
Evaluation in the computational calculus is non-confluent

Claudia Faggian1, Giulio Guerrieri2, and Riccardo Treglia3

1 Université de Paris, IRIF, CNRS, F-75013 Paris, France
faggian@irif.fr

2 University of Bath, Department of Computer Science, Bath, UK
giulio.guerrieri@gmail.com

3 Università di Torino, Department of Computer Science, Turin, Italy
riccardo.treglia@unito.it

Abstract

In Moggi’s computational calculus, reduction is the contextual closure of the rules
obtained by orienting three monadic laws. In the literature, evaluation is usually defined
as the closure under weak contexts (no reduction under binders): E = 〈〉 | letx :=E inM .

We show that, when considering all the monadic rules, weak reduction is non-
deterministic, non-confluent, and normal forms are not unique. However, when interested
in returning a value (convergence), the only necessary monadic rule is β, whose evaluation
is deterministic.

The computational λ-calculus, noted λc, was introduced by Moggi [11, 12, 13] as a meta-
language to describe computational effects in programming languages. Since then, computa-
tional λ-calculi have been developed as foundations of programming languages, formalizing both
functional and effectful features [20, 1, 16, 9, 2], in a still active line of research.

To model effectful features at a semantic level, Moggi used the categorical notion of monad.
A monad can be equivalently presented as a Kleisli triple satisfying three identities [13, 10]. At
an operational level, Moggi [11] internalized these identities into the syntax of λc, giving rise
to three conversion rules—called monadic laws—that are added to the usual β and η rules.

Nowadays the literature is rich of computational calculi that refine Moggi’s λc. Such calculi
are presented in at least three different fashions: fully equational systems [9, 15] (all conversion
rules are unoriented identities); hybrid systems where β (and η, if considered) are oriented
rules while the monadic laws are identities on terms [2]; reduction systems where every rule is
oriented [17]. Here we follow the latter approach, which brings to the fore operational aspects
of reduction and evaluation which seem to have been neglected in the literature.

Indeed, in the literature of calculi with effects [9, 2], evaluation is usually weak, that is, it is
not allowed in the scope of the binders (λ or let). This is the way evaluation is implemented by
functional programming languages such as Haskell and OCaml. Moreover, only β and let.β are
considered. However, in Moggi’s λc and in Sabry and Wadler’s [17], the reduction is full, that
is, reduction is the compatible closure of all the monadic rules. When considering all the rules,
we observe—quite unexpectedly—that evaluation (i.e. weak reduction) is non-deterministic,
non-confluent, and normal forms are not unique.

Reduction and Evaluation. Here we focus on a computational λ-calculus which is standard
in the literature, namely Sabry and Wadler’s λml∗ [17]. This is a neat and compact refinement
of Moggi’s untyped λc [11]—the relation between the two calculi is formalized by a reflection[17].

λml∗—which we display in Figure 1— has a two sorted syntax that separates values (i.e.
variables and abstractions) and computations. The latter are either let-expressions (aka explicit
substitutions, capturing monadic binding), or applications (of values to values), or coercions
[V] of values V into computations (corresponding to the return operator in Haskell).

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

Values: V,W ::= x | λx.M
Computations: M,N ::= [V] | letx :=M inN | VW

Reduction rules:

(β) (λx.M)V 7→β M [V/x]

(η) λx.V x 7→η V x 6∈ fv(V)

(let.β) letx :=[V] inN 7→let.β N [V/x]

(let.η) letx :=M in [x] 7→let.η M

(let.ass) let y :=(letx :=L inM) inN 7→let.ass letx :=L in (let y :=M inN) x 6∈ fv(N)

Figure 1: λml∗ : Syntax and Reduction

• The reduction rules in λml∗ are the usual β (and η) rules from Plotkin’s call-by-value
λ-calculus [14], plus the oriented version of the three monadic laws: let.β, let.η, let.ass
(see Figure 1).

• Reduction → is the contextual closure of the reduction rules.

Following standard practice, we define evaluation →w ml∗ (aka sequencing) as the closure of

the rules under evaluation context E:

E ::= 〈 〉 | letx :=E inN evaluation context

Informally, the operational understanding of weak reduction is that evaluating letx :=M inN
amounts to first evaluate M until it returns a value, that is, until a computation of the form
[V] is reached. Then V is passed to N by substituting V for x in N , thanks to the rule let.β.

Despite the prominent role that weak reduction has in the literature of calculi with effects,
its reduction properties are somehow surprising. While full reduction →ml∗ is confluent, the
closure of the rules under evaluation context turns out to be non-deterministic, non-confluent,
and its normal forms are not unique.

Note that such issues only come from the monadic rules let.η and let.ass (sometimes called
identity and associativity, respectively, in the literature), not from β or let.β. It is worth to
clarify that while the literature on computational λ-calculi often adopts weak reduction (see for
instance, [9, 2], where a big-step variant is used), the rules let.ass and let.η are usually dealt
with as unoriented identities—the only oriented rules being β and let.β.

