Surreal numbers with exponential function and omega-exponentiation.

M. Matusinski (U. Bordeaux)

joint work with A. Berarducci, S. Kuhlmann and V. Mantova

Séminaire MAX du LIX E. Polytechnique, 8 March 2021

ヘロト ヘアト ヘビト ヘビト

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Simple and complicated numbers.

Gonshor's alternative definition (1986):

$$a \in \mathsf{No} \quad :\Leftrightarrow \quad a : \alpha \to \{\ominus, \oplus\} \text{ pour un certain } \alpha \in \mathsf{On}$$
$$\Leftrightarrow \quad a = \underbrace{\oplus \oplus \ominus \oplus \ominus \ominus \cdots}_{\text{length } \alpha}$$

イロト 不得 とくほ とくほ とう

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Simple and complicated numbers.

Gonshor's alternative definition (1986):

$$a \in \mathsf{No} \quad :\Leftrightarrow \quad a : \alpha \to \{\ominus, \oplus\} \text{ pour un certain } \alpha \in \mathsf{On}$$
$$\Leftrightarrow \quad a = \underbrace{\oplus \oplus \ominus \oplus \ominus \ominus \cdots}_{\mathsf{length } \alpha}$$

Examples: 0= empty sequence, $1 = \oplus$, $-1 = \ominus$, $1/2 = \oplus \ominus$,...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Simple and complicated numbers.

Gonshor's alternative definition (1986):

 $a \in \mathsf{No} \quad :\Leftrightarrow \quad a : \alpha \to \{\ominus, \oplus\} \text{ pour un certain } \alpha \in \mathsf{On}$ $\Leftrightarrow \quad a = \underbrace{\oplus \oplus \ominus \oplus \ominus \ominus \cdots}_{\mathsf{length } \alpha}$

→ Lexicographical total ordering: & = concatenation

 $a\&\oplus < a < a\&\oplus$

 \rightarrow Partial ordering *simplicity*:

 $a \leq_s b :\Leftrightarrow a$ is an initial subsequence of *b*.

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Lex-ordered full rooted binary tree of depth On.

프 🖌 🛪 프 🕨

э

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Structure and...

Theorem (Conway 76, Ehrlich 89, 2001) **No** is a dense linear ordering without endpoints which canonically contains \mathbb{R} and **On**.

M. Matusinski Surreal numbers, exp and ω -map.

ヘロト ヘアト ヘビト ヘビト

ъ

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Structure and... universality!

Theorem (Conway 76, Ehrlich 89, 2001)

No is a dense linear ordering without endpoints which canonically contains \mathbb{R} and **On**.

→ **No** is the **universal domain** for linear orderings. + initial embeddings.

ヘロト 人間 ト ヘヨト ヘヨト

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Structure and...

Theorem (Conway 76, Ehrlich 89, 2001) **No** is a dense linear ordering without endpoints which canonically contains \mathbb{R} and **On**.

→ **No** is the **universal domain** for linear orderings. + initial embeddings.

Model theory with set theory NBG with Global Choice : the unique (up to isom) monster model (κ -saturated, κ -homogenous, κ -universal for any κ)

No $\succeq \mathbb{Q}$, \mathbb{R} (*DLO without endpoints*)

イロン 不良 とくほう 不良 とうほ

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Conway's approach: on games...

How to win a

partisan combinatorial games?

・ロト ・ 理 ト ・ ヨ ト ・

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Conway's approach: on games... and numbers

How to win a

partisan combinatorial games?

Any GAME has a NUMBER (not a nimber!):

- $n(G) < 0 \Leftrightarrow$ Left Player has a winning way;
- $n(G) > 0 \Leftrightarrow \text{Right Player}$ has a winning way;
- $n(G) = 0 \Leftrightarrow$ the first to play loses.

Any NUMBER is an EQUIVALENCE CLASS OF GAMES

・ロト ・ 理 ト ・ ヨ ト ・

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Surreal numbers with algebraic structure.

Surreal numbers with **commutative algebraic operations** \rightsquigarrow recursively defined.

・ロト ・ 理 ト ・ ヨ ト ・

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Surreal numbers with algebraic structure.

