
Proceedings of the

10th International Workshop on Confluence

July 23rd 2021

Online

Foreword

This report contains the proceedings of the 10th International Workshop on Confluence (IWC) which
took place on July 23rd, 2021. It was due to be held in Buenos Aires, Argentina, but had to be changed
to a fully online event due to the coronvirus pandemia. In addition, the proceedings include the system
descriptions of the 10th Confluence Competition (CoCo 2021). The workshop was co-located with the
FSCD conference.

Confluence provides a general notion of determinism and has been conceived as one of the central
properties of rewriting systems. Confluence relates to many topics of rewriting (completion, modu-
larity, termination, commutation, etc.) and has been investigated in many formalisms of rewriting,
such as first-order rewriting, lambda-calculi, higher-order rewriting, constraint rewriting, conditional
rewriting, and so on. Recently there is a renewed interest in confluence research, resulting in new
techniques, tool support, confluence competition, and certification as well as in new applications. The
scope of the workshop is all these aspects of confluence and related topics. The goal of the IWC
workshop is to provide a forum for researchers interested in the topic of confluence to exchange and
share new developments in the field. The workshop will enable discussion on theoretical results, new
problems, applications, implementations and benchmarks, and share the current state-of-the-art on
the development of confluence tools.

The joint program contains 7 contributed talks as well as invited talks by Jesper Cockx and
José Meseguer. In addition, the program contains the system descriptions from the 10th Confluence
Competition (CoCo 2021). Many people contributed to the preparation and IWC. Hard work by the
program commitees, steering committees, and subreviewers made an exciting program of contributed
and invited talks possible. In addition, we are greatful to the organizing committee and workshop
chairs of FSCD for hosting the workshops.

June 15th, 2021, Paris
Samuel Mimram
Camilo Rocha

ii

Steering Committee

• Takahito Aoto

• Mauricio Ayala-Rincón

Program Committee

• Beniamino Accattoli (INRIA & LIX, École Polytechnique)

• Sandra Alves (Universidade do Porto)

• Cyrille Chenavier (Université de Limoges)

• Francisco Durán (University of Málaga)

• Alejandro Dı́az-Caro (Universidad Nacional de Quilmes & ICC/UBA-CONICET)

• Samuel Mimram (LIX, École Polytechnique), co-chair

• Camilo Rocha (Pontificia Universidad Javeriana), co-chair

• Femke van Raamsdonk (VU University Amsterdam)

• Sarah Winkler (University of Bolzano)

Additional reviewers

• Eduardo Bonelli

• Rafael Romero

iii

Contents

Foreword ii

IWC 2021 1
Multi-redexes and multi-treks induce residual systems

Vincent van Oostrom . 1
Wrap ambiguities and how to enumerate them

Lars Hellström . 9
Completion of operadic rewriting systems by Gaussian elimination

Benjamin Dupont, Philippe Malbos, Isaac Ren . 15
Formalized Signature Extension Results for Confluence, Commutation and Unique Normal

Forms
Alexander Lochmann, Fabian Mitterwallner, Aart Middeldorp 25

Evaluation in the computational calculus is non-confluent
Claudia Faggian, Giulio Guerrieri, Riccardo Treglia 31

A Confluent Trace Semantics for Probabilistic Lambda Calculus
Andrew Kenyon-Roberts . 37

Confluence in string rewriting systems compatible with a crystal structure
Uran Meha . 43

CoCo 2021 51
Confluence Competition 2021

Aart Middeldorp, Naoki Nishida, Kiraku Shintani, Johannes Waldmann 51
CoLL-Saigawa 1.6: A Joint Confluence Tool

Kiraku Shintani, Nao Hirokawa . 53
CoCo 2021 Participant: CSI 1.2.5

Fabian Mitterwallner, Aart Middeldorp . 55
CoCo 2021 Participant: FORT-h 1.1

Fabian Mitterwallner, Jamie Hochrainer, Aart Middeldorp 57
CoCo 2021 Participant: FORTify 1.1

Alexander Lochmann, Fabian Mitterwallner, Aart Middeldorp 59
CO3 (Version 2.2)

Naoki Nishida . 61
CoLL 1.6: A Commutation Tool

Kiraku Shintani . 63
infChecker at the 2021 Confluence Competition

Raúl Gutiérrez, Salvador Lucas, Miguel Vı́tores . 65
CONFident at the 2021 Confluence Competition

Miguel Vı́tores, Raúl Gutiérrez, Salvador Lucas . 67
NaTT 2.2 in CoCo 2021

Akihisa Yamada . 69
ACP: System Description for CoCo 2021

Takahito Aoto . 71
AGCP: System Description for CoCo 2021

Takahito Aoto . 73
CoCo 2021 Participant: CeTA 2.40

René Thiemann . 75

Author Index 76

iv

Multi-redexes and multi-treks induce residual systems
least upper bounds and left-cancellation up to homotopy

Vincent van Oostrom

University of Innsbruck, Innsbruck, Austria
Vincent.van-Oostrom@uibk.ac.at

Abstract

Residual theory in rewriting goes back to Church, Rosser and Newman at the end of the
1930s. We investigate an axiomatic approach to it developed in 2002 by Melliès. He gave
four axioms (SD) self-destruction, (F) finiteness, (FD) finite developments, and (PERM)
permutation, showing that they entail two key properties of reductions, namely having (i)
least upper bounds (lubs) and (ii) left-cancellation.1 These properties are shown to hold up
to the equivalence generated by identifying the legs of local confluence diagrams inducing
the same residuation, which corresponds to Lévy’s permutation equivalence. Melliès in fact
presented two sets of axioms, one for redexes as in classical residual theory and another
more general one for treks. We show his results factor through the theory of residual
systems we introduced in 2000, in that any rewrite system satisfying the four axioms (for
redexes or treks) can be enriched to a residual system such that (i) and (ii) follow from
the theory of residual systems. We exemplify the axioms are sufficient but not necessary.

Proofs omitted in this abstract can be found in the appendix of [18].

1 Residual systems

We are interested in the theory of computation based on rewriting. As this requires to have
computations as first-class citizens, we use rewrite systems [14],[20, Def. 8.2.2] (not rewrite rela-
tions), whose steps have sources and targets. We recapitulate residual systems [20, Def. 8.7.2].

Definition 1. A residual system (RS) ⟨→,1, /⟩ comprises a rewrite system → and a residual
function / having 1 as unit: 1 is a function from objects to steps such that tgt(1a) = a = src(1a)
and for co-initial steps φ,ψ,χ, the residual identities (1)–(3) in Tab. 1 must be satisfied. The
projection order ≲ is defined by φ ≲ ψ if φ/ψ = 1 for co-initial steps φ,ψ.

The projection order ≲ is a quasi-order [20, Lem. 8.7.23] inducing projection equivalence≃ ∶= ≲ ∩ ≳. Examples of rewrite systems that can be equipped with residual structure abound.

Example 1. For the following rewrite systems →, residual structure is obtained from the proof
of the diamond property for an appropriate rewrite system that is between → and its reflexive–
transitive closure: i) the λβ-calculus induces a residual system by the Tait–Martin-Löf proof
that ≥1 has the diamond property [1]; ii) β-steps in the linear λβ-calculus have the diamond
property themselves; iii) parallel steps ∥Ð→/ multisteps ○Ð→ in orthogonal first/higher-order term
rewrite systems [8, 20, 2]; iv) positive braids with parallel crossings of strands [20, Sect. 8.9].

Here we show multi-redexes and multi-treks as in Melliès’ axiomatic residual theory naturally
induce residual systems, entailing the results of [13] via the theory of residual systems [20].
We use φ,ψ,χ, . . . and γ, δ, ε, . . . to range over steps respectively reductions. We denote finite

1Instead of the order-theoretic setting employed here, Melliès employs a category-theoretic setting and the
corresponding terminology of having pushouts and epis.

Proceedings of the 10th International Workshop of Confluence, 2021 1

Multi-redexes and multi-treks induce residual systems V. van Oostrom

reductions by ↠. They can be identified [20, Def. 8.2.10] with formal compositions (⋅) of steps
(whose targets, sources match) modulo the monoid identities. Orienting these into the rules
(4)–(6) of Tab. 1 gives a complete 2-rewrite system2 so unique representatives of such reductions.

Proposition 1. Any residual system on → extends to a residual system on ↠, defining resid-
uation by normalisation w.r.t. the 2-rewrite system with rules (4)–(8) of Tab. 1.

φ/1 (1)= φ (γ ⋅ δ) ⋅ ε (4)⇒ γ ⋅ (δ ⋅ ε) γ/(δ ⋅ ε) (7)⇒ (γ/δ)/ε
φ/φ (2)= 1 γ ⋅ 1 (5)⇒ γ (δ ⋅ ε)/γ (8)⇒ (δ/γ) ⋅ (ε/(γ/δ))

(φ/ψ)/(χ/ψ) (3)= (φ/χ)/(ψ/χ) 1 ⋅ γ (6)⇒ γ

Table 1: Residual identities, monoid rules, and residual rules for formal composition

Example 2. The classical example of a term rewrite system is Combinatory Logic (CL) having
the three rules, in applicative notation, ι(x) ∶ Ix→ x, κ(x, y) ∶Kxy→ x, and ς(x, y, z) ∶ Sxyz→
xz(yz). We call a term over the signature extended with the so-called rule symbols [20, Ch. 8]
ι, κ, ς (having as arities the number of variables in the respective rules) a multistep, as it can be
assigned a source/target by mapping all such rule symbols in it to their lhs/rhs. This naturally
induces a residual system on multisteps [20, Prop. 8.7.7], which by the above extends to one
on reductions (of multisteps). For example, γ ∶= ς(K,y, Iz) ⋅ κ(Iz, y(Iz)) and δ ∶= SKIι(z) are
co-initial reductions from SKy(Iz) to Iz respectively SKyz. Both these targets are reduced to
z by the respective residual reductions: δ/γ ∶= ι(z) and γ/δ ∶= ς(K,y, z) ⋅ κ(z, y(z)).
Remark 1. We introduced the idea of multisteps as terms over the signature extended with rule
symbols in [20, Ch. 8] as a generic tool in structured rewrite systems, like string [6, p. 226],
higher-order term [2, p. 127], and graph [20, Rem. 9.4.30] rewrite systems.

Then ↠ is a residual system with composition [20, Def. 8.7.38], ≃ is a congruence for / and⋅ and quotienting ≃ out yields a residual system whose projection order is a partial order [20,
Lem. 8.7.41]. Projection equivalence [20] can alternatively be defined as the homotopy generated
by the diamond property. This will allow us below to relate the former to local homotopy [13].

Definition 2. Square homotopy equivalence ≡ on reductions having the same sources/targets,
is generated by closing φ ⊔ ψ ≡ ψ ⊔ φ for local peaks φ,ψ under composition: if γ ≡ γ′ then
δ ⋅ γ ⋅ ε ≡ δ ⋅ γ′ ⋅ ε. Here φ⊔ψ ∶= φ ⋅ (ψ/φ). Correspondingly, we define γ ⊑ δ if γ ⋅ ε ≡ δ for some ε.

Lemma 1. ≃ = ≡ and ≲ = ⊑.

Example 3. For γ, δ in Ex. 2 we have γ ⋅(δ/γ) ≡ ς(K,y, Iz)⋅K(ι(z))(yι(z))⋅κ(z, yz) ≡ δ ⋅(γ/δ).
Theorem 1. ↠ up to square homotopy has lubs (δ′, γ′ is an upper bound of γ, δ if γ ⋅δ′ ≡ δ ⋅γ′;
least if δ′ ⊑ δ′′, γ′ ⊑ γ′′ for all upper bounds δ′′, γ′′) and left-cancellation (if γ ⋅δ ≡ γ ⋅ε then δ ≡ ε).

2What we refer to as 2-rewrite systems have formal expressions of compositions (and residuations) as objects.
Their rules transform such expressions into reductions of an ordinary (1-)rewrite system →, i.e. into formal
compositions in normal form with respect to the monoid rules. This set-up generalises the 2-rewrite systems as
found in the literature by not giving special status to composition, not assuming rules to operate on reductions
only but on formal expressions. Working modulo the monoid identities yields proper 2-rewrite systems.

2

2 Proceedings of the 10th International Workshop of Confluence, 2021

Multi-redexes and multi-treks induce residual systems V. van Oostrom

Proof. By Lem. 1 it follows from the same for projection equivalence ≃ instead of square homo-
topy ≡, which holds by virtue of ↠ being a residual system with composition [20, Ex. 8.7.52].
We do that exercise: Left-cancellation follows from (see also the proof of Prop. 1):

(γ ⋅ δ)/(γ ⋅ ε) ⇒ ((γ ⋅ δ)/γ)/ε⇒ ((γ/γ) ⋅ (δ/(γ/γ)))/ε⇒⇒ (1 ⋅ (δ/1))/ε⇒⇒ (1 ⋅ δ)/ε⇒ δ/ε
That δ/γ, γ/δ is an upper bound up to ≃ of γ, δ, holds by ↠ being a residual system. To see
it is least consider any δ′′, γ′′ such that γ ⋅ δ′′ ≃ δ ⋅ γ′′. Then (γ ⋅ δ′′)/(δ ⋅ γ′′) ⇒ (γ/(δ ⋅ γ′′)) ⋅(δ′′/((δ ⋅ γ′′)/γ)) = 1. Therefore [20, Ex. 8.7.40(iii)] both components must be 1 in particular
the 1st γ/(δ ⋅ γ′′) ⇒ (γ/δ)/γ′′ = 1. By symmetry (δ/γ)/δ′′ = 1 and we conclude.3

2 Multi-redexes and multi-treks

In [13] rewrite systems are equipped with a notion of residuation inducing a notion of local
homotopy on reductions, based on the four axiomatic properties (SD), (F), (FD), and (PERM).
The properties guarantee that multi-redexes/treks can be developed into reductions, that such
developments have the diamond property, that all developments are locally homotopic, and
finally (the main result) that reductions have lubs and left-cancellation up to local homotopy
(Thm. 2). In fact two sets of four axioms are given in [13], the first one for multi-redexes
and the second more general one for multi-treks. We show that in both cases the main results
of [13] follow by known residual theory for a naturally associated residual system (in the sense
of Sect. 1) on so-called developments, in particular from Thm. 1. We first develop enough
notation to formally express the properties required of a rewrite system → for multi-redexes [13,
Section 2], which informally read:

(self-destruction, SD) no step has a residual after itself;

(finiteness, F) every redex has finitely many residuals after a step;

(finite developments, FD) developments of multi-redexes are finite; and

(permutation, PERM) every peak φ,ψ of steps can be completed by a valley of complete de-
velopments of the residuals of ψ after φ, respectively the residuals of φ after ψ, such that
both legs of the resulting local confluence diagram induce the same redex-trace relation.

We then show that these properties induce a residual system (Def. 1) on developments whose
square homotopy corresponds to local homotopy on reductions, i.e. that Thm. 1 entails Thm. 2:

Theorem 2 (SD,FD,PERM; [13]). ↠ up to local homotopy has lubs and left-cancellation.

Here local homotopy is generated (Def. 5) from the local confluence diagrams given by
(PERM), instead of the square diamonds generating square homotopy (Def. 2). As in the
statement of this main theorem, we qualify (intermediate) results throughout with the properties
used, to enable illustrating that properties are sufficient but not necessary. In [13] residuation
is captured by tracing a redex along a step to its residuals.

Definition 3. A redex-trace relation is a function J⋅⟩⟩ mapping each step φ ∶a→ b to a relation
Jφ⟩⟩ between the redexes of a and b, where (multi-)redexes are reified (sets of) steps.

3That gives a pushout as witnessed by ε ∶= δ′′/(δ/γ): On the one hand, (δ/γ) ⋅ ε ≃ δ′ ⋅ ((δ/γ)/δ′′) ≃ δ′′ follows
from having a residual system and δ/γ ≲ δ′. On the other hand, (γ/δ) ⋅ ε ≃ ε′′ follows by left-cancellation from
δ ⋅(γ/δ)⋅ε ≃ γ ⋅(δ/γ)⋅ε ≃ γ ⋅δ′′ ≃ δ ⋅ε′′ where the 2nd equivalence holds by the above and the others by assumption.

3

Proceedings of the 10th International Workshop of Confluence, 2021 3

Multi-redexes and multi-treks induce residual systems V. van Oostrom

(SD) is formalised as (φ Jφ⟩⟩) = ∅ and (F) as (ψ Jφ⟩⟩) is finite, for any step φ and redex ψ.
Here we use section notation for partial application of relations. The left section of a binary
relation for an object a is (a R) ∶= {b ∣ a R b}. Similarly, the right section is (R a) ∶= {b ∣ b R a}.
This is lifted pointwise to sets by (A R) ∶= ⋃a∈A(a R) and (R A) ∶= ⋃a∈A(R a). Trace relations
naturally extend to reductions and conversions since relations constitute an involutive (typed)
monoid with respect to composition, the identity relation, and converse, so we may e.g. write⟨⟨←K for the trace relation of ←. We proceed with reifying tracing, labelling objects of the
rewrite system with sets of redexes, which allows to recover the notion of development of [13].

Definition 4. Consider the labelled rewrite system [20, Def. 8.4.5] having for each set Φ of
redexes of a the object aΦ, and for each step φ ∶a→ b the step φΦ from aΦ to b(ΦJφ⟩⟩). A reduction
γ from an object a is a development of Φ if it lifts to a J→⟩⟩-reduction γΦ from aΦ, where J→⟩⟩ is
the restriction of the labelled rewrite system to steps φΦ such that φ∈Φ. We say γ is a complete
development of Φ if its lifting ends in a ∅-labelled object.

(FD) is formalised by all developments are finite,4 and (PERM) by every local peak φ,ψ is
completed by some valley γ, δ of complete developments of (ψ Jφ⟩⟩), (φ Jψ⟩⟩) with Jφ⋅γ⟩⟩ = Jψ ⋅δ⟩⟩.
Remark 2. The lifting γΦ of the reduction γ in Def. 4 is unique. Formally, this is a consequence
of the labelling given being a rewrite labelling in the sense of [20, Def. 8.4.5].

Lemma 2 (FD,PERM). ⟨ ○Ð→,1, /⟩ is a residual system with binary joins/diagonals, for ○Ð→
the rewrite system having as objects the objects of →, and as steps a multi-redex aΦ ∶ a ○Ð→ b
if there is a complete development of Φ from a to b; 1a defined as ∅; residual Φ/Ψ defined as(Φ JΨ⟩⟩), and the binary join/diagonal given by Φ ∪Ψ (cf. [20, Def. 8.7.28]).

Denoting a multi-redex aΦ by just Φ in the lemma, is justified by that a is the source common
to all steps in Φ, and that all complete developments of Φ have the same target. The join being
a step from the source to the target of a residual diamond, justifies calling it a diagonal.

Remark 3. Parallel rewriting ∥Ð→ [7] does constitute a residual system for orthogonal TRSs,
so does give rise to good residual theory [20], but ∥Ð→ does not have joins, e.g. the join of the
single/parallel steps ι(Ix) and Iι(x) should be ι(ι(x)) but although that is a multistep it is not
a parallel step as it nests ι in itself. Hence, by Lem. 2 it cannot be obtained via multi-redexes;
a first indication that the properties in [13] are too strong.5

Definition 5 ([13]). Local homotopy ≡l on reductions with the same sources/targets, is the
equivalence generated by closing φ ⋅ γ ≡l ψ ⋅ δ for peaks φ,ψ and valleys γ, δ given6 by (PERM)
under composition: if γ ≡l γ′ then δ′ ⋅ γ ⋅ ε′ ≡l δ′ ⋅ γ′ ⋅ ε′. We define γ ⊑l δ if γ ⋅ ε ≡l δ for some ε.

We show local homotopy ≡l on finite→-reductions is the same as square homotopy ≡ on finite○Ð→-reductions. Observe we may embed → ⊆ ○Ð→ by mapping a step φ ∶ φ → ψ to φ{φ} ∶ a ○Ð→ b
assuming (SD), and vice versa ○Ð→ ⊆ ↠ by mapping each multi-redex aΦ to an arbitrary but
fixed complete development of Φ from a. Below the corresponding coercions (and their stepwise

4Since in [13] only finite reductions are defined, (FD) is (must be) circumscribed there as the absence of
infinite sequences of steps all of whose prefixes are developments of the given set.