(Non-)Confluence. In λml∗ , the reduction →ml∗ is confluent, but weak reduction →w ml∗ is

not. We now give some examples. For every γ ∈ {β, η, let.β, let.η, let.ass}, the weak γ-reduction
→w γ is the closure of the rule 7→γ under weak contexts E.

Example 1 (Non-confluence). Let M be a computation in normal form, for instance M = xx.

let y :=(letx :=zz inM) in [y]
let.η

w
- letx :=zz inM

letx :=zz in (let y :=M in [y])

let.ass w
?

Both letx := zz inM and letx := zz in (let y :=M in [y]) are normal for →w ml∗ (in the latter, the

let.η-redex let y :=M in [y] cannot be fired by weak reduction), but they are distinct.

2

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

Example 2 (Non-confluence). Let R = P = Q = L = zz and:

M := let z = (let x = (let y = L in Q) in P) in R

There are two weak let.ass-redexes, the overlined one and the underlined one. So,

M →w let.ass letx :=(let y :=L inQ) in (let z :=P inR)

→w let.ass let y :=L in (letx :=Q in (let z :=P inR)) =: M ′

M →w let.ass let z :=(let y :=L in (letx :=Q inP)) inR

→w let.ass let y :=L in (let z :=(letx :=Q inP) inR) =: M ′′

Both M ′ are M ′′ are normal for →w ml∗ (in M ′′, the let.ass-redex let z := (letx :=Q inP) inR is

under the scope of a let and so cannot be fired by weak reduction), but they are distinct.

Example 3.

Non-determinism—but confluence—of →let.η. Let M = yy and N = zz:

letx :=(let y :=(let z :=N in [z]) inM) in [x]
let.η

w
- let y :=(let z :=N in [z]) inM

letx :=(let y :=N inM) in [x]

let.η w
? let.η

w
- let y :=N inM

let.η w
?

Summing up the situation:

1. →w β and →w let.β and →w β, let.β :=→w β ∪→w let.β are deterministic.

2. →w let.η is non-deterministic, but it is confluent.

3. →w let.ass is non-deterministic, non-confluent and normal forms are not unique.

4. →w let.ass∪→w let.β∪→w β is non-deterministic, non-confluent and normal forms are not unique.

5. →w ml∗ is non-deterministic, non-confluent and normal forms are not unique.

(Non-)Factorization. Another remarkable aspect making the reduction theory for λml∗

(and for other computational λ-calculi) tricky to study is the lack of factorization, which is the
simplest possible form of standardization.

In Plotkin’s call-by-value λ-calculus [14] (which can be seen as the restriction of λml∗ where
the reduction is generated only by the β-rule), weak reduction satisfies factorization, that is
any reduction sequence can be reorganized as weak steps followed by non-weak steps:

→∗β ⊆ →w
∗
β · →¬w

∗
β (1)

But in λml∗ (and similar computational λ-calculi), weak factorization does not hold. The
problem is here the let.η rule, as shown by the following counterexample, due to van Oostrom
[19].

3

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

Example 4 (Non-factorization [19]). Consider

M := let y :=(zz) in (letx :=[y] in [x]) →¬w let.η let y :=(zz) in [y] →w let.η (zz) =: N

Weak steps are not possible from M , so it is impossible to factorize the reduction form M to
N as M→w ∗ml∗ · →¬w ∗ml∗ N .

A bridge between Evaluation and Reduction. On the one hand, computational λ-calculi
such as λml∗ have an unrestricted non-deterministic reduction that generates the equational
theory of the calculus, studied for foundational and semantic purposes. On the other hand,
weak reduction has a prominent role in the literature of computational λ-calculi, because it
models an ideal programming language. Indeed, when restricted to closed terms (which are
the terms corresponding to programs), normal forms of weak reduction coincide with values;
and when restricted to β and let.β steps, weak reduction is deterministic and corresponds to an
abstract machine, implementing a programming language. It is then natural to wonder what is
the relation between reduction and evaluation.

In Plotkin’s call-by-value λ-calculus [14], the following convergence result provides a bridge
between reduction and evaluation: if a term M β-reduces to a value, then M only needs weak
β-reduction to reach a value.

M →∗β V (for some value V) ⇐⇒ M→w
∗
β V
′ (for some value V ′) (2)

In λml∗ , despite several drawbacks of weak reduction, we can still prove a convergence result
similar to (2) relating reduction and evaluation: to reach a value in λml∗ , weak β-steps and
weak let.β-steps suffice.

Theorem 5 (Convergence). Let M be a computation in λml∗ and let →ml∗−
:=→ml∗ r→η.

