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Gonshor’s alternative definition (1986):

a ∈ No :⇔ a : α→ {	,⊕} pour un certain α ∈ On
⇔ a = ⊕⊕	⊕		 · · ·︸ ︷︷ ︸

length α

Examples:
0= empty sequence, 1 = ⊕, −1 = 	, 1/2 = ⊕	,...
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Gonshor’s alternative definition (1986):

a ∈ No :⇔ a : α→ {	,⊕} pour un certain α ∈ On
⇔ a = ⊕⊕	⊕		 · · ·︸ ︷︷ ︸

length α

→ Lexicographical total ordering: & = concatenation

a&	 < a < a&⊕

→ Partial ordering simplicity :

a ≤s b :⇔ a is an initial subsequence of b.
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Definition of J. H. Conway.
Algebraic structure.

Structure and...

Theorem (Conway 76, Ehrlich 89, 2001)
No is a dense linear ordering without endpoints which
canonically contains R and On.

 No is the universal domain for linear orderings.
+ initial embeddings.

Model theory with set theory NBG with Global Choice :
the unique (up to isom) monster model (κ-saturated,
κ-homogenous, κ-universal for any κ)

No < Q, R (DLO without endpoints)

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Conway’s approach: on games...

How to win a

partisan combinatorial games?

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Conway’s approach: on games... and numbers

How to win a

partisan combinatorial games?

Any GAME has a NUMBER (not a nimber!):

I n(G) < 0 ⇔ Left Player has a winning way;
I n(G) > 0 ⇔ Right Player has a winning way;
I n(G) = 0 ⇔ the first to play loses.

Any NUMBER is an EQUIVALENCE CLASS OF
GAMES

M. Matusinski Surreal numbers, exp and ω-map.
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About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Surreal numbers with algebraic structure.

Surreal numbers with commutative algebraic operations 
recursively defined.

Conway’s original recursive definition (1976):

Dedekind + Von Neumann = Conway’s surreals

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Old and young numbers.

RULE 1

a := {AL | AR}
where: (aL ∈ AL ∧ aR ∈ AR)⇒ aL < aR.

Examples:

0 := {∅ | ∅} , 1 := {0 | ∅} , 1/2 := {0 | 1} , etc...

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Old and young numbers.

RULE 1

a := {AL | AR}
where: (aL ∈ AL ∧ aR ∈ AR)⇒ aL < aR.

RULE 2 Given a = {AL | AR} and b = {BL | BR},
a ≤ b :⇐⇒

(aL ∈ AL ∧ bR ∈ BR)⇒ (aL < b ∧ a < bR)
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Algebraic structure.

I Addition:

a + b := {aL + b, a + bL |aR + b, a + bR}
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Definition of J. H. Conway.
Algebraic structure.

Algebraic structure.

I Addition:

a + b := {aL + b, a + bL |aR + b, a + bR}

inverse element:

−a := {−aR | − aL}

neutral element:

0 = {∅ | ∅}
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About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Algebraic structure.
I Addition:

a + b := {aL + b, a + bL |aR + b, a + bR}

I Multiplication:
a · b := · · ·

inverse element:

a−1 := · · ·

neutral element:

1 = {0 | ∅}

M. Matusinski Surreal numbers, exp and ω-map.
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Algebraic structure.

From real to surreal.
On DAY ω, the first infinite ordinal:

ω := {1,2,3, . . . | ∅}
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Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Definition of H. Gonshor.
Definition of J. H. Conway.
Algebraic structure.

Structure and... universality!
Theorem (Conway 76, Ehrlich 89, 2001)
No is an ordered real closed Field which extends:
I the ordered real closed field R;
I the ordered commutative Semiring On

(via Hessenberg operations).

 No is the universal domain for:
I ordered Abelian groups;
I real fields.

+ initial embeddings.

No < R (ordered real closed fields)

M. Matusinski Surreal numbers, exp and ω-map.
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Conway’s ω-map.

I The natural valuation on No:

val : (NO, ·,≤) → (NO/∼+
∪ {∞},+,≤)

a 7→ [a]+

via the Archimedean equivalence relation ∼+.

a ∼+ b ⇔ ∃n, 1
n
|a| ≤ |b| ≤ n|a|
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Conway’s ω-map.
I The natural valuation on No:

val : (NO, ·,≤) → (NO/∼+
∪ {∞},+,≤)

a 7→ [a]+

via the Archimedean equivalence relation ∼+.

a ∼+ b ⇔ ∃n, 1
n
|a| ≤ |b| ≤ n|a|

I Conway’s ω-map:

Ω : (NO,+,≤) ↪→ (NO>0, ·,≤)

a 7→ ωa := {0, nωaL | ωaR
/2n}

M. Matusinski Surreal numbers, exp and ω-map.
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Real differential exponential fields and composition.
Omega-fields

Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Conway’s ω-map.

Examples:
I ω0 = {0 | ∅} = 1
I ω1 = {0, n | ∅} = ω

I ω−1 = {0 | 1/2n} =
1
ω
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Conway’s ω-map.