5Following the rewrite approach, residual systems do not assume that steps are closed under composition.
Indeed, parallel steps are not, but reductions of parallel steps do have compositions and therefore also joins as
follows from Proposition 1. In our example, both reductions ι(Ix) ⋅ ι(x) and Iι(x) ⋅ ι(x) along the two legs of
the diamond are (equivalent) joins of ι(Ix) and Iι(x).

6For a peak, the choice of valley witnessing (PERM) may be non-deterministic. Essentially this follows since
FD makes Newman’s Lemma apply ‘locally’ to developments, allowing to show that independently of the choice
the induced redex-trace relation is the same; see the proof of Lem. 3 and cf. [15, Prop. 2.4.16] and [17, Thm. 2].

4

4 Proceedings of the 10th International Workshop of Confluence, 2021

Multi-redexes and multi-treks induce residual systems V. van Oostrom

extensions to →-reductions respectively ○Ð→-reductions) are denoted by overlining respectively
underlining, but we omit them as much as possible. Note γ = (γ) for any γ.

Remark 4. (FD) entails the equivalence closures of →, ○Ð→ are the same, but their reflexive–
transitive closures may differ if (SD) does not hold: for steps φ ∶ a → b and φ′ ∶ b → c with only
φ Jφ⟩⟩ φ′ non-empty, we have a→ b and indeed also a ○Ð→ c ○←Ð b, but not a ○Ð→→ b.

Lemma 3 (SD,FD,PERM). ≡ = ≡l and ⊑ = ⊑l (after embedding; in both directions).

The main result on multi-redexes of [13] is now a matter of chaining the above results:

Proof of Thm. 2. Lem. 2 for → induces a residual system on ○Ð→. By Prop. 1 that induces a
residual system with composition on ○Ð→→, which by Thm. 1 has lubs and left-cancellation up to
square homotopy. Hence ↠ has lubs and left-cancellation up to local homotopy by Lem. 3.

. . .

Figure 1: Rewrite system satisfying (SD), (FD) and (PERM) but not (F)

Fig. 1 illustrates the result for a system for which (F) does not hold, a second indication
the properties in [13] are too strong. To recover Thms. 1 and 2 of [13] exactly, using (F), it
suffices to observe that the above can be relativised to a collection R of sets of redexes such
that ∅,{φ}∈R for all redexes φ, and Φ∪Ψ, (Φ JΨ⟩⟩) ∈R for all co-initial Φ,Ψ∈R, and note that
the finite sets of co-initial steps constitute such a collection. The example in Fig. 1 is rather
artificially infinite, but note that although the notion of multi-redex extends naturally (under
some provisos) and are at the basis of infinitary confluence [20, Ch. 12], (FD) fails for them, a
third indication the properties in [13] are too strong.

We generalise redexes to treks [13], employing t, s, . . . (T,S, . . .) to range over (sets of) them.

Definition 6 ([13]). A trek-trace relation maps each step φ ∶ a → b to a relation Jφ⟩⟩ between
the treks of a and b, where (multi-)treks of a are elements (subsets) of a set T (a) quasi-ordered
by ≤a having the redexes of a as its minimal elements, and such that ≥a ⋅ Jφ⟩⟩ ⊆ Jφ⟩⟩ ⋅ ≥b.

Intuitively, a trek is a representation of a reduction and ≤ a causal order on the redexes
contracted; the condition ≥a ⋅ Jφ⟩⟩ ⊆ Jφ⟩⟩ ⋅ ≥b then captures that if a redex has a residual so do
the redexes it causes. Accordingly, we restrict φT in J→⟩⟩ (Def. 4) to steps φ in the ≤-downward
closure of T. After these changes and replacing redex by trek everywhere7, everything above
carries over verbatim, in particular Def. 4, Rem. 2, Lem. 2, Rem. 3, Def. 5, Rem. 4, Lem. 3,
the main result Thm. 2, and their proofs, using the following remark in the proof of Lem. 2:

Remark 5. The properties of ≤ make J→⟩⟩ a labelling of itself: if φT is a J→⟩⟩-step and T ≤ T′,
i.e. t ≤ T′ for all t∈T′, then φT

′
is a J→⟩⟩-step by transitivity of ≤ (if only T ⊆ T′ then transitivity

of ≤ is not needed) and (T Jφ⟩⟩) ≤ (T′ Jφ⟩⟩) by ≥ ⋅ J⋅⟩⟩ ⊆ J⋅⟩⟩ ⋅ ≥ and J⋅⟩⟩ being defined pointwise.

7And also ∈ into ≤ when appropriate, and references to [13, Sect. 2] into corresponding ones to [13, Sect. 3].

5

Proceedings of the 10th International Workshop of Confluence, 2021 5

Multi-redexes and multi-treks induce residual systems V. van Oostrom

Thus we have shown that the axiomatisation of [13] is sufficient but not necessary for
obtaining a good residual theory. Although one often may factor residual theory through these
axioms, there usually is no need to do so, and residual systems can be constructed directly and
inductively [8, 20]. We conclude with two remarks on the (FD) axiom:

(FD) was not included among the axioms of residual systems [20] as we did not see a
motivation for it. More generally, it is an open question whether finiteness or termination
axioms have a place in analysing causality, cf. [21]. Of course, since they give rise to induction
measures, they may be practically useful, and we are indeed happy to use them if and when
available. For instance, in [15] we showed (FD) to be a consequence of termination of the
so-called substitution calculus (SC) [19] underlying a rewrite format. But for infinitary rewrite
systems termination of the SC and hence (FD) are surely too strong, despite that infinitary
confluence of orthogonal systems is still based on causality/multi-redexes (up to some provisos).

(FD) may be hard to attain. The application of multi-treks to deal with Lévy’s extraction
theory for the λβ-calculus in [13, Section 6] is beautiful,8 but in that application (FD) boils
down [13, p. 46] to finiteness of family developments (FFD), cf. [16]. (FFD) is a key result in
term rewriting at the basis of standardisation, (hyper-)normalisation of strategies, the theory
of optimality, and more, but it also is subtle: It was formulated for the λβ-calculus by Lévy,
forming the basis of his beautiful theory of optimality [10], but he resorted [5] to asking the
Dutch, van Daalen (whose proof is employed in [10, Sect. II.1.5]) and de Vrijer [4, Stellingen],
to prove it.9 Melliès showed [12, Section 6.2.2] the result [9, Thm. 6.2.4] underlying the proof
of (FFD) for Klop’s combinatory reduction systems (CRSs) to be incorrect, leaving it and its
consequences such as standardisation in limbo. We proved (FFD) for HRSs, hence CRSs, by
adapting van Daalen’s nifty proof [16], cf. [3].10

Acknowledgments Thanks to the IWC 2021 reviewers for feedback.

References

[1] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd revised edition, 1984.

[2] H.J.S. Bruggink. Residuals in higher-order rewriting. In R. Nieuwenhuis, editor, Rewriting Tech-
niques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9–11,
2003, Proceedings, volume 2706 of Lecture Notes in Computer Science, pages 123–137. Springer,
2003. doi:10.1007/3-540-44881-0 10.

[3] H.J.S. Bruggink. Equivalence of Reductions in Higher-Order Rewriting. PhD thesis, Utrecht
University, 2008. url:http://dspace.library.uu.nl/handle/1874/27575.

[4] R.C. de Vrijer. Surjective Pairing and Strong Normalization: Two Themes in Lambda Calculus.
PhD thesis, Universiteit van Amsterdam, January 1987.

[5] R.C. de Vrijer. Personal communication, 1997.

[6] Y. Guiraud, P. Malbos, and S. Mimram. A Homotopical Completion Procedure with Applications
to Coherence of Monoids. In F. van Raamsdonk, editor, 24th International Conference on Rewrit-
ing Techniques and Applications (RTA 2013), volume 21 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 223–238, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.RTA.2013.223.

8It seems worthwhile to adapt it to structured rewrite systems such as TRSs, HRSs, and GRSs.
9For first-order term rewrite systems (FFD) is due to Maranget [11]; then it is a simple consequence of RPO.

10In view of the subtleties it seems of interest to formalise a proof of (FFD) for HRSs in some proof assistant.

6

6 Proceedings of the 10th International Workshop of Confluence, 2021

Multi-redexes and multi-treks induce residual systems V. van Oostrom

[7] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
J. ACM, 27(4):797–821, October 1980. doi:10.1145/322217.322230.

[8] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, Part I + II. In J.L. Lassez
and G.D. Plotkin, editors, Computational Logic – Essays in Honor of Alan Robinson, pages 395–
443, Cambridge MA, 1991. MIT Press. Update of: Call-by-need computations in non-ambiguous
linear term rewriting systems, 1979.

[9] J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts. Mathe-
matisch Centrum, Amsterdam, 1980.

[10] J.-J. Lévy. Réductions correctes et optimales dans le λ-calcul. Thèse de doctorat d’état, Université
Paris VII, 1978. url:http://pauillac.inria.fr/ levy/pubs/78phd.pdf.

[11] L. Maranget. La stratégie paresseuse. Thèse de doctorat, Université Paris 7, 1992.

[12] P.-A. Melliès. Description Abstraite des Systèmes de Réécriture. Thèse de doctorat, Université
Paris VII, December 1996.

[13] P.-A. Melliès. Axiomatic rewriting theory VI residual theory revisited. In S Tison, editor, Rewriting
Techniques and Applications, 13th International Conference, RTA 2002, Copenhagen, Denmark,
July 22–24, 2002, Proceedings, volume 2378 of Lecture Notes in Computer Science, pages 24–50.
Springer, 2002. doi:10.1007/3-540-45610-4 4.

[14] M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of Math-
ematics, 43:223–243, 1942. doi:10.2307/2269299.

[15] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Univer-
siteit, Amsterdam, March 1994. https://research.vu.nl/en/publications/confluence-for-abstract-
and-higher-order-rewriting.

[16] V. van Oostrom. Finite family developments. In H. Comon, editor, Rewriting Techniques
and Applications, 8th International Conference, RTA-97, Sitges, Spain, June 2-5, 1997, Pro-
ceedings, volume 1232 of Lecture Notes in Computer Science, pages 308–322. Springer, 1997.
doi:10.1007/3-540-62950-5 80.

[17] V. van Oostrom. Confluence by decreasing diagrams; converted. In A. Voronkov, editor, Rewriting
Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg, Austria, July
15-17, 2008, Proceedings, volume 5117 of Lecture Notes in Computer Science, pages 306–320.
Springer, 2008. doi:10.1007/978-3-540-70590-1 21.

[18] V. van Oostrom. Multi-redexes and multi-treks induce residual systems;
least upper bounds and left-cancellation up to homotopy. Long version.
url:http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/axrs-iwc-long-2021.pdf,
June 2021.

[19] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems and higher-
order rewrite systems. In J. Heering, K. Meinke, B. Möller, and T. Nipkow, editors, Higher-Order
Algebra, Logic, and Term Rewriting, First International Workshop, HOA ’93, Amsterdam, The
Netherlands, September 23–24, 1993, Selected Papers, volume 816 of Lecture Notes in Computer
Science, pages 276–304. Springer, 1993. doi:10.1007/3-540-58233-9 13.

[20] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[21] G. Winskel. An introduction to event structures. In J. W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, volume 354 of Lecture Notes in Computer Science, pages 364–397, Berlin, Heidelberg,
1989. Springer Berlin Heidelberg. doi:10.1007/BFb0013026.

7

Proceedings of the 10th International Workshop of Confluence, 2021 7

8

Wrap ambiguities and how to enumerate them

Lars Hellström1

Division of Applied Mathematics and Physics, The School of Education, Culture and Communication,
Mälardalen University, Box 883, 721 23 Väster̊as, Sweden

lars.hellstrom@mdh.se

Abstract

Network rewriting can be summarised as a generalisation of term rewriting to support
that operations can have multiple out-parameters (coarity greater than 1) as well as the
traditional multiple in-parameters (arity greater than 1). When fleshing out this idea, one
is forced to make certain choices, which are discussed in this paper; network rewriting
represent one way of making these choices: respect algebraic linearity, preserve acyclicity,
and stay abstract (as opposed to imposing a geometric foundation).

In a 2014 IWC paper, it was reported that for network rewriting there emerges a third
kind of ambiguity (critical pair) besides the classical overlap and inclusion ambiguities,
namely wrap ambiguities where the way two redexes wrap around each other without
overlapping can cause a rewrite of one to block the other. At that point it was not known
how to enumerate these ambiguities, but here a generic method for this based on boolean
matrices and SAT-solving is presented.

1 Discussion of models

Term rewriting operates on expressions as formalised in mathematical logic, where every com-
bination of subexpressions to make a larger expression is by the use of an abstract function
symbol taking zero or more arguments, and every expression is either a function application
or a variable. However in modern algebra it is increasingly becoming necessary to deal with
expressions that do not easily fit into this model; these theories comprise operations that vary
not only in the number of in-parameters (arguments) they take, but also in the number of
out-parameters they produce. To deal with these natively, one may relax the unspoken con-
straint that every expression has an underlying rooted (hence directed) tree structure, to allow
the underlying structure to be that of a directed graph: operations are still vertices, there is
an incoming edge for every in-parameter, and an outgoing edge for every out-parameter; an
edge from one vertex to another means that an out-parameter of the first vertex is identified
with an in-parameter of the second. Expressions are thus modelled as something like data-flow
networks.

Whereas it may seem obvious that the optimal implementation of a certain computation
may well be in terms of subroutines with multiple out-parameters—for example a single division
operation that returns both a quotient and a remainder—it need not be immediately clear why
said computation could not specified in terms of only single-result operations (such as separate
quotient and remainder). A full explanation of this would have to explore the differences
between cartesian and tensor products, but that is too long a digression to get into here; the
interested reader may instead see [1]. The heart of the matter is however that many of the
theories which make use of these operations with multiple results depend critically upon these
being entangled, which means they have to be computed together.

In fact the interpretation of more general graphs as denoting expressions is not a trivial
matter; the recursive interpretation for terms depends critically on them having a tree structure,
which we just rejected. A data-driven evaluation—determine values on the outgoing edges from

Proceedings of the 10th International Workshop of Confluence, 2021 9

Wrap ambiguities Hellström

a vertex once values have been determined for all its incoming edges—is not out of the question,
but would need to deal with entanglement explicitly, thus losing in generality. Instead the
interpretation is mostly by decomposing the directed graphs into elementary pieces for which
(function) values are given, and then a suitable algebraic structure (often a category) is used to
recompose these elementary values into a value for the whole. The means of composition that
this algebraic structure provides places restrictions on what a graph may look like if it is to be
interpreted as an expression.

One axis of variation is what topological structure (if any) these graphs should be embedded
into, which corresponds to the choice between symmetric, braided, or plain monoidal categories
for governing the recomposition process. The symmetric case corresponds to abstract graphs,
and should thus be the natural choice from a computer science or logic point of view (being
less of an ontological commitment), but the plain and braided cases appear to be more popular
in the category theory literature. A reason for that popularity is likely that topology has long
been a prominent area for applications of category theory.

Another axis of variation is whether cycles should be allowed, and if so how an interpretation
of those is concretely achieved; cycles in a data-flow network naively cause deadlock, when an
operation vertex is waiting for input that (possibly in several steps) depend on an output of said
vertex. Classically terms may be given something like a cycle in the underlying graph structure
through some manner of fixed-point operator, but the rewriting of such is not entirely trivial. On
the category side, the most direct way of supporting cycles is through the use of traced monoidal
categories, where there is an operation trace/contraction/feedback that allows identifying an
output with an input. A less direct way is by introducing ‘cap’ and ‘cup’ operations satisfying
the zig-zag identities—this can be done as a matter of rewriting, but is often worked into the
notation as ‘raising/lowering indices’ or ‘bending edges’ (allowing both endpoints to be heads or
both tails)—and in particular the caps make heavy use of entanglement. However traces, caps,
and cups can all be problematic when it comes to their interpretation in concrete applications;
as a rule of thumb they are straightforward in finite-dimensional cases (the trace of matrix is
trivial to evaluate) but may be impossible in infinite-dimensional cases (the trace of the identity
operator becomes infinite). Hence it is for a general rewriting framework safest disallow cycles
in expression, leaving it to users to add explicit caps and cups where appropriate.

A third axis concerns whether multiple edges may attach to the same “port” of a vertex, or
equivalently, whether (internal) edges should have exactly two endpoints. Term graphs certainly
suggest that using a single output as input in multiple places has its uses, and the share graphs
of Hasegawa [2] aim to support this; likewise Ştefănescu [5] cover a number of variations in
this regard, and also give examples of where such things may be appropriate. However in
higher algebra there are strong reasons not to allow such things—changing the multiplicity of
an intermediate result completely destroys multilinearity. In practice it is straightforward to
introduce explicit operations for duplicating (coproduct) or destroying (counit) data, so a 1-to-1
restriction on the graphs is not a significant expressive loss, and several interesting algebraic
theories even arise as a reformulation of classical theories to satisfy this linearity constraint;
Hopf algebras arise from groups in that way. An notable consequence for rewriting is that
unification disappears as a separate problem; it rather happens implicitly as part of overlaps
involving rules for the coproduct and counit.

Finally it may be remarked that the ‘monoid’ in ‘monoidal category’ refers to the fact that
the set of types supported constitute a monoid under concatenation/tensor product. In practice
only free monoids seem to be used, which corresponds to having a set of atomic types given
by the user, that do not interact except in operation vertices. A graph model for this should
then make sure to label every edge with one of these atomic types—the type of data that

2

10 Proceedings of the 10th International Workshop of Confluence, 2021

Wrap ambiguities Hellström

may be carried along that edge—but for rewriting that is mostly rendundant since the type
of an edge can be inferred from the vertices it is incident with, and overlapping existing type-
consistent graphs will only generate new type-consistent graphs. Hence it is perfectly possible
(an notationally easier) to set up the rewriting framework as being untyped, in which case
symocats simplify to what MacLane called a PROP. It turns out networks—directed acyclic
open graphs where vertices are with respect to in- and out-degree consistently decorated with
symbols from a doubly ranked alphabet and each edge attach to a separate port of a vertex
it is incident with—are modulo network isomorphism exactly the elements of the free PROP

generated by that doubly ranked alphabet [3, Sec. 5].

2 Formal feedbacks

Even if cycles can be problematic for the interpretation of networks as expressions, they are
quite useful when it comes to analysing the structure of networks, since they permit expressing
any whole as an A part beside a B part, having some outputs of that A ⊗ B combinations
connected back to select inputs of it, without getting into details of whether A comes before B
dependency-wise, B comes before A, or in fact it might be both. Interestingly enough, this is
possible even in the free PROP, since it supports formal feedbacks [3, Sec. 9].

The idea is that one may to any network G associate a boolean matrix Trf(G) called the
transferrence of G: this has a 1 in position (i, j) iff there is a directed path in G from input j to
output i; this Trf may also be interpreted as a PROP homomorphism into the PROP of boolean
matrices. If G and H are networks whose transferrences have block matrix decompositions
Trf(G) = [a11 a12

a21 a22
] and Trf(H) =

[
b22 b23
b32 b33

]
where a22 is q × r and b22 is r × q, then the matrix

a22b22 is nilpotent iff the symmetric join G 1q
r H is acyclic, that one obtains by identifying

the q last outputs of G with the q first inputs of H and likewise the r first outputs of H with
the r last inputs of G. This carries over to the free PROP, which canonically comes with a
filtration F indexed by boolean matrices, such that Fa is the set of all elements µ of the free
PROP that have a transferrence ≤ a in the standard matrix order. F being a PROP filtration,
it follows from µ ∈ Fa and ν ∈ Fb that µ ◦ ν ∈ Fa◦b (if a ◦ b is defined) and µ ⊗ ν ∈ Fa⊗b,
but more importantly each 1q

r may, provided a and b satisfy the above nilpotency condition,

be regarded as an operation Fa×Fb −→ Fc for c =
[
a11+a12b22(a22b22)

∗a21 a12(b22a22)
∗b23

b32(a22b22)
∗a21 b33+b32a22(b22a22)

∗b23

]
,

where p∗ =
∑∞

k=0 p
k denotes the Kleene star of the boolean matrix p. Joining with a width q

identify is also known as the width q (formal) feedback ↑q. A symmetric join on all inputs and
outputs of the right factor is for simplicity denoted o.