Surreal numbers with **commutative algebraic operations** \rightsquigarrow recursively defined.

Conway's original recursive definition (1976):

Dedekind + Von Neumann = Conway's surreals

ヘロン 人間 とくほ とくほ とう

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Old and young numbers.

$$oldsymbol{a} := \{oldsymbol{A}_L \mid oldsymbol{A}_R\}$$
 where: $(oldsymbol{a}^L \in oldsymbol{A}_L \wedge oldsymbol{a}^R \in oldsymbol{A}_R) \Rightarrow oldsymbol{a}^L < oldsymbol{a}^R.$

Examples:

$$\mathbf{0}:=\left\{ \emptyset \mid \emptyset \right\}, \ \ \mathbf{1}:=\left\{ \mathbf{0} \mid \emptyset \right\}, \ \ \mathbf{1/2}:=\left\{ \mathbf{0} \mid \mathbf{1} \right\}, \ \ \text{etc...}$$

ヘロト 人間 とくほとくほとう

æ –

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Old and young numbers.

RULE 1

$$a := \{ A_L \mid A_R \}$$

where: $(a^L \in A_L \land a^R \in A_R) \Rightarrow a^L < a^R.$

RULE 2 Given
$$a = \{A_L \mid A_R\}$$
 and $b = \{B_L \mid B_R\}$, $a \leq b : \iff$ $(a^L \in A_L \land b^R \in B_R) \Rightarrow (a^L < b \land a < b^R)$

ヘロト 人間 とくほとくほとう

Definitions and overview

About exponentiation. Real differential exponential fields and composition. Omega-fields Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Algebraic structure.

$$a + b := \{a^L + b, a + b^L | a^R + b, a + b^R\}$$

M. Matusinski Surreal numbers, exp and ω -map.

ヘロト 人間 とくほとくほとう

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Algebraic structure.

$$a+b:=\{a^L+b,\ a+b^L\,|\,a^R+b,\ a+b^R\}$$

inverse element:

$$-a := \{-a^R \mid -a^L\}$$

neutral element:

$$\mathbf{0} = \{ \emptyset \mid \emptyset \}$$

イロト 不得 とくほと くほとう

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Algebraic structure.

$$a + b := \{a^L + b, a + b^L | a^R + b, a + b^R\}$$

Multiplication:

$$a \cdot b := \cdots$$

inverse element:

$$a^{-1} := \cdots$$

neutral element:

$$\mathbf{1} = \{\mathbf{0} \mid \emptyset\}$$

・ロト ・ 理 ト ・ ヨ ト ・

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

From real to surreal. On **DAY** ω , the first infinite ordinal:

$$\omega := \{\mathbf{1}, \mathbf{2}, \mathbf{3}, \dots \mid \emptyset\}$$

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

From real to surreal.

has now an infinitesimal inverse:

$$\omega^{-1} = \frac{1}{\omega} := \left\{ \mathbf{0} \mid \frac{1}{2}, \, \frac{1}{4}, \, \frac{1}{8}, \ldots \right\}$$

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Structure and...

Theorem (Conway 76, Ehrlich 89, 2001)

No is an ordered real closed Field which extends:

- the ordered real closed field \mathbb{R} ;
- the ordered commutative Semiring On (via Hessenberg operations).

ヘロト ヘアト ヘビト ヘビト

Definition of H. Gonshor. Definition of J. H. Conway. Algebraic structure.

Structure and... universality!

Theorem (Conway 76, Ehrlich 89, 2001)

No is an ordered real closed Field which extends:

- the ordered real closed field \mathbb{R} ;
- the ordered commutative Semiring On (via Hessenberg operations).
- → No is the universal domain for:
 - ordered Abelian groups;
 - real fields.

+ initial embeddings.

$No \succcurlyeq \mathbb{R}$ (ordered real closed fields)

ヘロン 人間 とくほ とくほ とう

Conway's ω -map. An analytic point of view. Gonshor's exp.

Conway's ω -map.

