
A Confluent Trace Semantics for Probabilistic
Lambda Calculus

Andrew Kenyon-Roberts

Abstract—Probabilistic lambda calculus has a weaker version
of the confluence property of plain lambda calculus. However,
in the usual formulation, this only applies in the sense of
distributions, but not to individual traces of random choices. A
new labelling scheme for random choices is introduced for PPCF,
a simply-typed functional language with explicit recursion, real
numbers and a random sampling operator, that allows a confluent
version of trace semantics to be defined (with a restricted set of
call-by-value reduction strategies).

I. INTRODUCTION

Non-probabilistic lambda calculi are generally confluent,
i.e. if a term A reduces to both B1 and B2, there is some C to
which both B1 and B2 reduce, so the reduction order mostly
doesn’t matter. In the probabilistic case, this may not be true,
because β-reduction can duplicate samples, so the outputs of
the copies of the sample may be identical or independent,
depending on whether the sample is taken before or after
β-reduction. Consider for example the term (λx.x+x) sample,
where sample reduces to a number chosen uniformly at
random from the interval I = [0, 1]. If it is reduced in call-by-
value order, first the sample reduces to some number r, then
the β redex is evaluated, then r is added to itself, yielding
2r. If it is reduced in call-by-name order instead, first the β
redex is reduced, yielding sample+ sample, then the samples
are evaluated independently and added, yielding r + r′. As r
and r′ are independent, the distribution of results is triangular,
with support [0, 2] and peak at 1, which is different from the
uniform distribution of results in the CbV case.

The results obtained by CbV and CbN evaluation differ in a
significant way, however, there are some cases where the order
of evaluation doesn’t matter. For example, in sample+sample,
the order in which the samples are evaluated doesn’t affect
the final result, and in (λx.sample) 0, the β redex and the
sample can be evaluated in either order. In order to obtain the
desired confluence result, we restrict our attention to a class
of reduction strategies that are equivalent to CbV, as the CbN
semantics is less expressive, being unable to force evaluation
of a random choice and duplicate the result.

Even with such a restriction, a trace semantics in the usual
style would not be entirely confluent. In the normal sort
of trace semantics [1], there is a sequence of samples, the
trace, selected at random from a trace space such as IN, then
for every sample statement reduction, the next sample from
the trace is used in order, so that the samples in the trace
are effectively each labelled by a number corresponding to
the execution order of the sample statements. Consider the

evaluation of the term sample − sample using one of these
simple linear traces, (1, 0, . . .). It would reduce to either 1 or
−1 depending on the order of evaluation of the samples, as
that determines which sample from the pre-selected sequence
is used for each one. To fix this, rather than pre-selecting
samples according to the order they’ll be drawn in, they can
be labelled according to the position in the term where they’ll
be used instead.

Further details, including all of the missing proofs, can be
found in [2, §IV, §D].

A. Outline

First, the syntax of the language PPCF is introduced.
Positions are defined as a way of addressing sample statements
within a program independently of the reduction order. Next,
a version of the reduction relation is presented that is nonde-
terministic, so that it allows a choice of what order to perform
reductions in. The notion of positions is extended to potential
positions, for samples which may appear later in the reduction
sequence but not necessarily in the initial term. In order to
allow potential positions in different reduction sequences to
be considered equivalent, a relation ∼∗ is defined, and finally,
all of these are used to construct a confluent version of the
trace semantics, ⇒, that is still nondeterministic in reduction
order, but does specify the outcome of random choices.

II. SYNTAX OF PROBABILISTIC PCF

The language PPCF is a call-by-value version of PCF with
sampling of real numbers from the closed interval [0, 1] [3–5].
Types and terms are defined as follows, where r is a real
number, x is a variable, f : Rn → R is any measurable
function, and Γ is an environment:

types A,B ::= R | A → B

values V ::= λx.M | r
terms M,N ::= V | x | M1 M2 | f(M1, . . . ,Mn) | YM

| if(M < 0, N1, N2) | sample

The typing rules are standard (see Fig. 1). The restriction
to well-typed terms is only necessary here in order to avoid
reaching terms which contain nonsense such as applying a
number as though it were a function, so a more liberal type
system would work just as well. Simple types are just used for
simplicity. Terms are identified up to α-equivalence, as usual.
The set of all terms is denoted Λ, and the set of closed terms
is denoted Λ0.