In [3, Sec. 10] this was used to construct a rewriting theory for networks, where a rewrite
rule µ→ µ′ with µ, µ′ ∈ Fb could be placed into a context defined by some ν ∈ Fa and used to
do ν o µ→ ν o µ′ whenever that symmetric join is defined; the machinery of formal feedbacks
make it feasible to ensure that this always respects the ordering with which these rules are
compatible. It was however in the detailed analysis of the resulting ambiguities (critical pairs)
observed that one could not claim that resolving only overlap and inclusion ambiguities would
suffice unless assuming that b = Trf(µ1) (rewrite rule is “sharp”), and in [3, Ex. 10.28] an
example was given of a wrap ambiguity where two redexes would block each other despite being
disjoint, by virtue of each having a input that depends on output from the other. The two rules





 s1→





 ,





 s2→







3

Proceedings of the 10th International Workshop of Confluence, 2021 11

Wrap ambiguities Hellström

give rise to the critical pair







s1←







=





 =







s2→







. (1)

Characterising those situations where this happened were then left as an open problem. A
compounding factor is that this mainly seemed to arise where the transferrence of a network
would change without decreasing (rather increase or be outright incomparable), which is trou-
blesome when one seeks to find a compatible ordering: the rules involved in this are often also
not (easily) orientable. That is however a different story.

3 Networks with obligations

Eliding the interconnections between the two redexes, which would go from output 3 to input
1 and from output 2 to input 4, the ambiguity looks like





 s1←





 s2→





 .

In either branch, applying the other rule to its redex is blocked because doing so would create
a cycle due to the change introduced by the first rule, whereas in the initial configuration both
rules can be applied. Since nilpotency of transferrence matrices allows us to test for acyclicity,
we can formulate a condition for the transferrence [p11 p12

p21 p22] of a context ν that would cause this:
the block p22 connecting outputs of the ambiguity back to inputs thereof must have

(
1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

)
p22 nilpotent, but

(
1 1 0 0
1 1 0 0
0 0 1 0
0 0 1 1

)
p22,

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 1 1

)
p22 non-nilpotent. (2)

The only solution to this is that p22 =

(
0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

)
, which indeed places us in the situation

depicted in (1).
How could one automatically solve such problems, nilpotency being a rather nonlinear con-

straint? It turns out that they can quite conveniently be formulated as boolean satisfiability
problems, with the elements of p22 as individual boolean variables. Nilpotency as such may
seem difficult to encode, but the nilpotency of a boolean n × n matrix A is equivalent to the
claim that An = 0, and repeated boolean multiplications are straightforward to encode if one
introduces helper variables for the elements of the intermediate products; exponentiation by
squaring helps to further reduce the number of multiplications that need to be encoded. Non-
nilpotency of a boolean matrix A is conversely equivalent to the claim that its Kleene plus
A+ = AA∗ =

∑n
k=1A

k does not have a zero diagonal, which again is thus possible to encode
in terms of repeated boolean multiplications.

In hindsight, a problem with the [3] rewriting theory is that it assigns a transferrence to each
rule, when what it in fact needs is to know what restrictions may be imposed by the context
in which the rule is to act. For the derived rule a completion would produce from (2) the least

4

12 Proceedings of the 10th International Workshop of Confluence, 2021

Wrap ambiguities Hellström

possible transferrence is

(
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

)
, but that is also too large to allow that both dependencies

expressed by the p22 matrix above—this derived rule would not be able to resolve the very
ambiguity from which it was derived! That is clearly not satisfactory, but such is sometimes
the lure of the algebra; the theory of the PROP filtration F simply looked too good for it to
not be the right basis for the rewrite theory. It still has its uses, but it is not what should
characterise the rewrite rules.

A better approach is instead to let each rewrite rule come with an obligation of supporting
a certain amount of feedback imposed by the context in which it is to operate—essentially that
p22 matrix derived above. The basic sets Y(r) of objects being rewritten are indexed by boolean
matrices r, and consist of all µ in the free PROP such that Trf(µ)r is (defined, square, and)
nilpotent; ordinary algebraic expressions have obligation r = 0, but higher obligations arise
when resolving ambiguities. A rule µ→ µ′ supporting obligations r can be applied to make the
rewrite step νoµ→ νoµ′ while respecting obligations q iff the transferrence Trf(ν) = [p11 p12

p21 p22]
also satisfies (i) that qp11 is nilpotent and (ii) that p21q(p11q)

∗p12 + p22 6 r; in other words
the context does not by ifself violate the target obligations q, and combining the context with
those obligations does not create effective obligations exceeding those that this rule supports.

For enumerating wrap ambiguities, this leads to a slightly more complicated set of constraints
that just the (2) combination of nilpotency and non-nilpotency, but it is all possible to handle
with the same set encoding tricks, of which the theoretically foremost is that one need only
consider matrix powers up to a known bound.

References

[1] John C. Baez and Mike Stay. Physics, Topology, Logic and Computation: A Rosetta Stone. Pp. 95–
174 in New Structures for Physics (ed. Bob Coecke), Lecture Notes in Physics vol. 813, Springer,
Berlin, 2011. arXiv:0903.0340v3.

[2] Masahito Hasegawa. Models of sharing graphs. CPHC/BCS Distinguished Dissertations. Springer-
Verlag London, Ltd., London, 1999. A categorical semantics of let and letrec, Dissertation, Uni-
versity of Edinburgh, Edinburgh. doi:10.1007/978-1-4471-0865-8.

[3] Lars Hellström. Network Rewriting I: The Foundation, April 2012. arXiv:1204.2421 [math.RA].
arXiv:1204.2421.

[4] André Joyal and Ross Street. The Geometry of Tensor Calculus, I. Adv. Math. 88 (1991), 55–112.

[5] Gheorghe Ştefănescu. Network Algebra. Springer, 2000. ISBN 1-85233-195-X.

5

Proceedings of the 10th International Workshop of Confluence, 2021 13

14

Completion of operadic rewriting systems
by Gaussian elimination

Benjamin Dupont1, Philippe Malbos2, and Isaac Ren3

1,2 Université de Lyon, France, {bdupont,malbos}@math.univ-lyon1.fr
3 École Normale Supérieure de Lyon, France, isaac.ren@ens-lyon.fr

Abstract

We study the confluence properties of non-symmetric operadic rewriting systems using
linear algebra methods. We extend the completion procedure F4, known for commuta-
tive and non-commutative algebras, to operads. This procedure allows us to parallelize
completion by applying a Gaussian elimination process in order to treat multiple critical
branchings simultaneously. We discuss heuristics and strategies to optimize this procedure
in the operadic context: first to reduce the set of critical branchings to be examined and
then to parallelize the elimination.

1 Introduction
Algebraic rewriting theory aims at studying rewriting relations in algebraic and categorical
structures such as monoids, categories, equational theories, linear algebras, operads and higher-
dimensional algebras, and categories. Proofs of confluence of an algebraic rewriting system
(AlgRS) are mainly based on the critical branching lemma (CBL) that proves local confluence
from confluence of a set of critical branchings, which correspond to confluence obstructions in-
duced by minimal overlappings of rules. The CBL approach is used various contexts, including
automated theorem proofs, word problems in universal algebras, and polynomial ideal mem-
bership. CBL’s were proved for numerous AlgRS’s: rewriting on strings [24], terms [18], and
higher-dimensional categories [14, 15]. CBL’s also have various formulations in linear struc-
tures, for commutative algebras [4], associative algebras [1, 2, 23], non-symmetric and shuffle
operads [7, 20], and higher-dimensional linear categories [10]. In algebraic rewriting, the CBL
constitutes the first step in the construction of cofibrant replacements of algebraic and categor-
ical structures [13, 15, 19].

The principle of the critical branching completion procedure (CBCP) on an AlgRS can be
formulated as follows:

Input: A set R of rules of an algebraic rewriting system.

R ′ := R;
C := critical branchings of R ′;
while C 6= ∅ do

Select a subset B of branchings in C, and remove them from C;
Add rewriting rules to R ′ to make the non-confluent branchings of B confluent;
Update C with branchings induced by the new rules;

return R ′;
If the additional rewriting rules are oriented with respect to a termination order, such as

a monomial order, the procedure returns a terminating rewriting system. If moreover the
procedure terminates, then the result is a convergent rewriting system. Otherwise, it builds
an increasing sequence of rewriting systems, whose limit is convergent. The resulting rewriting
system is finite if and only if the input is finite and the procedure terminates.

Proceedings of the 10th International Workshop of Confluence, 2021 15

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

Concrete implementations of CBCP are based on the preparation of the AlgRS (autore-
ductions and adding new generators), the type of critical branchings considered, a filtration
on the critical branchings, and the parallelization of the computation of their confluence at
each step. The choice of branchings to consider can depend on a study of overlapping pat-
terns (Buchberger’s criterion [5], Triangle Lemma [3]), or relations between critical branchings
and Gebauer-Möller criteria [12, 20, 22]. The filtration on critical branchings gives the order
in which to examine the critical branchings and depends on the shape of the rules (reduced,
homogeneous...). Finally, several methods can be used to compute confluence in parallel wrt
the filtration. One approach is based on Gaussian elimination, mainly developed for the com-
putation of commutative [11] and non-commutative Gröbner bases [6, 25], see also [16]. This
principle also appears in [3] for the study of non-symmetric operads.

However, these optimizations were not fully developed in the case of operadic rewriting.
Indeed, this algebraic paradigm is complex due to the linear context, the problem of manag-
ing symmetric actions, and the complexity of operadic patterns. Rewriting systems for non-
symmetric operads were studied in [3, 8, 20], and the question of management of the action
of symmetries on terms was addressed in [7], which introduces a notions of Gröbner bases for
shuffle operads, and implemented in [9].

In this work, we study the optimization of completion procedures for operadic rewriting sys-
tems (ORS). We define a completion algorithm for ORS resolving non-confluence by Gaussian
elimination with respect to a chosen confluence obstruction strategy. This work is part of a
general program that aims to define computational tools for mathematicians studying higher
algebras and higher categories. Indeed, novel higher structures appear in numerous fields such
as geometry, physical mathematics, representation theory and quantum topology. Higher struc-
tures are generally defined by complex presentations by generators and relations, so there is
real need for efficient completion procedures in algebraic contexts.

This abstract is organised as follows. In Section 2, we recall the notion of rewriting systems
for non-symmetric operads and we explain some strategies for the implementation of CBCP.
Section 3 presents the completion algorithm for ORS’s by Gaussian elimination.

2 Confluence of operadic rewriting systems

In this section we recall the notion of operadic rewriting systems on a ground field K of zero
characteristic and the different approaches to obtaining a CBL for these systems.

2.1. Operadic rewriting systems. A collection is a sequence (V(n))n∈N of vector spaces
indexed by arities n > 0. A (non-symmetric) operad is a collection P with an identity element
ε ∈ P(1), and equipped with composition maps ◦ : P(k)⊗P(n1)⊗ . . .⊗P(nk) → P(n1+ . . .+nk)
satisfying identity and associativity conditions. The set of monomials T (Σ) is the term algebra
on a graded set Σ = (Σ(n))n>0. As for the free algebra generated by a family of indeterminates,
we define the free operad F(Σ) on Σ, where, for n > 0, F(Σ)(n) is the vector space spanned by
monomials of arity n, called (homogeneous) polynomials. The support of f =

∑
i∈I λiui is the

set of monomials Supp(f) := {ui | i ∈ I} that appear in its decomposition. A context of F(Σ) of
inner arity k is a term C of T (Σ ∪ {2k}), where 2k is a symbol of arity k that appears exactly
once in C. For a monomial u of arity k, we denote by C[u] the monomial C where we replace
2k by u; we extend this notation to polynomials by linearity.

An operadic rewriting system (ORS) is the data X = (Σ, R) made of a graded set Σ and
a relation R ⊂ T (Σ) × F(Σ), whose elements are rewriting rules α : s(α) → t(α). We define
the graph RX, whose vertices are the elements of F(Σ) and whose edges are the λC[α] + 1b :

2

16 Proceedings of the 10th International Workshop of Confluence, 2021

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

λC[s(α)] + b→R λC[t(α)] + b, where α ∈ R, C is a context, λ ∈ K \ {0}, and b is a polynomial
of F(Σ). An edge of RX is a rewriting monomial when λ = 1 and b = 0, and a rewriting
step when C[s(α)] /∈ Supp(b). Denote by RmX the set of rewriting monomials of X and by ·
the composition of paths in RX. The paths in RX made of rewriting steps are called rewriting
paths of X. A polynomial a in F(Σ) is in normal form wrt X if there is no rewriting step with
source a. A reduction strategy is a map σ, which to any monomial u associates an identity if u
is reduced, and a rewriting monomial σ(u) of source u otherwise. The ORS X is terminating if
there does not exist an infinite rewriting path.

A monomial order on T (Σ) is a total order ≺ stable by product, that is, for all u, u ′ ∈
T (Σ)(k), v, v ′ ∈ T (Σ)(`), and 1 6 i 6 k, (u ≺ u ′, v ≺ v ′) implies u ◦i v ≺ u ′ ◦i v ′. An ORS
X is compatible with ≺ if, for every rewriting rule α ∈ R and every monomial v ∈ Supp(t(α)),
v ≺ s(α). Note that if ≺ is well-founded, then X is terminating.

A branching (resp. local branching) is a pair (f, g) of rewriting paths (resp. rewriting steps)
such that f 6= g and s(f) = s(g). The local branchings of X are classified as follows:

i) additive branchings: (λf + µ1v + 1c, λ1u + µg + 1c), where f : u → a, g : v → b ∈ RmX ,
λ, µ ∈ K \ {0}, c is a 0-cell, u 6= v, and u, v /∈ Supp(c).

ii) multiplicative branchings: (λC[f, 1v] + 1c, λC[1u, g] + 1c), where C is a two-hole context,
f : u→ a, g : v→ b ∈ RmX , λ ∈ K \ {0}, c is a 0-cell, and C[u, v] /∈ Supp(c).

iii) intersecting branchings: the rest of the local branchings. A critical branching is an inter-
secting branching that is minimal for the order induced by (f, g) ⊆ (C[f] + 1c, C[g] + 1c)
for a context C and a polynomial c of F(Σ).

In a schematic way, we can illustrate local branchings for an ORS as follows, where the high-
lighted parts of tree monomials indicate the sources of the rewriting rules:

additive multiplicative intersecting critical

+

A branching (f, g) is confluent if there exist rewriting paths h and k such that t(f ·h) = t(g ·k).
Given a set B of branchings of X, X is B-confluent if every b ∈ B is confluent. If B is the set of
all branchings, then we say that X is confluent. We say that X is convergent if it is terminating
and confluent.

2.2. Strategies for completion procedures. A completion procedure wrt a given monomial
order ≺ transforms an ORS into a convergent one by adding rules, oriented wrt the order ≺,
to amend non-confluent branchings. Such a procedure is based on a map that selects a type of
branching whose confluence implies the confluence of all branchings, defined as follows.

A map CO that associates to every ORS X a set of branchings CO(X) of X is a confluence
obstruction map when every terminating ORS X is confluent iff it is CO(X)-confluent. For
example, there exists a minimal confluence obstruction map M defined as M(X) = ∅ if X is
confluent, andM(X) = {b} if X is non-confluent and b is a non-confluent branching. However,
it is impracticable to write a completion procedure wrt M, as it would imply being able to
determine confluence and compute a non-confluent branching in the first place.

Another approach is to consider confluence-generating sets of branchings. A set B of branch-
ings of an ORS X is confluence-generating if, for any branching (f, g) of X, there exist branchings

3

Proceedings of the 10th International Workshop of Confluence, 2021 17

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

(f1, g1), . . . , (fn, gn), which are additive, multiplicative, or in B, rewriting paths f ′ and g ′, and
contexts C1, . . . , Cn such that f = C1[f1] · f ′, g = Cn[gn] · g ′, and for all 1 6 i 6 n − 1,
Ci[gi] = Ci+1[fi+1]. We get the following lemma:

2.3. Lemma. A map B that associates to every ORS X a confluence-generating set of branch-
ings B(X) is a confluence obstruction map.

The converse is not true, however: consider M(X), which is not confluence-generating as
soon as X is confluent with a branching.

There are several examples confluence-generating sets in the literature. The classical one is
the set of critical branchings, in which case Lemma 2.3 is the CBL, also called Buchberger’s
criterion for linear rewriting systems [4, 23]. Smaller confluence-generating sets were developed
to take into account additional relations between critical branchings. These sets, along with
the corresponding proofs of Lemma 2.3, were defined for commutative algebras [5, 22], non-
commutative algebras [16, 17], and non-symmetric operads [20].

Small confluence-generating sets appear to be a good compromise between minimizing the
size of a confluence obstruction map and minimizing the number of times the confluence ob-
struction map is called. The question is then to find a minimal confluence-generating set. In
certain cases, the answer is known: for instance, for quadratic ORS’s, critical branchings form
a minimal confluence-generating set.

3 Confluence by elimination

Linear rewriting can be done without a monomial order [13, 19], but in most applications the
rewriting rules are compatible with a monomial order. In this case convergent AlgRS’s are
Gröbner bases, and rewriting properties are formulated algebraically. Branchings are described
by S-polynomials and confluence means that every S-polynomial reduces to zero. Finally, the
elimination of critical branchings is encoded by relations among relations (syzygies). In this
section we give an implementation of the CBCP for ORS using Gaussian elimination inspired
by the F4 algorithm [16].

Fix an ORS X = (Σ,≺, R) compatible with a monomial order ≺. Let P = {f1, . . . , fn} be a

GetRM(σ)(X, P)
Input: An ORS X = (Σ,≺, R),
A list of rewriting monomials P.
Output: A list of rewriting monomials R ′.

1 R ′ := P;
2 T := ∪f∈P Supp(t(f));
3 treated := lm(P);
4 while T 6= ∅ do
5 select u ∈ T ;
6 T := T \ {u};
7 treated := treated ∪ {u};
8 if σ(u) not an identity then
9 R ′ := R ′ ∪ {σ(u)};

10 T := T ∪ {Supp(t(σ(u))) \ treated};

11 return R ′;

set of rewriting monomials on Σ,
and consider the totally ordered set
Supp(P) := ∪f∈P Supp(s(f) − t(f)) =
{u1 ≺ · · · ≺ uk}. We define the matrix
MP ∈Mn,k(K) where (MP)i,j is the co-
efficient of uj in s(pi) − t(pi). Thus we
can read the elements of P as the rows
of MP, where the largest nonzero coef-
ficient is the source monomial and the
other coefficients correspond to the tar-
get polynomial. For examples, see the
matrices in the appendix.

The first step of completion is as fol-
lows. We fix a reduction strategy σ. For
each rewriting monomial p of P, we cal-
culate a reduction path, starting with p,
from s(p) to a normal form, which fol-
lows σ after the first step. We then re-

4

18 Proceedings of the 10th International Workshop of Confluence, 2021

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

turn the set R ′ := GetRM(σ)(X, P) of rewriting monomials wrt R that appear in these paths.
As for the case of non-commutative algebras [16, Prop. 4.21], if P is finite, then GetRM(X, P)
terminates.

Reduction(X, P)
Input: An ORS X = (Σ,≺, R),
A list of rewriting monomials P.
Output: A list of rewriting rules P ′.

1 R ′ := GetRM(σ)(X, P);
2 M ′ := RowReduce(MR ′);
3 P ′ := {α row of M ′

| α 6= 0 and s(α) /∈ s(R ′)};
4 return P ′;

The next step is to reduce the ma-
trix MR ′ to its row reduced echelon form,
RowReduce(MR ′), by Gaussian elimination.
The resulting rows whose largest monomials
are not sources of rewriting monomials in R ′

form a set of new rewriting rules P ′, which is
the result of Reduction(X, P).