The natural valuation on No:

$$\begin{array}{rcl} \mathrm{val}: & (\mathrm{NO},\cdot,\leq) & \rightarrow & (\mathrm{NO}_{/\sim_+}\cup\{\infty\},+,\leq) \\ & a & \mapsto & [a]_+ \end{array}$$

via the Archimedean equivalence relation \sim_+ .

$$a \sim_+ b \Leftrightarrow \exists n, \ \frac{1}{n} |a| \le |b| \le n |a|$$

イロト 不得 とくほ とくほ とう

Conway's ω -map. An analytic point of view. Gonshor's exp.

Conway's ω -map.

The natural valuation on No:

$$\begin{array}{rcl} \mathrm{val}: & (\mathrm{NO},\cdot,\leq) & \rightarrow & (\mathrm{NO}_{/\sim_+}\cup\{\infty\},+,\leq) \\ & \boldsymbol{a} & \mapsto & [\boldsymbol{a}]_+ \end{array}$$

via the Archimedean equivalence relation \sim_+ .

$$a \sim_+ b \Leftrightarrow \exists n, \ \frac{1}{n} |a| \le |b| \le n |a|$$

Conway's ω-map:

$$\begin{array}{rcl} \Omega: & (\mathrm{NO},+,\leq) & \hookrightarrow & (\mathrm{NO}_{>0},\cdot,\leq) \\ & \boldsymbol{a} & \mapsto & \omega^{\boldsymbol{a}}:=\{\mathbf{0},\,\boldsymbol{n}\,\omega^{\boldsymbol{a}^{L}}\mid\omega^{\boldsymbol{a}^{R}}/2^{n}\} \end{array}$$

・ロト ・ 理 ト ・ ヨ ト ・

Conway's ω-map. An analytic point of view. Gonshor's exp.

Conway's ω -map.

Examples:

$$\omega^{0} = \{0 \mid \emptyset\} = 1$$

$$\omega^{1} = \{0, n \mid \emptyset\} = \omega$$

$$\omega^{-1} = \{0 \mid 1/2^{n}\} = \frac{1}{\omega}$$

ヘロト 人間 とくほとくほとう

Conway's ω -map. An analytic point of view. Gonshor's exp.

Conway's ω -map.

Theorem (Conway)

The ω -map is a canonical section of val - therefore an exponentiation - which extends ordinal exponentiation. So in particular:

$$\mathbf{No}\simeq \mathrm{val}\left(\mathbf{No}\setminus\{\mathbf{0}\}
ight).$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Conway's ω -map. An analytic point of view. Gonshor's exp.

Conway's ω -map.

Theorem (Conway)

The ω -map is a canonical section of val - therefore an exponentiation - which extends ordinal exponentiation. So in particular:

$No\simeq \mathrm{val}\left(No\setminus\{0\}\right).$

 $\omega^{\operatorname{No}}$ is the group of monomials and $\,\mathbb{R}\simeq\,$ residue field

ヘロア 人間 アメヨア 人口 ア

An analytic point of view.

Canonical Kaplansky's embedding.

Canonical expansion of surreal numbers as generalized power series:

 $\forall a \in \mathbf{No},$

$$a = \sum_{i < \lambda} r_i \, \omega^{a_i}$$

uniquely for some $\lambda \in \mathbf{On}$, $(a_i)_{i < \lambda}$ decreasing in **No** and $(r_i)_{i < \lambda}$ in $\mathbb{R} \setminus \{0\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conway's ω -map. An analytic point of view. Gonshor's exp.

Canonical Kaplansky's embedding.

Canonical expansion of surreal numbers as **generalized power series**:

∀*a* ∈ **No**,

$$a = \sum_{i < \lambda} r_i \, \omega^{a_i}$$

$$\mathsf{No} = \mathbb{R}((\omega^{\mathsf{No}}))_{\mathsf{On}}$$

 \Rightarrow **On**-bounded series

ヘロト ヘアト ヘビト ヘビト

ъ

Conway's ω -map. An analytic point of view. Gonshor's exp.

Restricted analytic functions

Alling (1987) + van den Dries - Macintyre - Marker (1994): No carries restricted analytic functions: for any $a = a_0 + \varepsilon$,

$$f(a) = f(a_0 + \varepsilon) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(a_0)}{n!} \varepsilon^n$$

ヘロト ヘアト ヘビト ヘビト

 Definitions and overview
 Conway's ω-map.