Γ;x : A ` x : A

Γ;x : A ` M : B

Γ ` λx.M : A → B

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

Γ ` M : (A → B) → (A → B)

Γ ` YM : (A → B)

Γ ` M : R Γ ` N1 : A Γ ` N2 : A

Γ ` if(M < 0, N1, N2) : A

r : R Γ ` sample : R
Γ ` M1 : R . . . Γ ` Mn : R

Γ ` f(M1, . . . ,Mn) : R
(f : Rn → R)

Figure 1. Typing rules of PPCF

III. POSITIONS

A position is a finite sequence of steps into a term, defined
inductively as

α ::= · | λ;α | @1;α | @2;α | f
i
;α

| Y;α | if1;α | if2;α | if3;α.

The subterm of M at α, denoted M | α, is defined as

M | · = M

λx.M | λ;α = M | α
M1 M2 | @i;α = Mi | α for i = 1, 2

f(M1, . . . ,Mn) | f i
;α = Mi | α for i ≤ n

YM | Y;α = M | α
if(M1 < 0,M2,M3) | ifi;α = Mi | α for i = 1, 2, 3

so that every subterm is located at a unique position, but
not every position corresponds to a subterm (e.g. x y | λ
is undefined). A position such that M | α does exist is
said to occur in M . Substitution of N at position α in
M , written M [N/α], is defined similarly. For example, let
M = λx y.y (if(x < 0, y (f(x)), 3)) and α = λ;λ; @2; if2; @2

then M [sample/α] = λx y.y (if(x < 0, y sample, 3)).

Two subterms N1 and N2 of a term M , corresponding to
positions α1 and α2, can overlap in a few different ways.
If α1 is a prefix of α2 (written as α1 ≤ α2), then N2 is
also a subterm of N1. If neither α1 ≤ α2 nor α1 ≥ α2, the
positions are said to be disjoint. The notion of disjointness is
mostly relevant in that if α1 and α2 are disjoint, performing
a substitution at α1 will leave the subterm at α2 unaffected.

Thus we can define a nondeterministic reduction relation
→.

Definition III.1. The binary relation → is defined by the
following rules, each is conditional on a redex occurring at

position α in the term M :

if M | α = (λx.N)V, M → M [N [V/x]/α]

if M | α = f(r1, . . . , rn), M → M [f(r1, . . . , rn)/α]

if M | α = Yλx.N, M → M [λz.N [(Yλx.N)/x]z/α]

where z is not free in N

if M | α = if(r < 0, N1, N2), M → M [N1/α] where r < 0

if M | α = if(r < 0, N1, N2), M → M [N2/α] where r ≥ 0

if M | α = sample and λ does not occur after @2 or Y in α,

M → M [r/α] where r ∈ [0, 1].

In each of these cases, M | α is the redex, and the reduction
takes place at α. Each subterm can be a redex in at most one
way, but there can be multiple redexes at different positions.

The argument of a β redex and the body of a Y redex may
be duplicated by those reductions. It is therefore these cases
that need to be handled carefully to avoid duplicating samples
at the wrong time. In both cases, the potentially duplicated part
must already be a value, which excludes terms like sample or
sample+1, which should be evaluated before being duplicated.
In the other direction, if a sample occurs inside of a λ, it may
need to be duplicated before being evaluated, which is why a
sample reduction isn’t allowed inside a λ inside a Y or the right
side of an application. These restrictions are in some cases
unnecessarily strict, for example, in (λx.x)((λy.sample)0), it
would be fine to evaluate the sample first, but they are at least
sufficient to ensure confluence in terms of the distribution of
results. Getting individual traces to behave correctly will take
more work though.

IV. SKELETAL REDUCTION SEQUENCES

Labelling the pre-chosen samples by the positions in the
term by using I{α| (M |α)=sample} as the trace space would not
be sufficient to solve the issue of different samples being used
in corresponding locations in different reduction sequences
because in some cases, a sample will be duplicated before
being reduced, for example, in (λx.x 0 + x 0)(λy.sample),
both of the sample redexes that eventually occur originate at
@2;λ. It is therefore necessary to consider possible positions
that may occur in other terms reachable from the original term.
Even this is itself inadequate because some of the positions

2

in different reachable terms need to be considered the same,
and the number of reachable terms is in general uncountable,
which leads to measure-theoretic issues.

We are thus led to consider the reduction relation on
skeletons. Define a skeleton to be a term but, instead of having
real constants r, it has a placeholder X, so that each term M
has a skeleton Sk(M), and each skeleton S can be converted
to a term S[r] given a vector r of n real numbers to substitute
in, where n is the number of occurrences of X in S. Positions
in a skeleton and the reduction relation → on skeletons can
be extended from the definitions on terms in the obvious way,
with if(X < 0, A,B) reducing nondeterministically to both A
and B, sample reducing to X, and X considered as (the skeletal
equivalent of) a value, so that (λx.A)X reduces to A[X/x]. For
example, we have (λx.if(x < 0, x,X)) sample → (λx.if(x <
0, x,X))X → if(X < 0,X,X) → X.