Finally, we choose a confluence obstruc-
tion map CO and a selection strategy S, that
returns a subset of branchings, in order to
parallelize the completion procedure. The selection strategy in the procedure F4 is equivalently
a filtration on Branchings. For instance, the normal selection strategy consists in filtering
branchings by weight of the source, and starting with those of minimal leading weight [11]. For
homogeneous presentations, this appears to works well.

3.1. Theorem. Let X be an ORS, CO a confluence obstruction map and S a selection strategy.
If the procedure F4(C,S) terminates on X, then the ORS F4(CO,S)(X) is convergent.

F4(CO,S)(X)
Input: An ORS X = (Σ,≺, R).
Output: A convergent ORS

X ′ = (Σ,≺, R ′).

1 R ′ := R;
2 AddedRules := true;
3 while AddedRules do
4 AddedRules := false;
5 Branchings := CO(Σ, R ′);
6 while Branchings 6= ∅ do
7 B := S(Branchings);
8 Branchings := Branchings \ B;
9 P := ∪{f,g}∈B{f, g};

10 P ′ := Reduction((Σ,≺, R ′), P);
11 if P ′ 6= ∅ then
12 R ′ := R ′ ∪ P ′;
13 AddedRules := true;

14 return (Σ,≺, R ′);

The proof works as follows. F4(CO,S)(X)
terminates only if, at some iteration of the
first while loop, P ′ is an empty set for every
iteration of the second while loop. This only
happens if X ′ is CO(X ′)-convergent, which is
equivalent to convergence of X ′.

Note that an associative algebra can be
seen as a non-symmetric operad concentrated
in arity 1. By specifying CO and S and re-
stricting F4 to associative algebras, we re-
cover some previously published procedures.
If CO returns the set of critical branchings, we
get the non-commutative F4 procedure intro-
duced in [25]. If S selects a single branching
and CO returns the set of critical branchings,
we get the non-commutative Buchberger pro-
cedure [1, 2]. If CO eliminates critical branch-
ings following the optimizations of [17, 25]
(interreduction and chain criterion), then we
recover their procedures.

5

Proceedings of the 10th International Workshop of Confluence, 2021 19

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

References

[1] George M. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178–218, 1978.

[2] Leonid A. Bokut. Imbeddings into simple associative algebras. Algebra i Logika, 15(2):117–142,
245, 1976.

[3] Murray R. Bremner and Vladimir Dotsenko. Algebraic operads. CRC Press, Boca Raton, FL,
2016. An algorithmic companion.

[4] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Computa-
tion, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41, Number
3-4, Pages 475–511, 2006.

[5] Bruno Buchberger. A criterion for detecting unnecessary reductions in the construction of gröbner
bases. In Symbolic and Algebraic Computation, pages 3–21, 01 1979.

[6] Cyrille Chenavier. A lattice formulation of the noncommutative F4 procedure. Internat. J. Algebra
Comput., 29(1):23–40, 2019.

[7] Vladimir Dotsenko and Anton Khoroshkin. Gröbner bases for operads. Duke Math. J., 153(2):363–
396, 2010.

[8] Vladimir Dotsenko and Bruno Vallette. Higher Koszul duality for associative algebras. Glasg.
Math. J., 55(A):55–74, 2013.

[9] Vladimir Dotsenko and Mikael Vejdemo-Johansson. Implementing Gröbner bases for operads. In
OPERADS 2009, volume 26 of Sémin. Congr., pages 77–98. Soc. Math. France, Paris, 2013.

[10] Benjamin Dupont. Rewriting modulo isotopies in pivotal linear (2,2)-categories. submitted
preprint, arXiv:1906.03904, June 2019.

[11] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of
Pure and Applied Algebra, 139(1-3):61–88, June 1999.

[12] Rüdiger Gebauer and H. Michael Möller. On an installation of Buchberger’s algorithm. J. Symbolic
Comput., 6(2-3):275–286, 1988. Computational aspects of commutative algebra.

[13] Yves Guiraud, Eric Hoffbeck, and Philippe Malbos. Convergent presentations and polygraphic
resolutions of associative algebras. Math. Z., 293(1-2):113–179, 2019.

[14] Yves Guiraud and Philippe Malbos. Higher-dimensional categories with finite derivation type.
Theory Appl. Categ., 22:No. 18, 420–478, 2009.

[15] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity.
Adv. Math., 231(3-4):2294–2351, 2012.

[16] Clemens Hofstadler. Certifying operator identities and ideal membership of noncommutative poly-
nomials, March 2020. Masterarbeit, 2020.

[17] Jamal Hossein Poor, Clemens G. Raab, and Georg Regensburger. Algorithmic operator algebras
via normal forms in tensor rings. Journal of Symbolic Computation, 85:247–274, 2018. 41th
International Symposium on Symbolic and Alge-braic Computation (ISSAC’16).

6

20 Proceedings of the 10th International Workshop of Confluence, 2021

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

[18] Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In Computational
Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263–297. Pergamon, Oxford,
1970.

[19] Philippe Malbos and Isaac Ren. Shuffle polygraphic resolutions for operads. submitted preprint,
arXiv:2012.15718, December 2020.

[20] Philippe Malbos and Isaac Ren. Completion in operads via essential syzygies. In Proceedings of
the 46th International Symposium on Symbolic and Algebraic Computation, ISSAC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[21] Martin Markl and Elisabeth Remm. (Non-)Koszulness of operads for n-ary algebras, galgalim and
other curiosities. J. Homotopy Relat. Struct., 10(4):939–969, 2015.

[22] H. Michael Möller, Teo Mora, and Carlo Traverso. Gröbner bases computation using syzygies.
In Papers from the International Symposium on Symbolic and Algebraic Computation, ISSAC ’92,
page 320–328, New York, NY, USA, 1992. Association for Computing Machinery.

[23] Teo Mora. An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput.
Sci., 134(1):131–173, 1994. Second International Colloquium on Words, Languages and Combina-
torics (Kyoto, 1992).

[24] Maurice Nivat. Congruences parfaites et quasi-parfaites. In Séminaire P. Dubreil, 25e année
(1971/72), Algèbre, Fasc. 1, Exp. No. 7, page 9. Secrétariat Mathématique, Paris, 1973.

[25] Xingqiang Xiu. Non-commutative Gröbner Bases and Applications. PhD thesis, Universität Pas-
sau, 2012.

7

Proceedings of the 10th International Workshop of Confluence, 2021 21

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren

Appendix

As an illustration, we execute algorithm F4 on an ORS presenting the anti-associative operad.
First, we introduce some notations.

Preliminaries. We represent monomials by planar trees with numbered inputs. For instance,

w =

x

1 y
2

z
u

3 4

v
5 6

is a monomial where the arities are ar(x) = 3, ar(y) = 1, and ar(z) = ar(u) = ar(v) = 2.
The weight of a monomial u is the number of its inner vertices. For instance, |w| = 5.

Let P be a collection. For x ∈ P(k), y ∈ P(n), and 1 6 i 6 k, denote by

x ◦i y := x ◦ (ε, . . . , ε, y
i
, ε, . . . , ε)

the elementary composition of x and y.

Example. Consider the following ORS that presents the anti-associative operad [21]

X := 〈x ∈ X(2) | f : x ◦1 x→ −x ◦2 x〉.

Let us study the execution of algorithm F4 with:

1. the confluence obstruction map that selects essential branchings, [20],

2. the selection strategy that selects the branchings of lowest weight,

3. the reverse path-lexicographic monomial order ≺, [3],

4. the reduction strategy σ given by taking the smallest rewriting monomial for the context
path-lexicographic order defined in [20].

At the first iteration of the algorithm F4, there is one essential branching (f ◦1 x, x ◦1 f).
The algorithm GetRM applied to (X, {f ◦1 x, x ◦1 f}) returns the set

R ′ = {x ◦1 f, f ◦2 x, x ◦2 f, f ◦1 x, f ◦3 x}.

Then the matrix MR ′ is of the following form

8

22 Proceedings of the 10th International Workshop of Confluence, 2021

Completion of operadic rewriting systems by Gaussian elimination Dupont, Malbos, and Ren




x
x

x

x
x
x

x
x x

x
x

x

x
x
x

f

x
1 0 1 0 0

x
f 1 1 0 0 0

f

x
0 1 0 1 0

f

x
0 0 1 0 1

x
f 0 0 0 1 1




.

where the columns are ordered by reverse path-lexicographic order. We check that RowReduce(MR ′)
is the 5 × 5 identity matrix, and that Reduction(X, {f ◦1 x, x ◦1 f}) returns one rewriting rule,
g : x ◦2 (x ◦2 x) → 0, which we add to the ORS. At the next iteration, there are four essential
branchings:

P := {(f ◦3 (x ◦2 x), g ◦1 x), (x ◦ (f ◦3 x), g ◦2 x), (x ◦2 (x ◦2 f), g ◦3 x), (x ◦2 g, g ◦4 x)}.

Using the selection strategy, we once again select all branchings. The matrix MGetRM(σ)(X,P)

is




x
x x

x

x
x

x x

x
x
x

x

x
x
x
x

f

x
x

1 0 0 1

x
f

x
0 1 0 1

x
x
f

0 0 1 1

g
x

1 0 0 0

g
x

0 1 0 0

g
x

0 0 1 0

g
x

0 0 0 1

x

g
0 0 0 1




Since each column corresponds to the source of a rewriting monomial in R ′, the algorithm
Reduction cannot produce new rewriting rules. Thus, the procedure F4 terminates and the final
convergent presentation is

〈 x ∈ X(2) | f : x ◦1 x→ −x ◦2 x, g : x ◦2 (x ◦2 x) → 0 〉.

9

Proceedings of the 10th International Workshop of Confluence, 2021 23

24

Formalized Signature Extension Results for Confluence,

Commutation and Unique Normal Forms ∗

Alexander Lochmann1, Fabian Mitterwallner1, Aart Middeldorp1

Department of Computer Science, University of Innsbruck, Austria
{alexander.lochmann,fabian.mitterwallner,aart.middeldorp}@uibk.ac.at

Abstract

Ground-confluence and confluence do not coincide. However, for the class of left-linear
right-ground TRSs confluence can be reduced to ground-confluence by extending the
signature with fresh constants. We present a formalization in Isabelle/HOL of a more
general result, for linear variable-separated rewrite systems. From this formalization we
obtain a sound procedure to decide confluence, commutation and unique normal forms of
such systems. We implemented this procedure in the decision tool FORT-h, which also can
produce machine checkable proofs, and in the certifier FORTify to validate these.

1 Introduction

Dauchet and Tison [2] proved the decidability of the first-order theory of rewriting for the class
of ground rewrite systems. The recent tool FORT-h [6] implements an extension of the decision
procedure for the larger class of linear variable-separated rewrite systems. FORT-h is capable
of producing certificates that witness the steps in the decision procedure. These certificates
are validated by FORTify [6], a verified Haskell program obtained from the Isabelle/HOL
formalization of the underlying theory reported in [5].

The decision procedure is based on tree automata techniques and hence is restricted to
properties on ground terms. In this paper we are concerned with extending FORT-h and FORTify
to deal with confluence-related properties on arbitrary terms. These include commutation (COM)
and unique normal forms with respect to conversion (UNC) and reduction (UNR). This allows
the combination of these tools to be the first participant that produces provably correct answers
in the categories COM, UNC and UNR of the Confluence Competition (CoCo).

We assume familiarity with (first-order) term rewriting [1], but do not impose the usual
variable restrictions on rewrite rules. In the next section we present the formalized signature
extension results that allow to reduce confluence-related properties to properties on ground
terms. Section 3 explains the changes made to FORT-h and FORTify. We conclude in Section 4
with suggestions for future research.

2 Theory

We start this section by recalling the results of [3, 7, 8] concerning the reduction of confluence-
related properties to their ground versions. The first lemma is from [7,8]. Here P consists of

∗This work is supported by the Austrian Science Fund (FWF) project P30301.

Proceedings of the 10th International Workshop of Confluence, 2021 25

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

the following properties

CR : ∀ s∀ t∀u (s→∗ t ∧ s→∗ u =⇒ t ↓ u) confluence

SCR : ∀ s∀ t∀u (s→∗ t ∧ s→∗ u =⇒ ∃ v (t→= v ∧ u→∗ v)) strong confluence

WCR : ∀ s∀ t∀u (s→ t ∧ s→ u =⇒ t ↓ u) local confluence

NFP : ∀ s∀ t∀u (s→∗ t ∧ s→! u =⇒ t→! u) normal form property

UNR : ∀ s∀ t∀u (s→! t ∧ s→! u =⇒ t = u) unique normal forms wrt reduction

UNC : ∀ t∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u) unique normal forms wrt conversion

For a property P ∈ P, GP denotes the property P restricted to ground terms.

Lemma 1. Let R be a left-linear right-ground TRS over a signature F that contains at least
one constant.

1. (F ,R) � P ⇐⇒ (F] {c},R) � GP for all P ∈ P \ {UNC}
2. (F ,R) � UNC ⇐⇒ (F] {c, d},R) � GUNC

3. If R is ground or F is monadic then (F ,R) � P ⇐⇒ (F ,R) � GP for all P ∈ P.

The constants c and d are assumed to be fresh (i.e., c, d /∈ F) throughout this paper.
A signature is monadic if every function symbol has arity at most one. A formalization in
Isabelle/HOL of the third item has been reported in [3].

Definition 2. A TRS R is variable-separated if Var(l) ∩ Var(r) = ∅ for all l→ r ∈ R.

We emphasize that the usual restriction Var(r) ⊆ Var(l) is not imposed on these systems.
For linear variable-separated TRSs the first item of Lemma 1 does not hold. In [3] a (non-
formalized) proof is presented that two fresh constants are sufficient to reduce confluence to
ground confluence.

Lemma 3 ([3, Theorem 6.4]). If R is a linear variable-separated TRS over a signature F then
(F ,R) � CR ⇐⇒ (F] {c, d},R) � GCR.

The necessity of adding two fresh constants follows from the following example from [3].

Example 4. Consider the linear variable-separated TRS R consisting of the single rule a→ x over
the signature F = {a}. Since x R← a→R y with distinct variables x and y, R is not confluent.
Ground-confluence holds trivially as a →R a is the only rewrite step between ground terms.
Adding a single fresh constant b does not destroy ground-confluence (a→R a and a→R b are
the only steps). By adding a second fresh constant c, ground-confluence is lost: b R← a→R c.

We generalize Lemma 3 to commutation (COM) and unique normal forms (UNC and UNR),
where

COM : ∀ s∀ t∀u (s→∗R t ∧ s→∗S u =⇒ ∃ v (t→∗S v ∧ u→∗R v)) commutation

The proof below is formalized. In the proof we restrict attention to rewrite sequences that involve
a root step. Root steps are important since they permit the use of two arbitrary substitutions on
the left and right of rule used in the root step, due to variable separation of the rules. Therefore
we start with a preliminary result (Lemma 6) which provides abstract conditions that permit
this restriction. We write →∗ε∗R for the relation →∗R · →ε

R · →∗R. The proof of Lemma 6 is
obtained by a straightforward induction on the term structure and the multi-hole context closure
of the rewrite relation, and is omitted.

2

26 Proceedings of the 10th International Workshop of Confluence, 2021

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

Definition 5. A binary predicate P on terms over a given signature F is closed under multi-hole
contexts if P (C[s1, . . . , sn], C[t1, . . . , tn]) holds whenever C is a multi-hole context over F with
n > 0 holes and P (si, ti) holds for all 1 6 i 6 n.

Lemma 6. Let A and B be TRSs over the same signature F and let P be a binary predicate
that is closed under multi-hole contexts over F .

1. If P (s, t) for all terms s and t such that s→∗ε∗A t then P (s, t) for all terms s and t such
that s→∗A t.

2. If P (s, t) for all terms s and t such that s→∗ε∗A · →∗B t or s→∗A · →∗ε∗B t then P (s, t) for
all terms s and t such that s→∗A · →∗B t.

We show how Lemma 6 is instantiated for the properties of interest.

• For UNC we use part 1 with P1(s, t) : NF(s) ∧ NF(t) =⇒ s = t and R∪R− for A.

• For UNR we use part 2 with the same predicate P1 and R− for A and R for B.

• For COM we use part 2 with P2(s, t) : s→∗S · →∗R− t and R− for A and S for B.

Lemma 7. The properties P1 and P2 are closed under multi-hole contexts.

The next lemma is a key result. It allows the removal of introduced fresh constants while
preserving the reachability relation. Note that variable-separation is not required.

Lemma 8. Let R be a linear TRS over a signature F that contains a constant c which does
not appear in R. If s→∗R t with c ∈ Fun(s) \ Fun(t) then s[u]p →∗R t using the same rewrite
rules at the same positions, for all terms u and positions p ∈ Pos(s) such that s|p = c.

The restriction to linear TRSs can also be lifted, at the expense of a more complicated
replacement function and proof. Since the decision procedure implemented in FORT-h relies on
linearity and variable-separation, we present a simple proof for linear TRSs. Due to calculations
involving positions, the formalization in Isabelle/HOL was anything but simple.

Proof. We use induction on the length of s→∗R t. If this length is zero then there is nothing to
show as Fun(s) \ Fun(t) = ∅. Suppose s→R v →∗R t and write s = C[`σ]→R C[rσ] = v. Let
p′ be the position of the hole in C and let p ∈ Pos(s) with s|p = c. We distinguish two cases.

If p′ ‖ p then s[u]p = (C[u]p)[`σ]p′ →R v′ with v′ = (C[u]p)[rσ]p′ . Since v|p = C|p = c we
can apply the induction hypothesis to v →∗R t. This yields v′ →∗R t and hence s[u]p →∗R t as
desired.

In the remaining case, p′ 6 p. From s|p = c and the fact that c does not appear in R we
infer that there exists a variable y ∈ Var(`) such that c ∈ Fun(σ(y)). Let q be the (unique)
position of y in ` and consider the substitution

τ(x) =

{
σ(y)[u]q′ if x = y

σ(x) otherwise

Here q′ = p\(p′q) is the position of c in σ(y). If y /∈ Var(r) then v = C[rσ] = C[rτ] and thus
s[u]p = C[`τ]→R C[rτ] = v →∗R t. If y ∈ Var(r) then there exists a unique position q′′ ∈ Pos(r)
such that r|q′′ = y. So v|p′q′′q′ = c and we obtain s[u]p = C[`τ] →R C[rτ] = v[u]p′q′′q′ →∗R t
from the induction hypothesis.

3

Proceedings of the 10th International Workshop of Confluence, 2021 27

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

Using the preceding two lemmata, the main result easily follows.

Lemma 9. Linear variable-seperated TRSs R and S over a common signature F commute if
and only if R and S ground-commute over F] {c, d}.
Proof. First we prove the if direction. So suppose R and S ground-commute on terms in
T (F] {c, d}). In order to conclude that R and S commute on terms in T (F ,V), according to
Lemma 6 it suffices to show the inclusions

→∗ε∗R− · →∗S ⊆ →∗S · →∗R− →∗R− · →∗ε∗S ⊆ →∗S · →∗R−

on terms in T (F ,V). Suppose s →∗ε∗R− · →∗S t. Let the substitution σc map all variables to
c and let σd map all variables to d. Since rewriting is closed under substitutions and the
variable-separated rule used in the root step →ε

R− allows changing the substitution, we obtain
sσc →∗ε∗R− · →∗S tσd. From ground commutation we obtain sσc →∗S · →∗R− tσd. Note that
s and t are terms in T (F ,V) and hence do not contain the constants c and d. Therefore,
d /∈ Fun(sσc) and c /∈ Fun(tσd). As a consequence, repeated applications of Lemma 8 transform
sσc →∗S · →∗R− tσd into a sequence s→∗S · →∗R− t in which c and d do not appear, proving the
first inclusion. Note that in our setting TRSs are closed under rule reversal. Hence we can apply
Lemma 8 in both directions, which allows us to remove the constant d from the term t. The
second inclusion →∗R− · →∗ε∗S ⊆ →∗S · →∗R− is obtained in the same way.