 About exponentiation.
 An analytic point of view.

 Gonshor's exp.
 Gonshor's exp.

Restricted analytic functions

Alling (1987) + van den Dries - Macintyre - Marker (1994): No carries restricted analytic functions: for any $a = a_0 + \varepsilon$,

$$f(a) = f(a_0 + \varepsilon) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(a_0)}{n!} \varepsilon^n$$

In particular, exp for bounded surreal numbers:

$$\exp(a) = \exp(a_0 + \varepsilon) = \sum_{n \in \mathbb{N}} \frac{e^{a_0}}{n!} \varepsilon^n$$

ヘロン 人間 とくほ とくほ とう

 Definitions and overview
 Conway's ω-map.

 About exponentiation.
 An analytic point of view.

 Gonshor's exp.
 Gonshor's exp.

Gonshor's exp.

Theorem (Gonshor (1986))

No carries an **exponential** (and therefore a **logarithm** $\log = \exp^{-1}$) which extends the analytic exp:

$$\mathsf{exp}:(\textit{\textbf{NO}},+,\leq)\rightarrow(\textit{\textbf{NO}}_{>0},.,\leq)$$

ヘロン 人間 とくほ とくほ とう

ъ

Gonshor's exp.

Theorem (Gonshor (1986))

No carries an **exponential** (and therefore a **logarithm** $\log = \exp^{-1}$) which extends the analytic exp:

$$\mathsf{exp}:(\textit{\textbf{NO}},+,\leq)\rightarrow(\textit{\textbf{NO}}_{>0},.,\leq)$$

Global definition: $\forall a \in No, exp(a) := \cdots$

ヘロン 人間 とくほ とくほ とう

Conway's ω -map. An analytic point of view. Gonshor's exp.

Gonshor's exp.

Theorem (Gonshor (1986))

No carries an **exponential** (and therefore a **logarithm** $\log = \exp^{-1}$) which extends the analytic exp:

$$\mathsf{exp}:(\textit{\textbf{NO}},+,\leq)\rightarrow(\textit{\textbf{NO}}_{>0},.,\leq)$$

Examples:

 $\exp(0) = 1, \exp(1) = e \text{ and } \exp(r) = e^{r}$ $\exp(a_{0} + \varepsilon) = \sum_{n \in \mathbb{N}} \frac{e^{a_{0}}}{n!} \varepsilon^{n} = e^{a_{0}} \sum_{n \in \mathbb{N}} \frac{1}{n!} \varepsilon^{n}$ $\exp(\omega) = \omega^{\omega}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conway's ω -map. An analytic point of view. Gonshor's exp.

Exponential and ω -map.

For any surreal number *a*:

$$\log\left(\omega^{\omega^{a}}\right)=\omega^{h(a)}$$

where

$$\begin{array}{rcl} h: & \textbf{No} & \simeq & \textbf{No}_{>0} & (\text{as ordered classes}) \\ & a & \mapsto & h(a) := \left\{0, \ h(a^L) \mid h(a^R), \ \omega^a/2^n\right\} \end{array}$$

・ロット (雪) () () () ()

ъ

Conway's ω -map. An analytic point of view. Gonshor's exp.

Universality again: $\mathbb{R}_{an,exp}$

Theorem (Alling 87, Gonshor 86, van den Dries-Ehrlich 2001)

No is a real analytic and real exponential Field which extends $\mathbb{R}_{an,\text{exp}}$

ヘロン 人間 とくほ とくほ とう

Conway's ω -map. An analytic point of view. Gonshor's exp.

Universality again: $\mathbb{R}_{an,exp}$

Theorem (Alling 87, Gonshor 86, van den Dries-Ehrlich 2001)

No is a real analytic and real exponential Field which extends $\mathbb{R}_{\text{an,exp}}$

→ **No** is the **universal domain** for real analytic and exponential fields.