Given a closed term M , let L0(M) be the set of pairs,
the first element of which is a →-reduction sequence of
skeletons starting at Sk(M), and the second of which is a
position in the final skeleton of the reduction sequence. As
with the traces from IN used to pre-select samples to use in the
standard trace semantics, modified traces, which are elements
of IL0(M) (with one more caveat introduced after Def. V.2),
will be used to pre-select a sample from I for each element
of L0(M), which will then be used if a sample reduction is
ever performed at that position.

A (skeletal) reduction sequence is assumed to contain the
information on the locations of all of the redexes as well as
the actual sequence of skeletons that occurs. For example,
(λx.x)((λx.x)X) could reduce to (λx.x)X with the redex at
either · or @2, and these give different reduction sequences.

Example IV.1. Consider the terms

A[M] = if(if(M > 0, I, I)(λy.sample) 0− 0.5 > 0, 0,Ω)

B = if(sample− 0.5 > 0, 0,Ω)

If terms rather than skeletons were used to label samples, the
set of modified traces where A[sample] terminates would be⋃

r∈[0,1]

{
s | s(A[sample], if1;−1; @1; @1; if1) = r,

s(A[sample] → A[r] →∗ B, if1;−1) > 0.5
}
.

This is a rather unwieldy expression, but the crucial part is
that r occurs twice in the conditions on s: once as the value
a sample must take, and once in the location of a sample. As
this set is unmeasurable, the termination probability would not
even be well-defined. Labelling samples by skeletons instead,
this problem does not occur because there are only countably
many skeleton, and at each step in a reduction sequence, only
finitely many could have occurred yet. Although skeletal re-
duction sequences omit the information on what the results of
sampling were, they still contain all the necessary information
on how many, and which, reductions took place.

For this particular term, Sk(A[r]) does not depend on the
value of r, therefore the set where it terminates becomes

simply the following, which is measurable.{
s | s(Sk(A[sample]) → Sk(A[0]) →∗ Sk(B), if1;−1) > 0.5

}
Reduction sequences are used rather than reachable skele-

tons because if the same skeleton is reached twice, different
samples may be needed:

Example IV.2. Consider the term M = Y(λfx. if(sample −
0.5 < 0, f x, x)) 0, which reduces after a few steps to
N = if(sample − 0.5 < 0,M, 0). If we label samples by
just skeletons and positions, and the pre-selected sample for
(Sk(N), if1;−1) is less than 0.5, N reduces back to M , then N
again, then the same sample is used the next time, therefore it’s
an infinite loop, whereas if samples are labelled by reduction
sequences, the samples for M →∗ N are independent from
the samples for M →∗ N → M →∗ N , and so on.

The reduction sequences of skeletons will often be discussed
as though they were just skeletons, identifying them with
their final skeletons. With this abuse of notation, a reduction
sequence N (actually N1 →∗ Nn = N) may be said
to reduce to a reduction sequence O, where the reduction
sequence implicitly associated with the final skeleton O is
N1 →∗ Nn → O.

V. POTENTIAL POSITIONS

This is still not quite sufficient to attain confluence because
sometimes the same samples must be used at corresponding
positions in different reduction sequences.

Example V.1. The term M = sample + sample has the
reachable skeletons N1 = X+ sample, N2 = sample+X, O =
X + X and X, with reductions M → N1 → O → X and
M → N2 → O → X. In the reduction M → N1, the sample
labelled (M,+1) is used, and in the reduction N2 → O, the
sample labelled (M → N2,+1) is used. Each of these samples
becomes the value of the first numeral in O in their respective
reduction sequences, therefore in order for confluence to be
attained, they must be the same. Which elements of L0(M)
must match can be described by the relation ∼∗:

Definition V.2. The relation ∼ is defined as the union of the
minimal symmetric relations ∼p (“p” for parent-child) and ∼c

(“c” for cousin) satisfying
(i) If N reduces to O with the redex at position α, and β

is a position in N disjoint from α, then (N, β) ∼p (O, β).
(ii) If N β-reduces to O at position α, β is a position in

N | α; @1;λ and N | α; @1;λ;β is not the variable involved
in the reduction, (N,α; @1;λ;β) ∼p (O,α;β).

(iii) If N if-reduces to O at position α, with the first resp.
second branch being taken, and α; ifi;β occurs in N (where
i = 2 resp. 3), (N,α; ifi;β) ∼p (O,α;β).