For the only-if direction we assume that R and S commute on terms in T (F ,V) and use
Lemma 6 to establish the commutation of R and S on terms in T (F]{c, d}). We prove the first
inclusion. The second inclusion follows then by a symmetric argument. So let s→∗ε∗R− · →∗S t
and consider the following mapping φ : T (F] {c, d})→ T (F , {x, y}):

φ(t) =





x if t = c

y if t = d

f(φ(t1), . . . , φ(tn)) if t = f(t1, . . . , tn)

Here x and y are distinct variables in V . A straightforward induction proof shows φ(u)→∗R− φ(v)
whenever u →∗R− v, for all u, v ∈ T (F] {c, d}). The same holds for S. Hence, the given
sequence from s to t is transformed into φ(s) →∗ε∗R− · →∗S φ(t). Since c and d do not appear
in the transformed sequence, we obtain φ(s)→∗S · →∗R− φ(t) from the commutation of R and
S. Define the substitution τ = {x 7→ c, y 7→ d}. Since rewriting is closed under substitution,
s = φ(s)τ →∗S · →∗R− φ(t)τ = t.

The proofs for the unique normal form properties (UNC and UNR) are obtained in a similar
manner.

Lemma 10. Let R be a left-linear variable-separated TRS over a signature F that contains at
least one constant.

• (F ,R) � UNR ⇐⇒ (F] {c, d},R) � GUNR.

• (F ,R) � UNC ⇐⇒ (F] {c, d},R) � GUNC.

3 FORT-h and FORTify

The overall design of FORT-h and FORTify is shown in Figure 1. If FORT-h does not time out,
it produces a certificate in the certificate language that is formally described in [6, Section 4].

4

28 Proceedings of the 10th International Workshop of Confluence, 2021

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

FORT-h

TRSs

formula

yes

no

timeout

certificate

FORTify

4 / error
(A)

(B)

Figure 1: FORT-h and FORTify.

Certificates can be viewed as a recipe for the certifier to perform certain operations on tree
automata and formulas in order to confirm the yes/no claim of FORT-h. The certifier is the
verified Haskell code base that is generated by Isabelle’s code generation facility, corresponding
to module (B) of FORTify. Module (A) contains a Haskell parser to translate strings representing
formulas (TRSs, signatures, certificates) to semantically equivalent objects in the data types
obtained from the generated code in module (B). The reader is referred to [6] for further details.

Here we briefly describe the required changes to this setup in order to accommodate the
results mentioned in the preceding sections.

FORT-h already had support for some properties on open terms [6] based only on Lemma 3.
If the input formula was one of the predefined macros for a property on open terms (e.g. CR),
it would execute the decision procedure with the signature extended by two constants on the
formula of the corresponding ground property (e.g. GCR). To improve the performance of the
decision procedure we implemented the optimizations described in Lemma 1. This means the
number of additional constants now depends on the properties of the input TRS, which in some
cases leads to smaller signatures, therefore leading to faster decisions by the tool.

The more interesting changes relate to FORTify. Since the certificate serves as a proof that
a formula holds for ground terms, we chose to keep the certificate format unchanged. The
signature extension described in Lemmata 1, 3 and 9 were implemented as a preprocessing
step of the formula which, just like FORT-h, checks if the input formula is a property on open
terms. If that is the case, the signature is extended and the formula set to the corresponding
ground property. Here care has to be taken that both FORT-h and FORTify use the same
definitions for their ground property, since this formula has to match the one in the certificate.
The choice to keep the certificate unchanged also means that the interface between FORT-h
and FORTify remains unchanged and FORTify is fully backwards compatible. Note that this
preprocessing step is implemented in module (A) of FORTify (see Figure 1) by hand, hence is

5

Proceedings of the 10th International Workshop of Confluence, 2021 29

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

not code generated from the formalization.

4 Conclusion

We showed that commutation of linear variable-separated TRSs reduces to ground-commutation
after the signature is extended with two fresh constants. (This is not to be confused with
signature extension results for commutation, which are studied in [4,9].) The proof is formalized
in Isabelle/HOL and can be obtained from the website

https://fortissimo.uibk.ac.at/iwc2021

accompanying this paper. Precompiled binaries of the new versions of FORT-h and FORTify are
available from the same site. A similar formalized proof for NFP is expected soon.

The current implementation of FORTify supports certifying decisions of the properties UNR,
UNC, CR, and COM of FORT-h. At the moment these properties must appear at the root of the
input formula. This restriction comes from the underlying decision procedure presented in [5] in
which the signature is assumed to be fixed. Possible future work is to permit these properties
to appear within a formula. This would allow certifying results for a formula like GCR ∧ ¬CR.
FORT-h already has support for this, but the results cannot be certified.

Another improvement would be moving the signature extension procedure from module (A)
into the formally verified module (B). While this would necessarily change the interface between
(A) and (B), the certificate format could still remain unchanged for backwards compatibility.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
doi:10.1017/CBO9781139172752.

[2] Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable. In Proc. 5th
LICS, pages 242–248, 1990. doi:10.1109/LICS.1990.113750.

[3] Bertram Felgenhauer, Aart Middeldorp, T. V. H. Prathamesh, and Franziska Rapp. A verified
ground confluence tool for linear variable-separated rewrite systems in Isabelle/HOL. In Proc. 8th
CPP, pages 132–143, 2019. doi:10.1145/3293880.3294098.

[4] Nao Hirokawa. Commutation and signature extensions. In Proc. 4th IWC, pages 23–27, 2015.

[5] Alexander Lochmann, Aart Middeldorp, Fabian Mitterwallner, and Bertram Felgenhauer. A verified
decision procedure for the first-order theory of rewriting for linear variable-separated rewrite systems.
In Proc. 10th CPP, pages 250–263, 2021. doi:10.1145/3437992.3439918.

[6] Fabian Mitterwallner, Alexander Lochmann, Aart Middeldorp, and Bertram Felgenhauer. Certifying
proofs in the first-order theory of rewriting. In Proc. 27th TACAS, volume 12652 of LNCS, pages
127–144, 2021. doi:10.1007/978-3-030-72013-1_7.

[7] Franziska Rapp and Aart Middeldorp. Confluence properties on open terms in the first-order theory
of rewriting. In Proc. 5th IWC, pages 26–30, 2016.

[8] Franziska Rapp and Aart Middeldorp. FORT 2.0. In Proc. 9th IJCAR, volume 10900 of LNAI,
pages 81–88, 2018. doi:10.1007/978-3-319-94205-6_6.

[9] Kiraku Shintani and Nao Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, volume 9195 of LNCS, pages 127–136, 2015. doi:10.1007/978-3-319-21401-6_8.

6

30 Proceedings of the 10th International Workshop of Confluence, 2021

Evaluation in the computational calculus is non-confluent

Claudia Faggian1, Giulio Guerrieri2, and Riccardo Treglia3

1 Université de Paris, IRIF, CNRS, F-75013 Paris, France
faggian@irif.fr

2 University of Bath, Department of Computer Science, Bath, UK
giulio.guerrieri@gmail.com

3 Università di Torino, Department of Computer Science, Turin, Italy
riccardo.treglia@unito.it

Abstract

In Moggi’s computational calculus, reduction is the contextual closure of the rules
obtained by orienting three monadic laws. In the literature, evaluation is usually defined
as the closure under weak contexts (no reduction under binders): E = 〈〉 | letx :=E inM .

We show that, when considering all the monadic rules, weak reduction is non-
deterministic, non-confluent, and normal forms are not unique. However, when interested
in returning a value (convergence), the only necessary monadic rule is β, whose evaluation
is deterministic.

The computational λ-calculus, noted λc, was introduced by Moggi [11, 12, 13] as a meta-
language to describe computational effects in programming languages. Since then, computa-
tional λ-calculi have been developed as foundations of programming languages, formalizing both
functional and effectful features [20, 1, 16, 9, 2], in a still active line of research.

To model effectful features at a semantic level, Moggi used the categorical notion of monad.
A monad can be equivalently presented as a Kleisli triple satisfying three identities [13, 10]. At
an operational level, Moggi [11] internalized these identities into the syntax of λc, giving rise
to three conversion rules—called monadic laws—that are added to the usual β and η rules.

Nowadays the literature is rich of computational calculi that refine Moggi’s λc. Such calculi
are presented in at least three different fashions: fully equational systems [9, 15] (all conversion
rules are unoriented identities); hybrid systems where β (and η, if considered) are oriented
rules while the monadic laws are identities on terms [2]; reduction systems where every rule is
oriented [17]. Here we follow the latter approach, which brings to the fore operational aspects
of reduction and evaluation which seem to have been neglected in the literature.

Indeed, in the literature of calculi with effects [9, 2], evaluation is usually weak, that is, it is
not allowed in the scope of the binders (λ or let). This is the way evaluation is implemented by
functional programming languages such as Haskell and OCaml. Moreover, only β and let.β are
considered. However, in Moggi’s λc and in Sabry and Wadler’s [17], the reduction is full, that
is, reduction is the compatible closure of all the monadic rules. When considering all the rules,
we observe—quite unexpectedly—that evaluation (i.e. weak reduction) is non-deterministic,
non-confluent, and normal forms are not unique.

Reduction and Evaluation. Here we focus on a computational λ-calculus which is standard
in the literature, namely Sabry and Wadler’s λml∗ [17]. This is a neat and compact refinement
of Moggi’s untyped λc [11]—the relation between the two calculi is formalized by a reflection[17].

λml∗—which we display in Figure 1— has a two sorted syntax that separates values (i.e.
variables and abstractions) and computations. The latter are either let-expressions (aka explicit
substitutions, capturing monadic binding), or applications (of values to values), or coercions
[V] of values V into computations (corresponding to the return operator in Haskell).

Proceedings of the 10th International Workshop of Confluence, 2021 31

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

Values: V,W ::= x | λx.M
Computations: M,N ::= [V] | letx :=M inN | VW

Reduction rules:

(β) (λx.M)V 7→β M [V/x]

(η) λx.V x 7→η V x 6∈ fv(V)

(let.β) letx :=[V] inN 7→let.β N [V/x]

(let.η) letx :=M in [x] 7→let.η M

(let.ass) let y :=(letx :=L inM) inN 7→let.ass letx :=L in (let y :=M inN) x 6∈ fv(N)

Figure 1: λml∗ : Syntax and Reduction

• The reduction rules in λml∗ are the usual β (and η) rules from Plotkin’s call-by-value
λ-calculus [14], plus the oriented version of the three monadic laws: let.β, let.η, let.ass
(see Figure 1).

• Reduction → is the contextual closure of the reduction rules.

Following standard practice, we define evaluation →w ml∗ (aka sequencing) as the closure of

the rules under evaluation context E:

E ::= 〈 〉 | letx :=E inN evaluation context

Informally, the operational understanding of weak reduction is that evaluating letx :=M inN
amounts to first evaluate M until it returns a value, that is, until a computation of the form
[V] is reached. Then V is passed to N by substituting V for x in N , thanks to the rule let.β.

Despite the prominent role that weak reduction has in the literature of calculi with effects,
its reduction properties are somehow surprising. While full reduction →ml∗ is confluent, the
closure of the rules under evaluation context turns out to be non-deterministic, non-confluent,
and its normal forms are not unique.

Note that such issues only come from the monadic rules let.η and let.ass (sometimes called
identity and associativity, respectively, in the literature), not from β or let.β. It is worth to
clarify that while the literature on computational λ-calculi often adopts weak reduction (see for
instance, [9, 2], where a big-step variant is used), the rules let.ass and let.η are usually dealt
with as unoriented identities—the only oriented rules being β and let.β.

(Non-)Confluence. In λml∗ , the reduction →ml∗ is confluent, but weak reduction →w ml∗ is

not. We now give some examples. For every γ ∈ {β, η, let.β, let.η, let.ass}, the weak γ-reduction
→w γ is the closure of the rule 7→γ under weak contexts E.

Example 1 (Non-confluence). Let M be a computation in normal form, for instance M = xx.

let y :=(letx :=zz inM) in [y]
let.η

w
- letx :=zz inM

letx :=zz in (let y :=M in [y])

let.ass w
?

Both letx := zz inM and letx := zz in (let y :=M in [y]) are normal for →w ml∗ (in the latter, the

let.η-redex let y :=M in [y] cannot be fired by weak reduction), but they are distinct.

2

32 Proceedings of the 10th International Workshop of Confluence, 2021

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

Example 2 (Non-confluence). Let R = P = Q = L = zz and:

M := let z = (let x = (let y = L in Q) in P) in R

There are two weak let.ass-redexes, the overlined one and the underlined one. So,

M →w let.ass letx :=(let y :=L inQ) in (let z :=P inR)

→w let.ass let y :=L in (letx :=Q in (let z :=P inR)) =: M ′

M →w let.ass let z :=(let y :=L in (letx :=Q inP)) inR

→w let.ass let y :=L in (let z :=(letx :=Q inP) inR) =: M ′′

Both M ′ are M ′′ are normal for →w ml∗ (in M ′′, the let.ass-redex let z := (letx :=Q inP) inR is

under the scope of a let and so cannot be fired by weak reduction), but they are distinct.

Example 3.

Non-determinism—but confluence—of →let.η. Let M = yy and N = zz:

letx :=(let y :=(let z :=N in [z]) inM) in [x]
let.η

w
- let y :=(let z :=N in [z]) inM

letx :=(let y :=N inM) in [x]

let.η w
? let.η

w
- let y :=N inM

let.η w
?

Summing up the situation:

1. →w β and →w let.β and →w β, let.β :=→w β ∪→w let.β are deterministic.

2. →w let.η is non-deterministic, but it is confluent.

3. →w let.ass is non-deterministic, non-confluent and normal forms are not unique.

4. →w let.ass∪→w let.β∪→w β is non-deterministic, non-confluent and normal forms are not unique.

5. →w ml∗ is non-deterministic, non-confluent and normal forms are not unique.

(Non-)Factorization. Another remarkable aspect making the reduction theory for λml∗
(and for other computational λ-calculi) tricky to study is the lack of factorization, which is the
simplest possible form of standardization.

In Plotkin’s call-by-value λ-calculus [14] (which can be seen as the restriction of λml∗ where
the reduction is generated only by the β-rule), weak reduction satisfies factorization, that is
any reduction sequence can be reorganized as weak steps followed by non-weak steps:

→∗β ⊆ →w ∗β · →¬w ∗β (1)

But in λml∗ (and similar computational λ-calculi), weak factorization does not hold. The
problem is here the let.η rule, as shown by the following counterexample, due to van Oostrom
[19].

3

Proceedings of the 10th International Workshop of Confluence, 2021 33

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

Example 4 (Non-factorization [19]). Consider

M := let y :=(zz) in (letx :=[y] in [x]) →¬w let.η let y :=(zz) in [y] →w let.η (zz) =: N

Weak steps are not possible from M , so it is impossible to factorize the reduction form M to
N as M→w ∗ml∗ · →¬w ∗ml∗ N .

A bridge between Evaluation and Reduction. On the one hand, computational λ-calculi
such as λml∗ have an unrestricted non-deterministic reduction that generates the equational
theory of the calculus, studied for foundational and semantic purposes. On the other hand,
weak reduction has a prominent role in the literature of computational λ-calculi, because it
models an ideal programming language. Indeed, when restricted to closed terms (which are
the terms corresponding to programs), normal forms of weak reduction coincide with values;
and when restricted to β and let.β steps, weak reduction is deterministic and corresponds to an
abstract machine, implementing a programming language. It is then natural to wonder what is
the relation between reduction and evaluation.

In Plotkin’s call-by-value λ-calculus [14], the following convergence result provides a bridge
between reduction and evaluation: if a term M β-reduces to a value, then M only needs weak
β-reduction to reach a value.

M →∗β V (for some value V) ⇐⇒ M→w ∗β V ′ (for some value V ′) (2)

In λml∗ , despite several drawbacks of weak reduction, we can still prove a convergence result
similar to (2) relating reduction and evaluation: to reach a value in λml∗ , weak β-steps and
weak let.β-steps suffice.

Theorem 5 (Convergence). Let M be a computation in λml∗ and let →ml∗−
:=→ml∗ r→η.

M →∗ml∗− [V] (for some value V) ⇐⇒ M→w ∗β, let.β [V ′] (for some value V ′) (3)

Because of the issues which we have presented, this result is non-trivial. We obtain it via the
study of a calculus recently introduced by de’Liguoro and Treglia’s, namely the computational
core λ© [4]. λ© has the same issues, but a different syntax, which is more closely related to
calculi inspired by linear logic [18, 5, 8, 6], whose properties and tools we can then use. The
analysis of the reduction theory of λ© is carried-out in [7]. We then transfer the convergence of
λ© to that of λml∗ , via a rather sophisticated analysis of the translation.

Conclusion. Convergence in λml∗ relates full reduction to evaluation, and provides a theo-
retical justification to the following facts:

1. functional programming languages with computational effects use weak reduction as eval-
uation mechanism; indeed, weak reduction is enough to return values.

2. in computational λ-calculi, when interested in returning a value, the only rules of interest
for weak reduction are β and let.β—which are deterministic and do not have unpleasant
rewriting properties—while the rules let.ass and let.η can be safely considered as unori-
ented identities external to the reduction.

4

34 Proceedings of the 10th International Workshop of Confluence, 2021

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

IWC2021 vs IWC2020. We present work which has been developed after de’Liguoro and
Treglia’s presentation at IWC20 [3], and thanks to the interactions there. The developments
benefited of the discussion at the workshop, in particular of subsequent crucial comments by
Vincent van Oostrom [19], and of new collaborations prompted there. In [3], preliminary—and
incomplete—work on weak factorization for de’Liguoro and Treglia’s computational calculus λ©

[4] was presented. Such a work has then evolved in the analysis of the reduction theory for λ©

in [7]. One may wonder if the properties discovered there are specific to that specific calculus,
or how that relates to the literature of computational calculi.

Here, we focus on mainstream and well-established formalizations of the computational
calculus. We consider a standard calculus which is well-studied in the literature, namely Sabry
and Wadler’s λml∗ [17]. We show that the properties of non-confluence and non-factorization of
evaluation which are studied in [7] actually do hold also in λml∗—and in fact in any calculus
in which the monadic rules are oriented. We find this fact quite surprising, and worth to be
explicitly stated. To our knowledge, it does not appear in the literature.

Furthermore, we are able to show that the convergence result which is established in [7]
transfers to λml∗ , even though the translation between the two calculi does not directly preserve
weak reduction (a more sophisticated analysis is needed).

References

[1] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In Applied Semantics,
International Summer School, APPSEM 2000, volume 2395 of Lecture Notes in Computer Science,
pages 42–122. Springer, 2002.

[2] Ugo Dal Lago, Francesco Gavazzo, and Paul B. Levy. Effectful Applicative Bisimilarity: Monads,
Relators, and Howe’s Method. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017.

[3] Ugo de’Liguoro and Riccardo Treglia. On the reduction of the type-free computational lambda-
calculus. Presentation at the 9th International Workshop on Confluence, 2020.

[4] Ugo de’Liguoro and Riccardo Treglia. The untyped computational λ-calculus and its intersection
type discipline. Theor. Comput. Sci., 846:141–159, 2020.

[5] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus gener-
alizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming (PPDP 2016), pages 174–187. ACM, 2016.

[6] Claudia Faggian and Giulio Guerrieri. Factorization in call-by-name and call-by-value calculi via
linear logic. In Foundations of Software Science and Computation Structures - 24th International
Conference, FOSSACS 2021, volume 12650 of Lecture Notes in Computer Science, pages 205–225.
Springer, 2021.

[7] Claudia Faggian, Giulio Guerrieri, Ugo de’Liguoro, and Riccardo Treglia. On reduction and
normalization in the computational core. CoRR, abs/2104.10267, 2021. Submitted to Math.
Struct. Comp. Sci., special issue of IWC 2020.

[8] Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two Girard’s translations. In
Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and Applications
(Linearity-TLLA 2018), volume 292 of EPTCS, pages 15–30, 2019.

[9] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182 – 210, 2003.

[10] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 2 edition, 1997.