+ initial embeddings (Ehrlich-Kaplan preprint)

 $\textbf{No} \succcurlyeq \mathbb{R}_{an,exp}$ (real analytic and exponential fields)

・ロト ・ 理 ト ・ ヨ ト ・

A surreal derivation. Derivation and composition.

Surreal numbers with derivation.

Next step?

 \rightsquigarrow **No** as a universal domain for non oscillating differentiable (germs of) real functions:

Hardy fields

ヘロト ヘアト ヘビト ヘビト

ъ

A surreal derivation. Derivation and composition.

Surreal derivation and transseries.

Surreal derivation: a derivation d such that

- ker $d = \mathbb{R} \simeq$ residue field of the natural valuation;
- ► $a > \mathbb{R} \Rightarrow a' > 0;$

 \rightarrow *H*-field (Aschenbrenner - van den Dries)

strong linearity;

•
$$d(\exp(a)) = \exp(a) \cdot d(a);$$

This implies: strong l'Hospital's rule, rule for the logarithmic derivative and strong Leibniz rule (cf Kuhlmann-M.)

Transseries field: in the sense of M. Schmeling

イロト イポト イヨト イヨト 三日

A surreal derivation. Derivation and composition.

Surreal derivation and transseries.

Surreal derivation:

Transseries field (Schmeling): field $(\mathbb{T} \subseteq \mathbb{R}((G)), \log)$ such that:

(T1) the domain of log consists of the positive series; (T2) $\log(G) \subseteq \mathbb{R}((G_{>1}));$ (T3) $\log(1 + \varepsilon) = \sum_{n \ge 1} (-1)^{n+1} \frac{\varepsilon^n}{n}$ for any $\varepsilon \in \mathbb{R}((G_{>1}));$

(T4) about *log-atomic elements*, technical...

A surreal derivation. Derivation and composition.

Results of Berarducci - Mantova.

Theorem (Berarducci - Mantova 2018) **No** carries a surreal derivation d_{BM} which is "the simplest".

HOW? By proving that No is a field of transseries

- axioms of Schmeling
- identifying the *log-atomic elements* = lambda-numbers extending Kuhlmann–M. kappa-numbers

etc...

ヘロト 人間 とくほ とくほ とう

A surreal derivation. Derivation and composition.

Universality continued: Hardy fields and transseries.

Theorem (Aschenbrenner-van den Dries-van der Hoeven 2019, Ehrlich-van den Dries preprint) *We have*

$$\mathsf{No} \succcurlyeq \mathbb{T},$$

i.e. No is a Liouville closed H-fields with DIVP and with small derivation.

→ **No** is the universal domain for H-fields. In particular:

Hardy fields: $\mathcal{H} \hookrightarrow No$.

Transseries, LE-series, (some) EL-series.

ヘロト ヘアト ヘビト ヘビト

A surreal derivation. Derivation and composition.

BUT...

Theorem (Berarducci - Mantova 2019)

There is a (partial) composition on **No** by the subfield of ω -series, in particular by classical transseries / LE-series / EL-series:

 $\circ: \mathbb{R}\{\{\omega\}\} \times \mathbf{No}^{>\mathbb{R}} \to \mathbf{No}$

(Idea: $\Omega(1) = \omega \leftrightarrow$ germ of identity at $+\infty$)

BUT d_{BM} is not compatible with (a global extension of) it!

A surreal derivation. Derivation and composition.

BUT...

Theorem (Berarducci - Mantova 2019)

There is a (partial) composition on **No** by the subfield of ω -series, in particular by classical transseries / LE-series / EL-series:

$$\circ: \mathbb{R}\{\{\omega\}\} \times \mathbf{No}^{>\mathbb{R}} \to \mathbf{No}$$

(Idea: $\Omega(1) = \omega \leftrightarrow$ germ of identity at $+\infty$)

 $BUT d_{BM}$ is not compatible with (a global extension of) it!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Omega-fields.

Problem: to find a compatible derivation on **No**.

 \rightsquigarrow adapt Kuhlmann-M.2011 on EL-series to κ -bounded EL-series fields (Kuhlmann-Shelah 2005) + composition.

