

Random dense systems with D = 2

D	t	n	s	MAT+DET	SP	TOTAL	DEG	MAPLE	MATHEMATICA
2	3	3	2	3 s.	37 s.	40 s	22	∞	∞
2	3	4	2	2 m.	10 m.	12 m	34	∞	∞
2	3	5	2	2 m.	10 m.	12 m	32	∞	∞
[3, 2]	3	3	2	15 m.	2 h.	2 h	48	∞	∞
2	4	3	2	20 s.	20 m.	21 m	22	∞	∞
2	4	4	2	15 s.	18 m.	19 m	20	∞	∞

Conclusions & Perspectives

Conclusions

- New practical algorithms for RRC and one-block QE
- · Better degree bound and complexity results for generic inputs
- Easier evaluation of formulas using the matrices
- Solve applications: Kuramoto model with 4 oscillators

[Kuramoto '75; Harris and Hauenstein '20]

Conclusions & Perspectives

Conclusions

- · New practical algorithms for RRC and one-block QE
- · Better degree bound and complexity results for generic inputs
- Easier evaluation of formulas using the matrices
- Solve applications: Kuramoto model with 4 oscillators

[Kuramoto '75; Harris and Hauenstein '20]

Perspectives

- Hermite matrices for computing totally real hyperplane section
- · Work on the implementation to tackle applications
- · Control the degree of denominators in non-generic case
- Exploit the structure of Hermite matrices
- Handle inequalities