Theorem (Conway)
The ω-map is a canonical section of val - therefore an
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So in particular:

No ' val (No \ {0}) .
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Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Conway’s ω-map.

Theorem (Conway)
The ω-map is a canonical section of val - therefore an
exponentiation - which extends ordinal exponentiation.
So in particular:

No ' val (No \ {0}) .

ωNo is the group of monomials and R ' residue field

M. Matusinski Surreal numbers, exp and ω-map.
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Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Canonical Kaplansky’s embedding.

Canonical expansion of surreal numbers as generalized
power series:

∀a ∈ No,

a =
∑
i<λ

ri ω
ai

uniquely for some λ ∈ On, (ai)i<λ decreasing in No and (ri)i<λ
in R \ {0}.

M. Matusinski Surreal numbers, exp and ω-map.
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Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Canonical Kaplansky’s embedding.

Canonical expansion of surreal numbers as generalized
power series:

∀a ∈ No,

a =
∑
i<λ

ri ω
ai

No = R((ωNo))On

⇒ On-bounded series

M. Matusinski Surreal numbers, exp and ω-map.
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Real differential exponential fields and composition.
Omega-fields

Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Restricted analytic functions

Alling (1987) + van den Dries - Macintyre - Marker (1994):
No carries restricted analytic functions: for any a = a0 + ε,

f (a) = f (a0 + ε) =
∑
n∈N

f (n)(a0)

n!
εn

M. Matusinski Surreal numbers, exp and ω-map.
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Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Restricted analytic functions

Alling (1987) + van den Dries - Macintyre - Marker (1994):
No carries restricted analytic functions: for any a = a0 + ε,

f (a) = f (a0 + ε) =
∑
n∈N

f (n)(a0)

n!
εn

In particular, exp for bounded surreal numbers:

exp(a) = exp(a0 + ε) =
∑
n∈N

ea0

n!
εn

M. Matusinski Surreal numbers, exp and ω-map.
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Gonshor’s exp.

Theorem (Gonshor (1986))
No carries an exponential (and therefore a logarithm
log = exp−1) which extends the analytic exp:

exp : (NO,+,≤)→ (NO>0, .,≤)
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Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Gonshor’s exp.

Theorem (Gonshor (1986))
No carries an exponential (and therefore a logarithm
log = exp−1) which extends the analytic exp:

exp : (NO,+,≤)→ (NO>0, .,≤)

Global definition: ∀a ∈ No, exp(a) := · · ·

M. Matusinski Surreal numbers, exp and ω-map.
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About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Gonshor’s exp.

Theorem (Gonshor (1986))
No carries an exponential (and therefore a logarithm
log = exp−1) which extends the analytic exp:

exp : (NO,+,≤)→ (NO>0, .,≤)

Examples:

exp(0) = 1, exp(1) = e and exp(r) = er

exp(a0 + ε) =
∑
n∈N

ea0

n!
εn = ea0

∑
n∈N

1
n!
εn

exp(ω) = ωω

M. Matusinski Surreal numbers, exp and ω-map.
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Omega-fields

Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Exponential and ω-map.

I For any surreal number a:

log
(
ωω

a
)
= ωh(a)

where

h : No ' No>0 (as ordered classes)
a 7→ h(a) :=

{
0, h(aL) | h(aR), ωa/2n}

M. Matusinski Surreal numbers, exp and ω-map.
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Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Universality again: Ran,exp

Theorem (Alling 87, Gonshor 86, van den Dries-Ehrlich
2001)
No is a real analytic and real exponential Field which
extends Ran,exp
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Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Conway’s ω-map.
An analytic point of view.
Gonshor’s exp.

Universality again: Ran,exp

Theorem (Alling 87, Gonshor 86, van den Dries-Ehrlich
2001)
No is a real analytic and real exponential Field which
extends Ran,exp

 No is the universal domain for real analytic and
exponential fields.

+ initial embeddings (Ehrlich-Kaplan preprint)

No < Ran,exp ( real analytic and exponential fields)

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

A surreal derivation.
Derivation and composition.

Surreal numbers with derivation.

Next step?

 No as a universal domain for non oscillating
differentiable (germs of) real functions:

Hardy fields

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

A surreal derivation.
Derivation and composition.

Surreal derivation and transseries.

Surreal derivation: a derivation d such that
I ker d = R ' residue field of the natural valuation;
I a > R⇒ a′ > 0;
→ H-field (Aschenbrenner - van den Dries)

I strong linearity;
I d(exp(a)) = exp(a) · d(a);

This implies: strong l’Hospital’s rule, rule for the logarithmic
derivative and strong Leibniz rule (cf Kuhlmann-M.)

Transseries field: in the sense of M. Schmeling

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

A surreal derivation.
Derivation and composition.

Surreal derivation and transseries.

Surreal derivation:

Transseries field (Schmeling): field (T ⊆ R((G)), log) such
that:

(T1) the domain of log consists of the positive series;
(T2) log(G) ⊆ R((G>1));

(T3) log(1 + ε) =
∑
n≥1

(−1)n+1 ε
n

n
for any ε ∈ R((G>1));

(T4) about log-atomic elements, technical...