Omega-field (Berarducci-Kuhlmann-Mantova-M.): a real-closed field which is isomorphic to the value group of its natural valuation:

$\mathbb{K}\simeq \mathrm{val}(\mathbb{K}\setminus\{\mathbf{0}\})$

ヘロト 人間 ト ヘヨト ヘヨト

Omega-fields.

Problem: to find a compatible derivation on **No**.

 \rightsquigarrow adapt Kuhlmann-M.2011 on EL-series to κ -bounded EL-series fields (Kuhlmann-Shelah 2005) + composition.

Omega-field (Berarducci-Kuhlmann-Mantova-M.): a real-closed field which is isomorphic to the value group of its natural valuation:

 $\mathbb{K}\simeq \text{val}(\mathbb{K}\setminus\{0\})$

Our results...

In particular, for $\mathbb{K} = \mathbb{R}((G))_{\kappa}$ κ -bounded series field (κ regular uncountable cardinal).

Theorem (Berarducci - Kuhlmann - Mantova - M. 2020) There are omega-fields $\mathbb{R}((G))_{\kappa}$.

Any $(\mathbb{R}((G))_{\kappa}, \Omega)$ admits log (and therefore an exp) determined by Ω and by any $h : \mathbb{R}((G))_{\kappa} \simeq (\mathbb{R}((G))_{\kappa})_{>0}$ (ordered sets). Depending on h, either $\mathbb{K} \models T_{\mathrm{an,exp}}$, or not even o-minimal.

Conversely, $(\mathbb{R}((G))_{\kappa}, \log)$ admits Ω if and only if $G \cong G_{>1}$ (as ordered sets). In this case, $\exists h : \mathbb{R}((G))_{\kappa} \simeq (\mathbb{R}((G))_{\kappa})_{>0}$ linking Ω and log.

In particular, $\exists \mathbb{R}((G))_{\kappa}$ with log but no Ω .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Our results...

In particular, for $\mathbb{K} = \mathbb{R}((G))_{\kappa}$ κ -bounded series field (κ regular uncountable cardinal).

Theorem (Berarducci - Kuhlmann - Mantova - M. 2020) There are omega-fields $\mathbb{R}((G))_{\kappa}$. Any $(\mathbb{R}((G))_{\kappa}, \Omega)$ admits log (and therefore an exp) determined by Ω and by any $h : \mathbb{R}((G))_{\kappa} \simeq (\mathbb{R}((G))_{\kappa})_{>0}$ (ordered sets). Depending on h, either $\mathbb{K} \models T_{an,exp}$, or not even o-minimal.

Conversely, $(\mathbb{R}((G))_{\kappa}, \log)$ admits Ω if and only if $G \cong G_{>1}$ (as ordered sets). In this case, $\exists h : \mathbb{R}((G))_{\kappa} \simeq (\mathbb{R}((G))_{\kappa})_{>0}$ linking Ω and log.

In particular, $\exists \mathbb{R}((G))_{\kappa}$ with log but no Ω .

Our results...

In particular, for $\mathbb{K} = \mathbb{R}((G))_{\kappa}$ κ -bounded series field (κ regular uncountable cardinal).

Theorem (Berarducci - Kuhlmann - Mantova - M. 2020) There are omega-fields $\mathbb{R}((G))_{\kappa}$. Any $(\mathbb{R}((G))_{\kappa}, \Omega)$ admits log (and therefore an exp) determined by Ω and by any $h : \mathbb{R}((G))_{\kappa} \simeq (\mathbb{R}((G))_{\kappa})_{>0}$ (ordered sets). Depending on h, either $\mathbb{K} \models T_{an,exp}$, or not even o-minimal.

Conversely, $(\mathbb{R}((G))_{\kappa}, \log)$ admits Ω if and only if $G \cong G_{>1}$ (as ordered sets). In this case, $\exists h : \mathbb{R}((G))_{\kappa} \simeq (\mathbb{R}((G))_{\kappa})_{>0}$ linking Ω and log.

In particular, $\exists \mathbb{R}((G))_{\kappa}$ with log but no Ω .

Ideas of the proofs.