M →∗ml∗− [V] (for some value V) ⇐⇒ M→w
∗
β, let.β [V ′] (for some value V ′) (3)

Because of the issues which we have presented, this result is non-trivial. We obtain it via the
study of a calculus recently introduced by de’Liguoro and Treglia’s, namely the computational
core λ© [4]. λ© has the same issues, but a different syntax, which is more closely related to
calculi inspired by linear logic [18, 5, 8, 6], whose properties and tools we can then use. The
analysis of the reduction theory of λ© is carried-out in [7]. We then transfer the convergence of
λ© to that of λml∗ , via a rather sophisticated analysis of the translation.

Conclusion. Convergence in λml∗ relates full reduction to evaluation, and provides a theo-
retical justification to the following facts:

1. functional programming languages with computational effects use weak reduction as eval-
uation mechanism; indeed, weak reduction is enough to return values.

2. in computational λ-calculi, when interested in returning a value, the only rules of interest
for weak reduction are β and let.β—which are deterministic and do not have unpleasant
rewriting properties—while the rules let.ass and let.η can be safely considered as unori-
ented identities external to the reduction.

4

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

IWC2021 vs IWC2020. We present work which has been developed after de’Liguoro and
Treglia’s presentation at IWC20 [3], and thanks to the interactions there. The developments
benefited of the discussion at the workshop, in particular of subsequent crucial comments by
Vincent van Oostrom [19], and of new collaborations prompted there. In [3], preliminary—and
incomplete—work on weak factorization for de’Liguoro and Treglia’s computational calculus λ©

[4] was presented. Such a work has then evolved in the analysis of the reduction theory for λ©

in [7]. One may wonder if the properties discovered there are specific to that specific calculus,
or how that relates to the literature of computational calculi.

Here, we focus on mainstream and well-established formalizations of the computational
calculus. We consider a standard calculus which is well-studied in the literature, namely Sabry
and Wadler’s λml∗ [17]. We show that the properties of non-confluence and non-factorization of
evaluation which are studied in [7] actually do hold also in λml∗—and in fact in any calculus
in which the monadic rules are oriented. We find this fact quite surprising, and worth to be
explicitly stated. To our knowledge, it does not appear in the literature.

Furthermore, we are able to show that the convergence result which is established in [7]
transfers to λml∗ , even though the translation between the two calculi does not directly preserve
weak reduction (a more sophisticated analysis is needed).

References

[1] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In Applied Semantics,
International Summer School, APPSEM 2000, volume 2395 of Lecture Notes in Computer Science,
pages 42–122. Springer, 2002.

[2] Ugo Dal Lago, Francesco Gavazzo, and Paul B. Levy. Effectful Applicative Bisimilarity: Monads,
Relators, and Howe’s Method. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017.

[3] Ugo de’Liguoro and Riccardo Treglia. On the reduction of the type-free computational lambda-
calculus. Presentation at the 9th International Workshop on Confluence, 2020.

[4] Ugo de’Liguoro and Riccardo Treglia. The untyped computational λ-calculus and its intersection
type discipline. Theor. Comput. Sci., 846:141–159, 2020.

[5] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus gener-
alizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming (PPDP 2016), pages 174–187. ACM, 2016.

[6] Claudia Faggian and Giulio Guerrieri. Factorization in call-by-name and call-by-value calculi via
linear logic. In Foundations of Software Science and Computation Structures - 24th International
Conference, FOSSACS 2021, volume 12650 of Lecture Notes in Computer Science, pages 205–225.
Springer, 2021.

[7] Claudia Faggian, Giulio Guerrieri, Ugo de’Liguoro, and Riccardo Treglia. On reduction and
normalization in the computational core. CoRR, abs/2104.10267, 2021. Submitted to Math.
Struct. Comp. Sci., special issue of IWC 2020.

[8] Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two Girard’s translations. In
Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and Applications
(Linearity-TLLA 2018), volume 292 of EPTCS, pages 15–30, 2019.

[9] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182 – 210, 2003.

[10] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 2 edition, 1997.

[11] Eugenio Moggi. Computational Lambda-calculus and Monads. Report ECS-LFCS-88-66, Univer-
sity of Edinburgh, Edinburgh, Scotland, October 1988.

5

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

[12] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (LICS ’89), pages 14–23. IEEE Computer Society, 1989.

[13] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

[14] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

[15] Gordon D. Plotkin and John Power. Notions of computation determine monads. In Foundations
of Software Science and Computation Structures, 5th International Conference, FOSSACS 2002,
volume 2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[16] Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied Categorical
Structures, 11(1):69–94, 2003.

[17] Amr Sabry and Philip Wadler. A reflection on call-by-value. In Robert Harper and Richard L.
Wexelblat, editors, Proceedings of the 1996 ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA, May 24-26, 1996, pages 13–24.
ACM, 1996.

[18] Alex Simpson. Reduction in a linear lambda-calculus with applications to operational semantics.
In Jürgen Giesl, editor, Term Rewriting and Applications, pages 219–234, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[19] Vincent van Oostrom. Private communication via electronic mail, 2020.

[20] Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM Trans. Comput.
Log., 4(1):1–32, 2003.

6