(iv) If N , O1 and O2 match any of the following cases:
a) N contains redexes at disjoint positions α1 and α2, O1 is

N reduced first at α1 then α2 and O2 is N reduced first
at α2 then at α1.

3

b) N | α = if(r < 0, N1, N2), where r < 0 (or, respectively,
r ≥ 0), (N2 resp. N1) | β is a redex, and O1 is N reduced
at α and O2 is N reduced first at α; (if3 resp. if2);β then
at α.

c) N | α = if(r < 0, N1, N2), where r < 0 (or, respectively,
r ≥ 0), (N1 resp. N2) | β is a redex, and O1 is N
reduced first at α then at α;β and O2 is N reduced first
at α; (if2 resp. if3);β then at α.

d) N | α = (λx.A)B, there is a redex in A at position β, O1

is N reduced first at α then at α;β, and O2 is N reduced
first at α; @1;λ;β then at α.

e) N | α = (λx.A)B, B | β is a redex, (γi)i is a list of all
the positions in A where A | γ = x, ordered from left to
right, O1 is N reduced first at α; @2;β then at α, and O2

is N reduced first at α then at α; γi;β for each i in order.
f) N | α = Y(λx.A), A reduced at β is A′, (γi)i is a list

of all the positions where A′ | γ = x, ordered from left
to right, O1 is N reduced first at α;Y;λ;β then at α, and
O2 is N reduced first at α then at α;λ; @1; γi;Y ;λ;β for
each i in order where γi is left of β then at α;λ; @1;β
then at α;λ; @1; γi;Y ;λ;β for the remaining values of i.

(in which case O1 and O2 are equal as skeletons, but with
different reduction sequences), O′

1 and O′
2 are the results of

applying some reduction sequence to each of O1 and O2

(the same reductions in each case, which is always possible
because they’re equal skeletons), and δ is a position in O′

1 (or
equivalently O′

2), then (O′
1, δ) ∼c (O

′
2, δ).

Example V.3. In Ex. V.1, (M,+1) ∼p (M → N2,+1) by
case i of ∼p (because the reduction M → N2 occurs at +2,
which is disjoint from +1), and similarly, (M,+2) ∼p (M →
N1,+2).

If we extend it to have three samples, ∼c becomes necessary
as well: Let Msss = sample + sample + sample (taking the
three-way addition to be a single primitive function), MXss =
X + sample + sample, and so on. There are then reduction
sequences Msss → MXss → MXXs → MXXX → X and
Msss → MsXs → MXXs → MXXX → X. For the first two
reductions, these reduction sequences take the same samples
by ∼p, case i, as in Ex. V.1 . The next reduction uses the
samples labelled by (Msss → MXss → MXXs,+3) and
(Msss → MsXs → MXXs,+3), which are related by ∼c, case
a, therefore when these reduction sequences reach MXXX ,
they still contain all the same numbers, as desired.

The reflexive transitive closure ∼∗ of this relation is used
to define the set of potential positions L(M) = L0(M)/ ∼∗,
and each equivalence class can be considered as the same
position as it may occur across multiple reachable skeletons.
If (N,α) ∼∗ (O, β), then N | α and O | β both have the
same shape (i.e. they’re either both the placeholder X, both
variables, both applications, both samples etc.), therefore it’s
well-defined to talk of the set of potential positions where there
is a sample, Ls(M). The new sample space is then defined
as ILs(M), with the Borel σ-algebra and product measure.
Since ILs(M) is a countable product, the measure space is

well-defined [6, Cor. 2.7.3].

VI. THE CONFLUENT TRACE SEMANTICS

Before defining the new version of the reduction relation,
the following lemma is necessary for it to be well-defined.

Lemma VI.1. The relation ∼ is defined on L0(M) with
reference to a particular starting term M , so different versions,
∼M and ∼N , can be defined starting at different terms. If
M → N , then ∼∗

N is equal to the restriction of ∼∗
M to L0(N).

At each reduction step M → N , the sample space must
be restricted from ILs(M) to ILs(N). The injection L0(N) →
L0(M) is trivial to define by appending Sk(M) → Sk(N) to
each path, and using Lem. VI.1, this induces a corresponding
injection on the quotient, L(N) → L(M). The corresponding
map Ls(N) → Ls(M) is then denoted i(M → N).

Definition VI.2 (⇒ reduction). This version of the reduction
relation now specifies the results of sample reductions, but is
still nondeterministic with respect to the order of reduction.
It relates

⊎
M∈Λ0

ILs(M) to itself. We write an element of⊎
M∈Λ0

ILs(M) as (M ′, s) where the term M ′ ∈ Λ0 and s ∈
ILs(M

′).