M. Matusinski Surreal numbers, exp and ω-map.
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About exponentiation.

Real differential exponential fields and composition.
Omega-fields

A surreal derivation.
Derivation and composition.

Results of Berarducci - Mantova.

Theorem (Berarducci - Mantova 2018)
No carries a surreal derivation dBM which is "the simplest".

HOW? By proving that No is a field of transseries

I axioms of Schmeling
I identifying the log-atomic elements = lambda-numbers

extending Kuhlmann–M. kappa-numbers
I etc...

M. Matusinski Surreal numbers, exp and ω-map.



Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

A surreal derivation.
Derivation and composition.

Universality continued: Hardy fields and transseries.

Theorem (Aschenbrenner-van den Dries-van der Hoeven
2019, Ehrlich-van den Dries preprint)
We have

No < T,

i.e. No is a Liouville closed H-fields with DIVP and with
small derivation.

 No is the universal domain for H-fields.
In particular:

Hardy fields: H ↪→ No.

Transseries, LE-series, (some) EL-series.

M. Matusinski Surreal numbers, exp and ω-map.
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Omega-fields

A surreal derivation.
Derivation and composition.

BUT...

Theorem (Berarducci - Mantova 2019)
There is a (partial) composition on No by the subfield of
ω-series, in particular by classical transseries / LE-series /
EL-series:

◦ : R{{ω}} × No>R → No

(Idea: Ω(1) = ω ↔ germ of identity at +∞)

BUT dBM is not compatible with (a global extension of) it!

M. Matusinski Surreal numbers, exp and ω-map.
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Omega-fields.

Problem: to find a compatible derivation on No.

 adapt Kuhlmann-M.2011 on EL-series to κ-bounded
EL-series fields (Kuhlmann-Shelah 2005) + composition.

Omega-field (Berarducci-Kuhlmann-Mantova-M.): a
real-closed field which is isomorphic to the value group of
its natural valuation:

K ' val(K \ {0})

M. Matusinski Surreal numbers, exp and ω-map.
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Omega-fields.

Problem: to find a compatible derivation on No.

 adapt Kuhlmann-M.2011 on EL-series to κ-bounded
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About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Our results...

In particular, for K = R((G))κ κ-bounded series field (κ regular
uncountable cardinal).

Theorem (Berarducci - Kuhlmann - Mantova - M. 2020)
There are omega-fields R((G))κ.
Any (R((G))κ,Ω) admits log (and therefore an exp) determined
by Ω and by any h : R((G))κ ' (R((G))κ)>0 (ordered sets).
Depending on h, either K |= Tan,exp, or not even o-minimal.

Conversely, (R((G))κ, log) admits Ω if and only if G ∼= G>1 (as
ordered sets). In this case, ∃ h : R((G))κ ' (R((G))κ)>0 linking
Ω and log.

In particular, ∃ R((G))κ with log but no Ω.

M. Matusinski Surreal numbers, exp and ω-map.
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Definitions and overview
About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Ideas of the proofs.
I existence of omega-fields R((G))κ with strong Ω;
I log compatible with omega based on:

∀a, log
(
ωω

a
)

= ωh(a)

We put:
log
(
ω
∑

i riω
ai
)

:=
∑

i

riω
h(ai )

and

log (rωa(1 + ε)) = ln(r) + log (ωa) +
∑

n

1
n
εn.

M. Matusinski Surreal numbers, exp and ω-map.
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About exponentiation.

Real differential exponential fields and composition.
Omega-fields

Ideas of the proofs.

I Choice of h : K ' K>0 determines log via the Growth
Axioms Scheme (Ressayre).
E.g. h(a) = (−a + 1)−1 if a ≤ 0 and h(a) = a + 1 if a ≥ 0.
Construction of examples with (GA): h(a) < rωa

(compare with Gonshor’s h).

I ψ : G ∼= G>1 s.t. ωg = exp(ψ(g)). .

I To get G 6∼= G>1, start with the Hahn group over
Γ0 = ω1 ×lex Z...

M. Matusinski Surreal numbers, exp and ω-map.
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I To get G 6∼= G>1, start with the Hahn group over
Γ0 = ω1 ×lex Z...
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To be continued...

Theorem (Berarducci - Freni preprint)
The field of transseries T is an omega-field.

To do list:
I compatible derivations for κ-bounded-omega-fields
I composition for κ-bounded-omega-fields
I classification of omega-groups
I model theory of omega-fields

Question: is there a transexponential o-minimal structure?

M. Matusinski Surreal numbers, exp and ω-map.
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Announcement
This will be one of the topics of the

Thematic Program on
Tame Geometry, Transseries and

Applications to Analysis and Geometry
(Fields Inst., January–June, 2022)

M. Matusinski Surreal numbers, exp and ω-map.
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Thank you for your attention!

...and would very much like to see you at the Fields in Toronto!

M. Matusinski Surreal numbers, exp and ω-map.
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