- existence of omega-fields $\mathbb{R}((G))_{\kappa}$ with strong Ω ;
- log compatible with omega based on:

$$\forall \boldsymbol{a}, \log\left(\boldsymbol{\omega}^{\boldsymbol{\omega}^{\boldsymbol{a}}}\right) = \boldsymbol{\omega}^{\boldsymbol{h}(\boldsymbol{a})}$$

We put:

$$\log\left(\omega^{\sum_{i}r_{i}\omega^{a_{i}}}\right):=\sum_{i}r_{i}\omega^{h(a_{i})}$$

and

$$\log (r\omega^{a}(1+\varepsilon)) = \ln(r) + \log (\omega^{a}) + \sum_{n} \frac{1}{n} \varepsilon^{n}.$$

Ideas of the proofs.

- existence of omega-fields $\mathbb{R}((G))_{\kappa}$ with strong Ω ;
- log compatible with omega based on:

$$\forall \boldsymbol{a}, \log\left(\omega^{\omega^{\boldsymbol{a}}}\right) = \omega^{\boldsymbol{h}(\boldsymbol{a})}$$

We put:

$$\log\left(\omega^{\sum_{i}r_{i}\omega^{a_{i}}}\right) := \sum_{i}r_{i}\omega^{h(a_{i})}$$

and

$$\log (r\omega^{a}(1+\varepsilon)) = \ln(r) + \log (\omega^{a}) + \sum_{n} \frac{1}{n} \varepsilon^{n}.$$

Ideas of the proofs.

Choice of *h* : K ≃ K_{>0} determines log via the Growth Axioms Scheme (Ressayre).

E.g. $h(a) = (-a+1)^{-1}$ if $a \le 0$ and h(a) = a+1 if $a \ge 0$. Construction of examples with (GA): $h(a) < r\omega^a$ (compare with Gonshor's *h*).

- $\psi: G \cong G_{>1}$ s.t. $\omega^g = \exp(\psi(g))$.
- ► To get $G \cong G_{>1}$, start with the Hahn group over $\Gamma_0 = \omega_1 \times_{\text{lex}} \mathbb{Z}$...

Ideas of the proofs.

Choice of *h* : K ≃ K_{>0} determines log via the Growth Axioms Scheme (Ressayre).

E.g. $h(a) = (-a+1)^{-1}$ if $a \le 0$ and h(a) = a+1 if $a \ge 0$. Construction of examples with (GA): $h(a) < r\omega^a$ (compare with Gonshor's *h*).

•
$$\psi: \mathbf{G} \cong \mathbf{G}_{>1}$$
 s.t. $\omega^{\mathbf{g}} = \exp(\psi(\mathbf{g}))$. .

To get $G \not\cong G_{>1}$, start with the Hahn group over $\Gamma_0 = \omega_1 \times_{\text{lex}} \mathbb{Z}$...

Ideas of the proofs.

Choice of *h* : K ≃ K_{>0} determines log via the Growth Axioms Scheme (Ressayre).

E.g. $h(a) = (-a+1)^{-1}$ if $a \le 0$ and h(a) = a+1 if $a \ge 0$. Construction of examples with (GA): $h(a) < r\omega^a$ (compare with Gonshor's *h*).

•
$$\psi: \mathcal{G} \cong \mathcal{G}_{>1}$$
 s.t. $\omega^g = \exp(\psi(g))$. .

► To get $G \cong G_{>1}$, start with the Hahn group over $\Gamma_0 = \omega_1 \times_{\text{lex}} \mathbb{Z}$...

To be continued...

Theorem (Berarducci - Freni preprint) The field of transseries T is an omega-field.

To do list:

- compatible derivations for κ-bounded-omega-fields
- composition for κ-bounded-omega-fields
- classification of omega-groups
- model theory of omega-fields

Question: is there a transexponential o-minimal structure?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Announcement

This will be one of the topics of the

Thematic Program on Tame Geometry, Transseries and Applications to Analysis and Geometry (Fields Inst., January–June, 2022)

M. Matusinski Surreal numbers, exp and ω -map.

Thank you for your attention!

...and would very much like to see you at the Fields in Toronto!

M. Matusinski Surreal numbers, exp and ω -map.

ヘロト ヘアト ヘビト ヘビト

ъ