(M, s) ⇒ (N, s ◦ i(M → N)) if M → N at α and either
the redex is not sample, or
M | α = sample and N = M [s(Sk(M), α)/α]

This reduction relation now has all of the properties required
of it. In particular, it can be considered an extension of the
standard trace semantics (as will be seen later in Thm. VI.5),
and also:

Lemma VI.3. The relation ⇒ is confluent.

In order to show that ⇒ behaves as expected, the following
lemma is also necessary, in order to show that a sample is
never used multiple times in the same reduction sequence:

Lemma VI.4. If M → N , with the redex at position α, then
no position in any term reachable from N is related by ∼∗ to
(M,α).

The reduction relation ⇒ is nondeterministic, so it admits
multiple possible reduction strategies. A reduction strategy
starting from a closed term M is a measurable partial function
f from Rch(M) to positions, such that for any reachable term
N where f is defined, f(N) is a position of a redex in N ,
and if f(N) is not defined, N is a value. Using a reduction
strategy f , a subset of ⇒ that isn’t nondeterministic, ⇒f , can
be defined by (N, s) ⇒f (N ′, s′) just if (N, s) ⇒ (N ′, s′)
and N reduces to N ′ with the redex at f(N).

The usual call-by-value semantics can be implemented as
one of these reduction strategies, given by (with V a value

4

and T a term that isn’t a value and M a general term)

cbv(TM) = @1; cbv(T)

cbv(V T) = @2; cbv(T)

cbv(f(V1, . . . , Vk−1, T,Mk+1, . . . ,Mn)) = f
k
; cbv(T)

cbv(YT) = Y; cbv(T)

cbv(if(T < 0,M1,M2)) = if1; cbv(T)
cbv(V) is undefined
cbv(T) = · otherwise

(this last case covers redexes at the root position).
A closed term M terminates with a given reduction strategy

f and samples s if there is some natural number n such that
(M, s) ⇒n

f (N, s′) where f gives no reduction at N . The term
is almost surely terminating (AST) w.r.t. f if it terminates with
f for almost all s.

This reduction strategy allows the confluent trace semantics
to be related to the standard version of the trace semantics
with a fixed reduction order and linear traces. In [2], which
gives the full definition of the standard trace semantics, this is
used to prove the following theorems that allow termination
results to be transferred from the confluent trace semantics to
the standard trace semantics.

Theorem VI.5. A closed term M is AST with respect to cbv
iff it is AST.

Theorem VI.6. If M terminates with some reduction strategy
f and trace s, it terminates with cbv and s.

Corollary VI.7 (Reduction strategy independence). If M is
AST with respect to any reduction strategy, it is AST.

Proof. Suppose M is AST w.r.t. f . Let the set of samples
with which it terminates with this reduction strategy be X .
By Thm. VI.6, M also terminates with cbv and every element
of X , and X has measure 1, by assumption, therefore M is
AST with respect to cbv therefore by Thm. VI.5 it is AST.

REFERENCES

[1] J. Borgström, U. Dal Lago, A. D. Gordon, and M. Szymczak, “A
lambda-calculus foundation for universal probabilistic programming,”
ACM SIGPLAN Notices, vol. 51, no. 9, pp. 33–46, 2016.

[2] A. Kenyon-Roberts and L. Ong, “Supermartingales, ranking functions and
probabilistic lambda calculus,” arXiv preprint arXiv:2102.11164, 2021.

[3] T. Ehrhard, M. Pagani, and C. Tasson, “Full Abstraction for Probabilistic
PCF,” Journal of the ACM, vol. 65, no. 4, pp. 1–44, apr 2018. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3208081.3164540

[4] ——, “Measurable cones and stable, measurable functions: a model for
probabilistic higher-order programming,” PACMPL, vol. 2, no. POPL,
pp. 59:1–59:28, 2018. [Online]. Available: http://doi.acm.org/10.1145/
3158147

[5] C. Mak, C.-H. L. Ong, H. Paquet, and D. Wagner, “Densities of almost
surely terminating probabilistic programs are differentiable almost every-
where,” in ESOP 2021, 2021, to appear. https://arxiv.org/abs/2004.03924.

[6] R. B. Ash and C. Doléans-Dade, Probability and measure Theory.
Harcourt Academic Press, 2000.

5

http://dl.acm.org/citation.cfm?doid=3208081.3164540
http://doi.acm.org/10.1145/3158147
http://doi.acm.org/10.1145/3158147
https://arxiv.org/abs/2004.03924

	Introduction
	Outline

	Syntax of Probabilistic PCF
	Positions
	Skeletal Reduction Sequences
	Potential Positions
	The Confluent Trace Semantics
	References