[11] Eugenio Moggi. Computational Lambda-calculus and Monads. Report ECS-LFCS-88-66, Univer-
sity of Edinburgh, Edinburgh, Scotland, October 1988.

5

Proceedings of the 10th International Workshop of Confluence, 2021 35

Evaluation in the computational calculus is non-confluent Faggian, Guerrieri and Treglia

[12] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (LICS ’89), pages 14–23. IEEE Computer Society, 1989.

[13] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

[14] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

[15] Gordon D. Plotkin and John Power. Notions of computation determine monads. In Foundations
of Software Science and Computation Structures, 5th International Conference, FOSSACS 2002,
volume 2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[16] Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied Categorical
Structures, 11(1):69–94, 2003.

[17] Amr Sabry and Philip Wadler. A reflection on call-by-value. In Robert Harper and Richard L.
Wexelblat, editors, Proceedings of the 1996 ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA, May 24-26, 1996, pages 13–24.
ACM, 1996.

[18] Alex Simpson. Reduction in a linear lambda-calculus with applications to operational semantics.
In Jürgen Giesl, editor, Term Rewriting and Applications, pages 219–234, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[19] Vincent van Oostrom. Private communication via electronic mail, 2020.

[20] Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM Trans. Comput.
Log., 4(1):1–32, 2003.

6

36 Proceedings of the 10th International Workshop of Confluence, 2021

A Confluent Trace Semantics for Probabilistic
Lambda Calculus

Andrew Kenyon-Roberts

Abstract—Probabilistic lambda calculus has a weaker version
of the confluence property of plain lambda calculus. However,
in the usual formulation, this only applies in the sense of
distributions, but not to individual traces of random choices. A
new labelling scheme for random choices is introduced for PPCF,
a simply-typed functional language with explicit recursion, real
numbers and a random sampling operator, that allows a confluent
version of trace semantics to be defined (with a restricted set of
call-by-value reduction strategies).

I. INTRODUCTION

Non-probabilistic lambda calculi are generally confluent,
i.e. if a term A reduces to both B1 and B2, there is some C to
which both B1 and B2 reduce, so the reduction order mostly
doesn’t matter. In the probabilistic case, this may not be true,
because β-reduction can duplicate samples, so the outputs of
the copies of the sample may be identical or independent,
depending on whether the sample is taken before or after
β-reduction. Consider for example the term (λx.x+x) sample,
where sample reduces to a number chosen uniformly at
random from the interval I = [0, 1]. If it is reduced in call-by-
value order, first the sample reduces to some number r, then
the β redex is evaluated, then r is added to itself, yielding
2r. If it is reduced in call-by-name order instead, first the β
redex is reduced, yielding sample+ sample, then the samples
are evaluated independently and added, yielding r + r′. As r
and r′ are independent, the distribution of results is triangular,
with support [0, 2] and peak at 1, which is different from the
uniform distribution of results in the CbV case.

The results obtained by CbV and CbN evaluation differ in a
significant way, however, there are some cases where the order
of evaluation doesn’t matter. For example, in sample+sample,
the order in which the samples are evaluated doesn’t affect
the final result, and in (λx.sample) 0, the β redex and the
sample can be evaluated in either order. In order to obtain the
desired confluence result, we restrict our attention to a class
of reduction strategies that are equivalent to CbV, as the CbN
semantics is less expressive, being unable to force evaluation
of a random choice and duplicate the result.

Even with such a restriction, a trace semantics in the usual
style would not be entirely confluent. In the normal sort
of trace semantics [1], there is a sequence of samples, the
trace, selected at random from a trace space such as IN, then
for every sample statement reduction, the next sample from
the trace is used in order, so that the samples in the trace
are effectively each labelled by a number corresponding to
the execution order of the sample statements. Consider the

evaluation of the term sample − sample using one of these
simple linear traces, (1, 0, . . .). It would reduce to either 1 or
−1 depending on the order of evaluation of the samples, as
that determines which sample from the pre-selected sequence
is used for each one. To fix this, rather than pre-selecting
samples according to the order they’ll be drawn in, they can
be labelled according to the position in the term where they’ll
be used instead.

Further details, including all of the missing proofs, can be
found in [2, §IV, §D].

A. Outline

First, the syntax of the language PPCF is introduced.
Positions are defined as a way of addressing sample statements
within a program independently of the reduction order. Next,
a version of the reduction relation is presented that is nonde-
terministic, so that it allows a choice of what order to perform
reductions in. The notion of positions is extended to potential
positions, for samples which may appear later in the reduction
sequence but not necessarily in the initial term. In order to
allow potential positions in different reduction sequences to
be considered equivalent, a relation ∼∗ is defined, and finally,
all of these are used to construct a confluent version of the
trace semantics, ⇒, that is still nondeterministic in reduction
order, but does specify the outcome of random choices.

II. SYNTAX OF PROBABILISTIC PCF

The language PPCF is a call-by-value version of PCF with
sampling of real numbers from the closed interval [0, 1] [3–5].
Types and terms are defined as follows, where r is a real
number, x is a variable, f : Rn → R is any measurable
function, and Γ is an environment:

types A,B ::= R | A→ B

values V ::= λx.M | r
terms M,N ::= V | x |M1M2 | f(M1, . . . ,Mn) | YM

| if(M < 0, N1, N2) | sample

The typing rules are standard (see Fig. 1). The restriction
to well-typed terms is only necessary here in order to avoid
reaching terms which contain nonsense such as applying a
number as though it were a function, so a more liberal type
system would work just as well. Simple types are just used for
simplicity. Terms are identified up to α-equivalence, as usual.
The set of all terms is denoted Λ, and the set of closed terms
is denoted Λ0.

Proceedings of the 10th International Workshop of Confluence, 2021 37

Γ;x : A ` x : A

Γ;x : A `M : B

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ `M : (A→ B)→ (A→ B)

Γ ` YM : (A→ B)

Γ `M : R Γ ` N1 : A Γ ` N2 : A

Γ ` if(M < 0, N1, N2) : A

r : R Γ ` sample : R
Γ `M1 : R . . . Γ `Mn : R

Γ ` f(M1, . . . ,Mn) : R
(f : Rn → R)

Figure 1. Typing rules of PPCF

III. POSITIONS

A position is a finite sequence of steps into a term, defined
inductively as

α ::= · | λ;α | @1;α | @2;α | f i;α
| Y;α | if1;α | if2;α | if3;α.

The subterm of M at α, denoted M | α, is defined as

M | · =M

λx.M | λ;α =M | α
M1M2 | @i;α =Mi | α for i = 1, 2

f(M1, . . . ,Mn) | f i;α =Mi | α for i ≤ n
YM | Y;α =M | α

if(M1 < 0,M2,M3) | ifi;α =Mi | α for i = 1, 2, 3

so that every subterm is located at a unique position, but
not every position corresponds to a subterm (e.g. x y | λ
is undefined). A position such that M | α does exist is
said to occur in M . Substitution of N at position α in
M , written M [N/α], is defined similarly. For example, let
M = λx y.y (if(x < 0, y (f(x)), 3)) and α = λ;λ; @2; if2; @2

then M [sample/α] = λx y.y (if(x < 0, y sample, 3)).

Two subterms N1 and N2 of a term M , corresponding to
positions α1 and α2, can overlap in a few different ways.
If α1 is a prefix of α2 (written as α1 ≤ α2), then N2 is
also a subterm of N1. If neither α1 ≤ α2 nor α1 ≥ α2, the
positions are said to be disjoint. The notion of disjointness is
mostly relevant in that if α1 and α2 are disjoint, performing
a substitution at α1 will leave the subterm at α2 unaffected.

Thus we can define a nondeterministic reduction relation
→.

Definition III.1. The binary relation → is defined by the
following rules, each is conditional on a redex occurring at

position α in the term M :

if M | α = (λx.N)V, M →M [N [V/x]/α]

if M | α = f(r1, . . . , rn), M →M [f(r1, . . . , rn)/α]

if M | α = Yλx.N, M →M [λz.N [(Yλx.N)/x]z/α]

where z is not free in N
if M | α = if(r < 0, N1, N2), M →M [N1/α] where r < 0

if M | α = if(r < 0, N1, N2), M →M [N2/α] where r ≥ 0

if M | α = sample and λ does not occur after @2 or Y in α,
M →M [r/α] where r ∈ [0, 1].

In each of these cases, M | α is the redex, and the reduction
takes place at α. Each subterm can be a redex in at most one
way, but there can be multiple redexes at different positions.

The argument of a β redex and the body of a Y redex may
be duplicated by those reductions. It is therefore these cases
that need to be handled carefully to avoid duplicating samples
at the wrong time. In both cases, the potentially duplicated part
must already be a value, which excludes terms like sample or
sample+1, which should be evaluated before being duplicated.
In the other direction, if a sample occurs inside of a λ, it may
need to be duplicated before being evaluated, which is why a
sample reduction isn’t allowed inside a λ inside a Y or the right
side of an application. These restrictions are in some cases
unnecessarily strict, for example, in (λx.x)((λy.sample)0), it
would be fine to evaluate the sample first, but they are at least
sufficient to ensure confluence in terms of the distribution of
results. Getting individual traces to behave correctly will take
more work though.

IV. SKELETAL REDUCTION SEQUENCES

Labelling the pre-chosen samples by the positions in the
term by using I{α| (M |α)=sample} as the trace space would not
be sufficient to solve the issue of different samples being used
in corresponding locations in different reduction sequences
because in some cases, a sample will be duplicated before
being reduced, for example, in (λx.x 0 + x 0)(λy.sample),
both of the sample redexes that eventually occur originate at
@2;λ. It is therefore necessary to consider possible positions
that may occur in other terms reachable from the original term.
Even this is itself inadequate because some of the positions

2

38 Proceedings of the 10th International Workshop of Confluence, 2021

in different reachable terms need to be considered the same,
and the number of reachable terms is in general uncountable,
which leads to measure-theoretic issues.

We are thus led to consider the reduction relation on
skeletons. Define a skeleton to be a term but, instead of having
real constants r, it has a placeholder X, so that each term M
has a skeleton Sk(M), and each skeleton S can be converted
to a term S[r] given a vector r of n real numbers to substitute
in, where n is the number of occurrences of X in S. Positions
in a skeleton and the reduction relation → on skeletons can
be extended from the definitions on terms in the obvious way,
with if(X < 0, A,B) reducing nondeterministically to both A
and B, sample reducing to X, and X considered as (the skeletal
equivalent of) a value, so that (λx.A)X reduces to A[X/x]. For
example, we have (λx.if(x < 0, x,X)) sample → (λx.if(x <
0, x,X))X→ if(X < 0,X,X)→ X.

Given a closed term M , let L0(M) be the set of pairs,
the first element of which is a →-reduction sequence of
skeletons starting at Sk(M), and the second of which is a
position in the final skeleton of the reduction sequence. As
with the traces from IN used to pre-select samples to use in the
standard trace semantics, modified traces, which are elements
of IL0(M) (with one more caveat introduced after Def. V.2),
will be used to pre-select a sample from I for each element
of L0(M), which will then be used if a sample reduction is
ever performed at that position.

A (skeletal) reduction sequence is assumed to contain the
information on the locations of all of the redexes as well as
the actual sequence of skeletons that occurs. For example,
(λx.x)((λx.x)X) could reduce to (λx.x)X with the redex at
either · or @2, and these give different reduction sequences.

Example IV.1. Consider the terms

A[M] = if(if(M > 0, I, I)(λy.sample) 0− 0.5 > 0, 0,Ω)

B = if(sample− 0.5 > 0, 0,Ω)

If terms rather than skeletons were used to label samples, the
set of modified traces where A[sample] terminates would be
⋃

r∈[0,1]

{
s | s(A[sample], if1;−1; @1; @1; if1) = r,

s(A[sample]→ A[r]→∗ B, if1;−1) > 0.5
}
.

This is a rather unwieldy expression, but the crucial part is
that r occurs twice in the conditions on s: once as the value
a sample must take, and once in the location of a sample. As
this set is unmeasurable, the termination probability would not
even be well-defined. Labelling samples by skeletons instead,
this problem does not occur because there are only countably
many skeleton, and at each step in a reduction sequence, only
finitely many could have occurred yet. Although skeletal re-
duction sequences omit the information on what the results of
sampling were, they still contain all the necessary information
on how many, and which, reductions took place.

For this particular term, Sk(A[r]) does not depend on the
value of r, therefore the set where it terminates becomes

simply the following, which is measurable.
{
s | s(Sk(A[sample])→ Sk(A[0])→∗ Sk(B), if1;−1) > 0.5

}

Reduction sequences are used rather than reachable skele-
tons because if the same skeleton is reached twice, different
samples may be needed:

Example IV.2. Consider the term M = Y(λfx. if(sample −
0.5 < 0, f x, x)) 0, which reduces after a few steps to
N = if(sample − 0.5 < 0,M, 0). If we label samples by
just skeletons and positions, and the pre-selected sample for
(Sk(N), if1;−1) is less than 0.5, N reduces back to M , then N
again, then the same sample is used the next time, therefore it’s
an infinite loop, whereas if samples are labelled by reduction
sequences, the samples for M →∗ N are independent from
the samples for M →∗ N →M →∗ N , and so on.

The reduction sequences of skeletons will often be discussed
as though they were just skeletons, identifying them with
their final skeletons. With this abuse of notation, a reduction
sequence N (actually N1 →∗ Nn = N) may be said
to reduce to a reduction sequence O, where the reduction
sequence implicitly associated with the final skeleton O is
N1 →∗ Nn → O.

V. POTENTIAL POSITIONS

This is still not quite sufficient to attain confluence because
sometimes the same samples must be used at corresponding
positions in different reduction sequences.

Example V.1. The term M = sample + sample has the
reachable skeletons N1 = X+ sample, N2 = sample+X, O =
X + X and X, with reductions M → N1 → O → X and
M → N2 → O → X. In the reduction M → N1, the sample
labelled (M,+1) is used, and in the reduction N2 → O, the
sample labelled (M → N2,+1) is used. Each of these samples
becomes the value of the first numeral in O in their respective
reduction sequences, therefore in order for confluence to be
attained, they must be the same. Which elements of L0(M)
must match can be described by the relation ∼∗:

Definition V.2. The relation ∼ is defined as the union of the
minimal symmetric relations ∼p (“p” for parent-child) and ∼c

(“c” for cousin) satisfying
(i) If N reduces to O with the redex at position α, and β

is a position in N disjoint from α, then (N, β) ∼p (O, β).
(ii) If N β-reduces to O at position α, β is a position in

N | α; @1;λ and N | α; @1;λ;β is not the variable involved
in the reduction, (N,α; @1;λ;β) ∼p (O,α;β).

(iii) If N if-reduces to O at position α, with the first resp.
second branch being taken, and α; ifi;β occurs in N (where
i = 2 resp. 3), (N,α; ifi;β) ∼p (O,α;β).

(iv) If N , O1 and O2 match any of the following cases:
a) N contains redexes at disjoint positions α1 and α2, O1 is
N reduced first at α1 then α2 and O2 is N reduced first
at α2 then at α1.

3

Proceedings of the 10th International Workshop of Confluence, 2021 39

b) N | α = if(r < 0, N1, N2), where r < 0 (or, respectively,
r ≥ 0), (N2 resp. N1) | β is a redex, and O1 is N reduced
at α and O2 is N reduced first at α; (if3 resp. if2);β then
at α.

c) N | α = if(r < 0, N1, N2), where r < 0 (or, respectively,
r ≥ 0), (N1 resp. N2) | β is a redex, and O1 is N
reduced first at α then at α;β and O2 is N reduced first
at α; (if2 resp. if3);β then at α.

d) N | α = (λx.A)B, there is a redex in A at position β, O1

is N reduced first at α then at α;β, and O2 is N reduced
first at α; @1;λ;β then at α.

e) N | α = (λx.A)B, B | β is a redex, (γi)i is a list of all
the positions in A where A | γ = x, ordered from left to
right, O1 is N reduced first at α; @2;β then at α, and O2

is N reduced first at α then at α; γi;β for each i in order.
f) N | α = Y(λx.A), A reduced at β is A′, (γi)i is a list

of all the positions where A′ | γ = x, ordered from left
to right, O1 is N reduced first at α;Y;λ;β then at α, and
O2 is N reduced first at α then at α;λ; @1; γi;Y ;λ;β for
each i in order where γi is left of β then at α;λ; @1;β
then at α;λ; @1; γi;Y ;λ;β for the remaining values of i.

(in which case O1 and O2 are equal as skeletons, but with
different reduction sequences), O′

1 and O′
2 are the results of

applying some reduction sequence to each of O1 and O2

(the same reductions in each case, which is always possible
because they’re equal skeletons), and δ is a position in O′

1 (or
equivalently O′

2), then (O′
1, δ) ∼c (O

′
2, δ).

Example V.3. In Ex. V.1, (M,+1) ∼p (M → N2,+1) by
case i of ∼p (because the reduction M → N2 occurs at +2,
which is disjoint from +1), and similarly, (M,+2) ∼p (M →
N1,+2).

If we extend it to have three samples, ∼c becomes necessary
as well: Let Msss = sample + sample + sample (taking the
three-way addition to be a single primitive function), MXss =
X + sample + sample, and so on. There are then reduction
sequences Msss → MXss → MXXs → MXXX → X and
Msss → MsXs → MXXs → MXXX → X. For the first two
reductions, these reduction sequences take the same samples
by ∼p, case i, as in Ex. V.1 . The next reduction uses the
samples labelled by (Msss → MXss → MXXs,+3) and
(Msss →MsXs →MXXs,+3), which are related by∼c, case
a, therefore when these reduction sequences reach MXXX ,
they still contain all the same numbers, as desired.

The reflexive transitive closure ∼∗ of this relation is used
to define the set of potential positions L(M) = L0(M)/ ∼∗,
and each equivalence class can be considered as the same
position as it may occur across multiple reachable skeletons.
If (N,α) ∼∗ (O, β), then N | α and O | β both have the
same shape (i.e. they’re either both the placeholder X, both
variables, both applications, both samples etc.), therefore it’s
well-defined to talk of the set of potential positions where there
is a sample, Ls(M). The new sample space is then defined
as ILs(M), with the Borel σ-algebra and product measure.
Since ILs(M) is a countable product, the measure space is

well-defined [6, Cor. 2.7.3].

VI. THE CONFLUENT TRACE SEMANTICS

Before defining the new version of the reduction relation,
the following lemma is necessary for it to be well-defined.

Lemma VI.1. The relation ∼ is defined on L0(M) with
reference to a particular starting term M , so different versions,
∼M and ∼N , can be defined starting at different terms. If
M → N , then ∼∗

N is equal to the restriction of ∼∗
M to L0(N).

At each reduction step M → N , the sample space must
be restricted from ILs(M) to ILs(N). The injection L0(N)→
L0(M) is trivial to define by appending Sk(M)→ Sk(N) to
each path, and using Lem. VI.1, this induces a corresponding
injection on the quotient, L(N)→ L(M). The corresponding
map Ls(N)→ Ls(M) is then denoted i(M → N).

Definition VI.2 (⇒ reduction). This version of the reduction
relation now specifies the results of sample reductions, but is
still nondeterministic with respect to the order of reduction.
It relates

⊎
M∈Λ0

ILs(M) to itself. We write an element of⊎
M∈Λ0

ILs(M) as (M ′, s) where the term M ′ ∈ Λ0 and s ∈
ILs(M

′).

(M, s)⇒ (N, s ◦ i(M → N)) if M → N at α and either
the redex is not sample, or
M | α = sample and N =M [s(Sk(M), α)/α]

This reduction relation now has all of the properties required
of it. In particular, it can be considered an extension of the
standard trace semantics (as will be seen later in Thm. VI.5),
and also:

Lemma VI.3. The relation ⇒ is confluent.

In order to show that ⇒ behaves as expected, the following
lemma is also necessary, in order to show that a sample is
never used multiple times in the same reduction sequence:

Lemma VI.4. If M → N , with the redex at position α, then
no position in any term reachable from N is related by ∼∗ to
(M,α).

The reduction relation ⇒ is nondeterministic, so it admits
multiple possible reduction strategies. A reduction strategy
starting from a closed term M is a measurable partial function
f from Rch(M) to positions, such that for any reachable term
N where f is defined, f(N) is a position of a redex in N ,
and if f(N) is not defined, N is a value. Using a reduction
strategy f , a subset of ⇒ that isn’t nondeterministic, ⇒f , can
be defined by (N, s) ⇒f (N ′, s′) just if (N, s) ⇒ (N ′, s′)
and N reduces to N ′ with the redex at f(N).

The usual call-by-value semantics can be implemented as
one of these reduction strategies, given by (with V a value

4

40 Proceedings of the 10th International Workshop of Confluence, 2021

and T a term that isn’t a value and M a general term)

cbv(TM) = @1; cbv(T)

cbv(V T) = @2; cbv(T)

cbv(f(V1, . . . , Vk−1, T,Mk+1, . . . ,Mn)) = f
k
; cbv(T)

cbv(YT) = Y; cbv(T)

cbv(if(T < 0,M1,M2)) = if1; cbv(T)
cbv(V) is undefined
cbv(T) = · otherwise

(this last case covers redexes at the root position).
A closed term M terminates with a given reduction strategy

f and samples s if there is some natural number n such that
(M, s)⇒n

f (N, s′) where f gives no reduction at N . The term
is almost surely terminating (AST) w.r.t. f if it terminates with
f for almost all s.

This reduction strategy allows the confluent trace semantics
to be related to the standard version of the trace semantics
with a fixed reduction order and linear traces. In [2], which
gives the full definition of the standard trace semantics, this is
used to prove the following theorems that allow termination
results to be transferred from the confluent trace semantics to
the standard trace semantics.

Theorem VI.5. A closed term M is AST with respect to cbv
iff it is AST.

Theorem VI.6. If M terminates with some reduction strategy
f and trace s, it terminates with cbv and s.

Corollary VI.7 (Reduction strategy independence). If M is
AST with respect to any reduction strategy, it is AST.

Proof. Suppose M is AST w.r.t. f . Let the set of samples
with which it terminates with this reduction strategy be X .
By Thm. VI.6, M also terminates with cbv and every element
of X , and X has measure 1, by assumption, therefore M is
AST with respect to cbv therefore by Thm. VI.5 it is AST.

REFERENCES

[1] J. Borgström, U. Dal Lago, A. D. Gordon, and M. Szymczak, “A
lambda-calculus foundation for universal probabilistic programming,”
ACM SIGPLAN Notices, vol. 51, no. 9, pp. 33–46, 2016.

[2] A. Kenyon-Roberts and L. Ong, “Supermartingales, ranking functions and
probabilistic lambda calculus,” arXiv preprint arXiv:2102.11164, 2021.

[3] T. Ehrhard, M. Pagani, and C. Tasson, “Full Abstraction for Probabilistic
PCF,” Journal of the ACM, vol. 65, no. 4, pp. 1–44, apr 2018. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3208081.3164540

[4] ——, “Measurable cones and stable, measurable functions: a model for
probabilistic higher-order programming,” PACMPL, vol. 2, no. POPL,
pp. 59:1–59:28, 2018. [Online]. Available: http://doi.acm.org/10.1145/
3158147

[5] C. Mak, C.-H. L. Ong, H. Paquet, and D. Wagner, “Densities of almost
surely terminating probabilistic programs are differentiable almost every-
where,” in ESOP 2021, 2021, to appear. https://arxiv.org/abs/2004.03924.

[6] R. B. Ash and C. Doléans-Dade, Probability and measure Theory.
Harcourt Academic Press, 2000.

5

Proceedings of the 10th International Workshop of Confluence, 2021 41

42

Confluence in string rewriting systems compatible with a

crystal structure

Uran Meha

Université de Lyon 1
meha@math.univ-lyon1.fr

Abstract

A crystal is a kind of directed labeled graph arising in the field of representation theory.
We consider an adapted abstract notion of crystals, called K-graphs. A K-graph structure
on a free monoid is a directed colored graph structure satisfying certain conditions for
the product of the monoid. A K-congruence on the free monoid is one that identifies
isomorphic connected components of the K-graph. In this work we define a notion of K-
string rewriting systems which generate such K-congruences. For a class of K-graphs called
proper, the interaction of the string rewriting system with the K-graph structure reduces
the proofs of the rewriting properties of termination and (local) confluence to a family of
reduced words in the free monoid, called words of highest weight. From this we deduce
K-versions of Newman’s lemma, critical pair lemma, and Squier’s coherent completion
theorem. Finally we illustrate these constructions with an example for the plactic monoid
of type A. The constructions in this work are phrased in terms of K-graphs, though many
of their applications lie in the original context of crystals.

1 Introduction

A central approach in the study of confluence in rewriting theory is to reduce the problem to
a subset of branchings namely to local-confluence, and to critical branchings. This approach
is detailed in two results: Newman’s Lemma [8], where the property of confluence of a termi-
nating string rewriting system is equated to the property of local confluence; and the Critical
Pair Lemma (CPL) [6], where the local confluence of a string rewriting system is equated to
confluence of its critical branchings, which are pairs of overlapping rules on a minimal source.

In an algebraic context, rewriting theory has found applications in the higher dimensional
study of objects like monoids, small categories, and algebras over a field. This consists of real-
izing the object in question by a presentation with generators and oriented relations compatible
with the defining axioms of the algebraic object. In this context, a confluence diagram may
be regarded as a relation between two rewriting sequences, which in turn are relations in the
presentation itself, thus one may view the confluence diagrams as relations between relations.
A question in this direction is how to obtain a set of generating relations between relations
from the given presentation, so that any confluence diagram of the rewriting system can be de-
scribed in terms of this specified set. This question is answered by Squier in [10] in the context
of monoids and small categories. Namely, given a presentation of a monoid or a small category
by generators and oriented relations, the rewriting system of which is convergent, then the
generating relations between relations are the confluence diagrams of critical branchings. The
data of generators, generating relations, and generating relations between relations is called a
coherent presentation. An important aspect of the study of relations between relations in pre-
sentations of monoids, is that it provides an algorithmic approach to the study of the monoid’s
lower-dimensional homology. Note however that a critical branching may admit several con-
fluence diagrams in Squier’s construction. To complete this algorithmic point of view, Malbos

Proceedings of the 10th International Workshop of Confluence, 2021 43

Confluence in string rewriting systems compatible with a crystal structure Uran Meha

and Guiraud in [3] employ a notion of a normalization strategy which is a deterministic way to
choose confluence diagrams for critical branchings. In their work, they take the ideas of Squier
even further: they show that for a small category presented by generators and oriented rela-
tions, whose string rewriting system is convergent, one can construct a cofibrant replacement
for the category. In a grander scheme these constructions facilitate an algorithmic approach to
the study of the homology of small categories.

The works of Squier, and Guiraud and Malbos provide a way of determining coherent pre-
sentations of small categories and monoids from convergent ones. Finding a convergent presen-
tation in the first place and computing the confluence diagrams of critical branchings remains
a difficult task, as in general this problem is heavily dependent on the intrinsic properties of
the monoid and the presentation.

In this work, we consider a notion of a string rewriting system adapted to the theory
of crystals, and give corresponding versions of three classical results in rewriting theory. The
notion of crystals was first defined by Kashiwara in [5] in his study of representations of complex
semisimple Lie algebras. We phrase our constructions in terms of an abstracted version of
crystals called K-graphs, which have been adapted from [1]. This work emerged from a study
of coherence of the plactic monoid of type C in [7], and forms part of a forthcoming PhD thesis
by the author.

In Section 2 we introduce the notion of a K-graph as a directed colored graph satisfying
certain conditions. We then consider a K-graph structure on the free monoid generated by the
vertices of a K-graph. A K-congruence is one that identifies isomorphic connected components
of the K-graph on the free monoid. We then introduce a notion of a K-string rewriting system.
This is a string rewriting system that is compatible with the K-graph structure, and such
that the congruence generated by it is a K-congruence. In Section 3 we show that if K is
proper, then the study of rewriting properties of termination, and local confluence is reduced
to a subfamily of words called words of highest weight. In particular we obtain K-versions of
Newman’s lemma, the critical pair lemma, and of Squier’s coherent completion theorem. In
Appendix A we illustrate these constructions and results with an example of the plactic monoid
of type A. Finally in Section 4 we briefly discuss how this approach could be extended to higher
dimensions in accordance with the work of Guiraud and Malbos [3].

2 K-string rewriting systems

A K-graph is a directed colored graph Γ with vertex set V (Γ), and with edges colored from a
set I, satisfying the following conditions

(P1) for any x ∈ V (Γ) and i ∈ I, there exists at most one edge e with source (target) x and
color i,

(P2) for any i ∈ I, there exists no infinite directed path in Γ with edges colored by i.

It is practical to realize the K-graph structure via the Kashiwara operators, which are partial
maps ei and fi on V (Γ) defined by setting

x
i−→ y if and only if y = fi.x, and x = ei.y.

Remark 2.1. The notion of crystals was introduced by Kashiwara in [5] in his study of the
representation theory of quantum groups. In this work the constructions are phrased in terms
of K-graphs, which are an abstract graph-theoretic adaptation of crystals as introduced in [1].
We remark that a large class of crystals satisfies (P1), (P2).

2

44 Proceedings of the 10th International Workshop of Confluence, 2021

Confluence in string rewriting systems compatible with a crystal structure Uran Meha

Given a K-graph Γ, the graph structure extends to the free monoid on the vertices V (Γ) of
Γ, denoted Γ∗. The Kashiwara operators ei and fi extend to Γ∗ inductively on the lengths of
words w = uv ∈ Γ∗ as follows

ei.(uv) =

{
(ei.u)v if ϕi(u) ≥ εi(v),
u(ei.v) if ϕi(u) < εi(v),

(1)

and

fi.(uv) =

{
(fi.u)v if ϕi(u) > εi(v),
u(fi.v) if ϕi(u) ≤ εi(v),

(2)

where εi, ϕi : Γ∗ −→ N are also defined inductively via

εi(w) = #{ei.w, e2
i .w, . . . }, ϕi(w) = #{fi.w, f2

i .w, . . . },

which are finite quantities by an iteration of (P2). We remark here a few consequences of these
definitions:

i) ei and fi are partial operators on Γ∗: e.g. if ϕi(u) ≥ εi(v) and ei.u is undefined, then
ei.(uv) is also undefined;

ii) the definition of ei and fi on a word w is independent of the factorization w = uv;

iii) ei and fi are inverse operators: fi.(ei.w) = w and ei.(fi.w) = w.

Thus the free monoid Γ∗ carries a directed colored graph structure, and we call it the free
K-monoid generated by Γ. As Γ∗ is a graph, we have a notion of connected components in Γ∗.
The connected component of w ∈ Γ∗ is denoted by B(w). Using this notion, we specify a type
of congruence on the free K-monoid.

Definition 2.2. Let Γ be a K-graph, and Γ∗ the corresponding free K-monoid. A K-congruence
on Γ∗ is a congruence ∼ such that if w ∼ w′, then

i) there exists a directed colored graph isomorphism p : B(w) −→ B(w′) such that p(w) = w′,

ii) if ei.w (resp. fi.w) is defined, then so is ei.w
′ (resp. fi.w

′) and we have

ei.w ∼ ei.w′ (resp. fi.w ∼ fi.w′).

The largest such congruence, denoted ∼Γ is defined by setting w ∼Γ w
′ if and only if there

exists an isomorphism p as in Definition 2.2 i).
We specify here a class of K-graphs that occurs often and has practical combinatorial ad-

vantages. A word w ∈ Γ∗ is called a word of highest weight if ei.w is undefined for all i ∈ I. If Γ
is such that every connected component B(w) ⊂ Γ∗ contains a unique word of highest weight,
the K-graph Γ is called proper.

Next we introduce a notion of string rewriting which is compatible with a K-graph structure.
One may view the next definition simply as an oriented generating data for a K-congruence,
hence the similarity with Definition 2.2.

Definition 2.3. A K-string rewriting system is a string rewriting system (Γ∗, R) where Γ is a
K-graph, and such that if w =⇒ w′ is a rewriting rule in R, then

i) there exists a directed colored graph isomorphism p : B(w) −→ B(w′) such that p(w) = w′,

3

Proceedings of the 10th International Workshop of Confluence, 2021 45

Confluence in string rewriting systems compatible with a crystal structure Uran Meha

ii) if ei.w (resp. fi.w) is defined, then so is ei.w
′ (resp. fi.w

′) and we have

(ei.w =⇒ ei.w
′) ∈ R (resp. (fi.w =⇒ fi.w

′) ∈ R).

For a K-string rewriting system (Γ∗, R), the congruence in Γ∗ generated by R is a K-
congruence. Thus K-string rewriting systems are well-adapted at studying such congruences.
We call a K-string rewriting system proper if Γ∗ is proper.

3 Confluence for K-string rewriting systems

Here we interpret Newman’s lemma and the critical pair lemma in the context of K-string
rewriting systems.

For a K-string rewriting system (Γ∗, R), denote by Seq(Γ∗, R) the set of rewriting sequences
of (Γ∗, R); by Br(Γ∗, R) the set of branchings of (Γ∗, R); and by Crit(Γ∗, R) the set of critical
pairs of (Γ∗, R). We denote the length function on Seq(Γ∗, R) by |·|. We then have the following
result.

Theorem 3.1. Let (Γ∗, R) be a K-string rewriting system. Then the Kashiwara operators ei
and fi extend to Seq(Γ∗, R), Br(Γ∗, R), and Crit(Γ∗, R) and commute with the source and target
maps of the K-rewriting system. In particular

i) for s ∈ Seq(Γ∗, R) and i ∈ I such that ei.s (resp. fi.s) is defined, we have a commutative
square

w1
s +3

OO

i

w2

ei.w1 ei.s
+3 ei.w2

i

OO

resp.

fi.w1
fi.s +3

OO

i

fi.w2

w1 s
+3 w2

i

OO

and |ei.s| = |s| (resp.|fi.s| = |s|),

ii) for a branching (α, β) ∈ Br(Γ∗, R) and i ∈ I such that ei.(α, β) (resp. fi.(α, β)) is defined,
we have

(α, β) is confluent if and only if ei.(α, β) is confluent(
resp. (α, β) is confluent if and only if fi.(α, β) is confluent

)
.

This result shows that the property of termination and of confluence of a K-string rewriting
system is independent of the action of the Kashiwara operators. If the K-graph Γ is proper,
we can use this result to obtain reduced versions of classical rewriting results in our context as
follows. Let (Γ∗, R) be a proper K-string rewriting system and consider an abstract rewriting
system ((Γ∗)0, R0) where

(Γ∗)0 := {w ∈ Γ | w a word of highest weight in Γ∗},

and

R0 := {tuv tαv
=⇒ tu′v | tuv ∈ (Γ∗)0, u

α
=⇒ u′ ∈ R}.

We have the following consequence of Theorem 3.1.

4

46 Proceedings of the 10th International Workshop of Confluence, 2021

Confluence in string rewriting systems compatible with a crystal structure Uran Meha

Corollary 3.2. Let (Γ∗, R) be a proper K-string rewriting system. Then (Γ∗, R) is terminating
respectively (locally) confluent if and only if ((Γ∗)0, R0) is terminating respectively (locally)
confluent.

Using this result, we then obtain corresponding K-versions of two classical results in rewrit-
ing theory.

Theorem 3.3 (Newman’s lemma forK-SRS). Let (Γ∗, R) be a proper K-string rewriting system.
Then (Γ∗, R) is confluent if and only if ((Γ∗)0, R0) is terminating and locally confluent.

To state the Critical Pair Lemma, we remark that the notion of critical pairs descends to the
abstract rewriting system ((Γ∗)0, R0). These are the branchings (α, β) with α, β ∈ R0 which
are critical in R.

Theorem 3.4 (K-Critical Pair Lemma). Let (Γ∗, R) be a proper K-string rewriting system.
Then (Γ∗, R) is locally confluent if and only if the critical pairs of ((Γ∗)0, R0) are confluent.

3.5 Squier’s coherent extension for K-string rewriting systems

Given a convergent string rewriting system X, Squier’s theorem [10] asserts that the confluence
diagrams of X can be interpreted in terms of a homotopy basis, which is a set Ω consisting of
confluence diagrams of critical pairs. Note that one may choose different confluence diagrams
for Ω. The work of Guiraud and Malbos in [3] gives a deterministic procedure of constructing
these base confluence diagrams via normalization strategies, in the case when X is reduced.

In the context of K-string rewriting systems, we have the following interpretation of Squier’s
coherent completion theorem.

Theorem 3.6 (Squier’s theorem for K-string rewriting systems). Let (Γ∗, R) be a convergent
K-string rewriting system. Then one can choose a coherent completion (Γ∗, R,Ω) such that
Ω admits a K-graph structure. Moreover if Γ is a proper K-graph, then this Ω is entirely
determined by the confluence diagrams of ((Γ∗)0, R0).

This result, along with Theorems 3.3 and 3.4 reduce the study of confluence of a proper
K-string rewriting system (Γ∗, R) to the study of confluence of the abstract rewriting system
((Γ∗)0, R0). In practice, the combinatorics of K-graphs is simplified at words of highest weight,
hence the task of studying confluence is easier for ((Γ∗)0, R0).

4 Conclusions

The study of monoids via rewriting theory hinges on two parameters: The first consists of
identifying a well-behaved string rewriting system that presents the given monoid; and the
second consists of using the combinatorics of the rewriting system and the corresponding monoid
to obtain computational results, as for instance expliciting Squier’s coherent completion.

The notion of K-string rewriting systems provides a framework for studying K-congruences
via adapted string rewriting systems. Firstly, if the K-graph is proper, we obtain versions
of Newman’s lemma and critical pair lemma in this context, which reduce the verification of
properties of termination and confluence of the given K-SRS. Secondly, given a K-convergent
string rewriting system, the expliciting of Squier’s coherent extension is reduced to computations
with words of highest weight.

In [3], Guiraud and Malbos construct a cofibrant replacement for a monoid presented by
a convergent presentation. The fact that a K-graph structure and K-string rewriting systems

5

Proceedings of the 10th International Workshop of Confluence, 2021 47

Confluence in string rewriting systems compatible with a crystal structure Uran Meha

interact well on free monoids, especially manifested in Squier’s coherence theorem, suggests
that this behaviour extends to higher dimensions in the context of [3].

References

[1] Alan J Cain, Robert D Gray, and António Malheiro. Crystal monoids & crystal bases: rewriting
systems and biautomatic structures for plactic monoids of types an, bn, cn, dn, and g2. Journal
of Combinatorial Theory, Series A, 162:406–466, 2019.

[2] Mr William Fulton and William Fulton. Young tableaux: with applications to representation theory
and geometry. Number 35. Cambridge University Press, 1997.

[3] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity.
Advances in Mathematics, 231(3-4):2294–2351, 2012.

[4] Nohra Hage and Philippe Malbos. Knuths coherent presentations of plactic monoids of type a.
Algebras and Representation Theory, 20(5):1259–1288, 2017.

[5] Masaki Kashiwara. Crystalizing theq-analogue of universal enveloping algebras. Communications
in Mathematical Physics, 133(2):249–260, 1990.

[6] Jan Willem Klop and JW Klop. Term rewriting systems. Centrum voor Wiskunde en Informatica,
1990.

[7] Uran Meha. C-trees and a coherent presentation for the plactic monoid of type c. arXiv preprint
arXiv:2006.03456, 2020.

[8] Maxwell Herman Alexander Newman. On theories with a combinatorial definition of” equivalence”.
Annals of mathematics, pages 223–243, 1942.

[9] Craige Schensted. Longest increasing and decreasing subsequences. Canadian Journal of Mathe-
matics, 13:179–191, 1961.

[10] Craig C Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems.
Theoretical Computer Science, 131(2):271–294, 1994.

A Example: Plactic monoid of type A

We give here a concrete example of a K-string rewriting system.
Consider the K-graph

An : 1
1−→ 2

2−→ 3
3−→ · · · n−2−→ n− 1

n−1−→ n, (3)

and set
Col(An)1 := {w = x1x2 · · ·xk | x1 < x2 < · · · < xk, xi ∈ An, k ≤ n}.

Remark A.1. The K-graph in (3) is called the crystal base of type An.

Such words whose letters are increasing, are called column words in A∗n. The set Col(An)1

satisfies the conditions (P1) and (P2) hence is a K-graph itself. Define an order � on Col(An)1

by setting w � w′ for two columns w = x1 · · ·xk and w′ = y1 · · · yl if

i) k ≥ l,

ii) xi ≤ yi for i = 1, 2, . . . , l.

Schensted’s insertion algorithm, as first introduced in [9], and later adapted to a column ap-
proach, see [2], describes a procedure of inserting a letter x ∈ An into a column c1 ∈ Col(An)1

as follows.

6

48 Proceedings of the 10th International Workshop of Confluence, 2021

Confluence in string rewriting systems compatible with a crystal structure Uran Meha

Schensted’s algorithm of inserting a letter into a column (SA):

Input: a column c = x1 · · ·xk; a letter x ∈ An;

if x > xk:

set c′ = x1x2 · · ·xkx
return: c′

if xl ≥ x > xl−1 for some l ≤ k:

set c′ = x1 · · ·xl−1xxl+1 · · ·xk, and x′ = xl

return: x′c′

The insertion of a letter x into a column c, denoted (c← x), outputs either one column, or two
columns, with c = x′ being the other column. This notion can be extended to an insertion of a
letter into a product of two columns as follows

(c1c2 ← x) =

{
(c1(c2x)) if (c2 ← x) is first case in SA,

(c1 ← xl)c
′
2 if (c2 ← x) is second case in SA.

In [1] Cain, Gray, and Malheiro show that the map [,] : Col(An)×2
1 −→ Col(An)×2

1 defined
for c1, c2 ∈ Col(An)1 with c2 = x1x2 · · ·xk by setting

[c1, c2] = (((c1 ← x1)← x2)← · · ·)← xk,

induces a string rewriting system Col(An) := (Col(An)∗1,Col(An)2) where Col(An)2 consists of
rewriting rules of the form

Col(An)2 := {c1c2 =⇒ [c1, c2] | c1, c2 ∈ Col(An)1, c1 � c2}.

Moreover they prove that this rewriting system is convergent. The monoid presented by Col(An)
is called the plactic monoid of type A.

We then have the following result.

Theorem A.2 ([1]). The string rewriting system Col(An) is a finite reduced convergent K-string
rewriting system.

We can then apply Theorem 3.6 to Col(An), and use the combinatorics of Col(An) at highest
weight to prove the following.

Theorem A.3. Squier’s homotopy bases for the K-string rewriting system Col(An) consists of
confluence diagrams of the form

t′u′v
t′αu′v +3 t′u′′v′ αt′u′′v′

�&
tuv

tαuv &.

αtuv 08

t′′u′′′v′

tu1v1 αtu1v1
+3 t1u2v2

t1αu2v2

:B

We remark that this result has also been proven by Hage and Malbos in [4] using different
techniques.

7

Proceedings of the 10th International Workshop of Confluence, 2021 49

50

Confluence Competition 2021

Aart Middeldorp1, Naoki Nishida2, Kiraku Shintani3, and Johannes Waldmann4

1 Department of Computer Science, University of Innsbruck, Austria
2 Department of Computing and Software Systems, Nagoya University, Japan

3 School of Information Science, JAIST, Japan
4 HTWK Leipzig, Germany

The next few pages in these proceedings contain the descriptions of the tools participating in
the 10th Confluence Competition (CoCo 2021). CoCo is a yearly competition in which software
tools attempt to automatically (dis)prove confluence and related properties of rewrite systems
in a variety of formats. For a detailed description we refer to [1]. This year there were 12 tools
(listed in order of registration) participating in 10 categories (listed in order of first appearance
in CoCo):

TRS CPF-TRS CTRS GCR UNR UNC NFP COM INF SRS

CoLL-Saigawa X X
CSI X X X X X X
FORT-h X X X X X
FORTify X X X X X
CO3 X X
CoLL X
infChecker X
CONFident X X X
NaTT X
ACP X X X X X X
AGCP X
CeTA X

The winning (for combined YES/NO answers) tools1 of CoCo 2020 participated as demonstration
tools, to provide a benchmark to measure progress. The live run of CoCo 2021 on StarExec [2]
can be viewed at http://cocograph.uibk.ac.at/2021.html. Further information about CoCo
2021, including a description of the categories and detailed results, can be obtained from

http://project-coco.uibk.ac.at/2021/

References

[1] A. Middeldorp, J. Nagele, and K. Shintani. CoCo 2019: Report on the Eighth Confluence Competition.
International Journal on Software Tools for Technology Transfer, 2021. doi: 10.1007/s10009-021-
00620-4.

[2] A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: A Cross-Community Infrastructure for Logic
Solving. In Proc. 7th International Joint Conference on Automated Reasoning, volume 8562 of
LNCS (LNAI), pages 367–373, 2014. doi: 10.1007/978-3-319-08587-6 28.

1They are not listed in the table but see http://project-coco.uibk.ac.at/2020/results.php.

Proceedings of the 10th International Workshop of Confluence, 2021 51

52

CoLL-Saigawa 1.6: A Joint Confluence Tool

Kiraku Shintani and Nao Hirokawa

JAIST, Japan

CoLL-Saigawa is a tool for automatically proving or disproving confluence of (ordinary) term
rewrite systems (TRSs). The tool, written in OCaml, is freely available at:

http://www.jaist.ac.jp/project/saigawa/

The typical usage is: collsaigawa <file>. Here the input file is written in the TRS format [6].
The tool outputs YES if confluence of the input TRS is proved, NO if non-confluence is shown,
and MAYBE if the tool does not reach any conclusion.

CoLL-Saigawa v1.6 is a joint confluence tool of CoLL v1.5 [9] and Saigawa v1.9 [2], and
there are no major changes from the last release (version 1.5). If an input TRS is left-linear,
CoLL proves confluence. Otherwise, Saigawa analyzes confluence. CoLL is a commutation tool
specialized for left-linear TRSs. It proves confluence as self-commutation by using Hindley’s
commutation theorem [1] together with the three commutation criteria: Almost development
closeness [10], rule labeling with weight function [11], and Church-Rosser modulo A/C [4].
Saigawa can deal with non-left-linear TRSs. The tool employs the seven confluence criteria:
The criteria based on critical pair systems [3, Theorem 3] and on extended critical pairs [5,
Theorem 2], rule labeling [11], Church-Rosser modulo AC [4], parallel closedness based on
parallel critical pairs [12], simultaneous closedness [7], parallel-upside closedness [8], and outside
closedness [8].

References

[1] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[2] N. Hirokawa. Saigawa: A confluence tool. In 3rd Confluence Competition, pages 1–1, 2014.

[3] N. Hirokawa and A. Middeldorp. Commutation via relative termination. In Proc. 2nd IWC, pages
29–33, 2013.

[4] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal on Computing, 15(4):1155–1194, 1986.

[5] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative termination. In Proc.
18th LPAR, volume 7180 of LNCS, pages 258–273, 2012.

[6] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. Proc. 25th TACAS,
volume 11429 of LNCS, pages 25–40, 2019.

[7] S. Okui. Simultaneous critical pairs and Church–Rosser property. In Proc. 9th RTA, volume 1379
of LNCS, pages 2–16, 1998.

[8] M. Oyamaguchi and Y. Ohta. On the open problems concerning Church-Rosser of left-linear term
rewriting systems. IEICE Transactions on Information and Systems, 87(2):290–298, 2004.

[9] K. Shintani and N. Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, volume 9195 of LNAI, pages 127–136, 2015.

[10] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181, 1997.

[11] V. van Oostrom. Confluence by decreasing diagrams converted. In Proc. 19th RTA, volume 5117
of LNCS, pages 306–320, 2008.

[12] Y. Toyama. On the Church-Rosser property of term rewriting systems. NTT ECL Technical
Report, No.17672, NTT, 1981.

Proceedings of the 10th International Workshop of Confluence, 2021 53

54

CoCo 2021 Participant: CSI 1.2.5

Fabian Mitterwallner and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, aart.middeldorp@uibk.ac.at

CSI is an automatic tool for (dis)proving confluence and related properties of first-order term
rewrite systems (TRSs). It has been in development since 2010. Its name is derived from the
Confluence of the rivers Sill and Inn in Innsbruck. The tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license. A detailed description of CSI can be found in [3]. Some of the
implemented techniques are described in [1, 2, 4]. Compared to last year’s version, CSI 1.2.5
contains an implementation of the outside-closed criterion for confluence [6] and extends the
upside-parallel-closed criterion to include the relaxed condition for root overlaps [5].

CSI participates in the following CoCo 2021 categories: CPF-TRS, NFP, SRS, TRS, UNC,
and UNR.

References

[1] B. Felgenhauer. Confluence for Term Rewriting: Theory and Automation. PhD thesis, University of
Innsbruck, 2015.

[2] J. Nagele. Mechanizing Confluence: Automated and Certified Analysis of First- and Higher-Order
Rewrite Systems. PhD thesis, University of Innsbruck, 2017.

[3] J. Nagele, B. Felgenhauer, and A. Middeldorp. CSI: New Evidence – A Progress Report. In Proc.
26th International Conference on Automated Deduction, volume 10395 of Lecture Notes in Artificial
Intelligence, pages 385–397, 2017. doi: 10.1007/978-3-319-63046-5_24.

[4] H. Zankl. Challenges in Automation of Rewriting. Habilitation thesis, University of Innsbruck, 2014.

[5] M. Oyamaguchi and Y. Ohta. A New Parallel Closed Condition for Church–Rosser of Left-Linear
Term Rewriting Systems. In Proc. 8th International Conference on Rewriting Techniques and
Applications, volume 1232 of Lecture Notes in Computer Science, pages 187–201, 1997. doi: 10.1007/
3-540-62950-5_70

[6] M. Oyamaguchi and Y. Ohta. On the Open Problems Concerning Church–Rosser of Left-Linear
Term Rewrite Systems. IEICE Transactions on Information and Systems, E87-D(1), pages 290—298,
2004.

Proceedings of the 10th International Workshop of Confluence, 2021 55

56

CoCo 2021 Participant: FORT-h 1.1∗

Fabian Mitterwallner, Jamie Hochrainer, and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, jamie.hochrainer@student.uibk.ac.at,

aart.middeldorp@uibk.ac.at

The first-order theory of rewriting is a decidable theory for finite left-linear right-ground
rewrite systems. The decision procedure goes back to Dauchet and Tison [1]. FORT-h 1.1
implements a new variant, described in [2], of the decision procedure for the larger class of
linear variable-separated rewrite systems. This variant supports a more expressive theory and
is based on anchored ground tree transducers. More importantly, it can produce certificates
for the YES/NO answers. These certificates can then be verified by FORTify, an independent
Haskell program that is code-generated from the formalization of the decision procedure in the
proof assistent Isabelle/HOL.

A command-line version of FORT-h 1.1 can be downloaded from

http://fortissimo.uibk.ac.at/fort(ify)/

Compared to last year’s version, FORT-h 1.1 contains a number of performance improvements.
The main ones are smaller intermediate automata constructions due to an earlier elimination
of epsilon transitions, and using smaller signature extensions when checking properties on
non-ground terms [5].

FORT-h participates in the following CoCo 2021 categories: COM, GCR, NFP, UNC, and
UNR. Together with FORTify [6], it participates in the categories COM, TRS, GCR, UNC, and
UNR to produce certified YES/NO answers.

References

[1] M. Dauchet and S. Tison. The Theory of Ground Rewrite Systems is Decidable. In Proc. 5th IEEE
Symposium on Logic in Computer Science, pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[2] F. Mitterwallner, A. Lochmann, A. Middeldorp, and B. Felgenhauer. Certifying Proofs in the First-
Order Theory of Rewriting. In Proc. 27th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 12652 of LNCS, pages 127–144, 2021. doi: 10.1007/978-
3-030-72013-1 7.

[3] F. Rapp and A. Middeldorp. Automating the First-Order Theory of Left-Linear Right-Ground Term
Rewrite Systems. In Proc. 1st International Conference on Formal Structures for Computation and
Deduction, volume 52 of Leibniz International Proceedings in Informatics, pages 36:1–36:12, 2016.
doi: 10.4230/LIPIcs.FSCD.2016.36.

[4] F. Rapp and A. Middeldorp. FORT 2.0. In Proc. 9th International Joint Conference on Automated
Reasoning, volume 10900 of LNCS (LNAI), pages 81–88, 2018. doi: 10.1007/978-3-319-94205-6 6.

[5] A. Lochmann, F. Mitterwallner, and A. Middeldorp. Formalized Signature Extension Results for
Confluence, Commutation and Unique Normal Forms. In Proc. 10th International Workshop on
Confluence, 2021. This volume.

[6] A. Lochmann, F. Mitterwallner, and A. Middeldorp. CoCo 2021 Participant: FORTify 1.1. In Proc.
10th International Workshop on Confluence, 2021. This volume.

∗Supported by FWF (Austrian Science Fund) project P30301.

Proceedings of the 10th International Workshop of Confluence, 2021 57

58

CoCo 2021 Participant: FORTify 1.1∗

Alexander Lochmann, Fabian Mitterwallner, and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
alexander.lochmann@uibk.ac.at, fabian.mitterwallner@uibk.ac.at,

aart.middeldorp@uibk.ac.at

The first-order theory of rewriting is a decidable theory for linear variable-separated rewrite
systems. The decision procedure goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. An extension of the theory to
multiple rewrite systems, as well as the decision procedure, has recently been formalized [2,3] in
Isabelle/HOL. The code generation facilities of Isabelle then give rise to the certifier FORTify [4]
which checks certificate constructed by FORT-h [6].

FORTify takes as input an answer (YES/NO), a formula, a list of TRSs, and a certificate
proving that the formula holds (does not hold) for the given TRSs. It then checks the integrity
and validity of the certificate. Since the first release the formalization was extended to support
properties on arbitrary terms, as described in [5]. This allows FORTify to participate, together
with FORT-h, in the following CoCo 2021 categories: COM, TRS, GCR, UNC, and UNR.

A command-line version of the tool can be downloaded from

https://fortissimo.uibk.ac.at/fort(ify)/

References

[1] M. Dauchet and S. Tison. The Theory of Ground Rewrite Systems is Decidable. In Proc. 5th IEEE
Symposium on Logic in Computer Science, pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[2] A. Lochmann and A. Middeldorp. Formalized Proofs of the Infinity and Normal Form Predicates
in the First-Order Theory of Rewriting. In Proc. 26th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 12079 of LNCS, pages 178–194,
2020. doi: 10.1007/978-3-030-72013-1 7.

[3] A. Lochmann, A. Middeldorp, F. Mitterwallner, and B. Felgenhauer. Formalizing the First-Order
Theory of Rewriting. In Proc. 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs, pages 250–263, 2021. doi: 10.1145/3437992.3439918.

[4] F. Mitterwallner, A. Lochmann, A. Middeldorp, and B. Felgenhauer. Certifying Proofs in the First-
Order Theory of Rewriting. In Proc. 27th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 12652 of LNCS, pages 127–144, 2021. doi: 10.1007/978-
3-030-72013-1 7.

[5] A. Lochmann, F. Mitterwallner, and A. Middeldorp. Formalized Signature Extension Results for
Confluence, Commutation and Unique Normal Forms. In Proc. 10th International Workshop on
Confluence, 2021. This volume.

[6] F. Mitterwallner, J. Hochrainer, and A. Middeldorp. CoCo 2021 Participant: FORT-h 1.1. In Proc.
10th International Workshop on Confluence, 2021. This volume.

∗Supported by FWF (Austrian Science Fund) project P30301.

Proceedings of the 10th International Workshop of Confluence, 2021 59

60

CO3 (Version 2.2)

Naoki Nishida

Nagoya University, Nagoya, Japan
nishida@i.nagoya-u.ac.jp

CO3, a converter for proving confluence of conditional TRSs,1 tries to prove confluence
of conditional term rewrite systems (CTRSs, for short) by using a transformational approach
(cf. [5]). The tool first transforms a given weakly-left-linear (WLL, for short) 3-DCTRS into
an unconditional term rewrite system (TRS, for short) by using Uconf [2], a variant of the
unraveling U [8], and then verifies confluence of the transformed TRS by using the following
theorem: a 3-DCTRS R is confluent if R is WLL and Uconf (R) is confluent [1, 2]. The tool
is very efficient because of very simple and lightweight functions to verify properties such as
confluence and termination of TRSs. Since version 2.0, a narrowing-tree-based approach [6, 3]
to prove infeasibility of a condition w.r.t. a specified CTRS has been implemented [4]. The
approach is applicable to syntactically deterministic CTRSs that are operationally terminating
and ultra-right-linear w.r.t. the optimized unraveling.

When join and semi-equational CTRSs are given as input, the previous version returns
MAYBE but the present one accepts them as input. To prove confluence of join CTRSs, we
consider them as oriented ones [7, Section 5.3].

Theorem 1. Let R be a join CTRS, and R′ be {`→ r ⇐ s1 � x1, t1 � x1, . . . , sk � xk, tk �
xk ∈ R | ` → r ⇐ s1 ↓ t1, . . . , sk ↓ tk, x1, . . . , xk are distinkt fresh variables}. Then, (1)
→R =→R′ , and (2) R is confluent if and only if R′ is so.

To prove confluence of semi-equational CTRSs, we consider them as join (i.e., oriented) ones.

Theorem 2. Let R be a semi-equational CTRS, and R′ be {`→ r ⇐ s1 ↓ t1, . . . , sk ↓ tk ∈ R |
` → r ⇐ s1 ↔∗ t1, . . . , sk ↔∗ tk}. Then, all of the following hold: (1) →R ⊇ →R′ ; if R′ is
confluent, then (2) →R ⊆ →R′ and (3) R is confluent.

Note that the present version does not disprove confluence of join and semi-equational CTRSs.
To prove infeasibility of a condition c, the tool first prove confluence, and then linearizes c

if failed to prove confluence; then, the tool computes and simplifies a narrowing tree for c, and
examines the emptiness of the narrowing tree.

References

[1] K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling deter-
ministic conditional rewrite systems. In Proc. RTA 2012, vol. 15 of LIPIcs, pp. 193–208, 2012.

[2] K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term rewriting systems
via unravelings. In Proc. IWC 2013, pp. 35–39, 2013.

[3] Y. Maeda, N. Nishida, M. Sakai, and T. Kobayashi. Extending narrowing trees to basic narrowing
in term rewriting. IEICE Tech. Rep. SS2018-39, Vol. 118, No. 385, pp. 73–78, 2019, in Japanese.

[4] N. Nishida. CO3 (Version 2.1). In Proc. IWC 2020, page 67, 2020.

[5] N. Nishida, T. Kuroda, and K. Gmeiner. CO3 (Version 1.3). In Proc. IWC 2016, p. 74, 2016.

[6] N. Nishida and Y. Maeda. Narrowing trees for syntactically deterministic conditional term rewriting
systems. In Proc. FSCD 2018, vol. 108 of LIPIcs, pp. 26:1–26:20, 2018.

[7] N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional term rewriting
systems via ultra-properties related to linearity. Log. Methods Comput. Sci., 8(3):1–49, 2012.

[8] E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl. Algebra
Eng. Commun. Comput., 12(1/2):73–116, 2001.

1http://www.trs.css.i.nagoya-u.ac.jp/co3/

Proceedings of the 10th International Workshop of Confluence, 2021 61

62

CoLL 1.6: A Commutation Tool

Kiraku Shintani

JAIST, Japan
s1820017@jaist.ac.jp

CoLL (version 1.6) is a tool for automatically proving commutation of left-linear term rewrite
systems (TRSs). The tool, written in OCaml, is freely available at:

http://www.jaist.ac.jp/project/saigawa/coll/

The typical usage is: coll <file>. Here the input file is written in the commutation problem
format [4]. The tool outputs YES if commutation of the input TRSs is proved, NO if non-
commutation is shown, and MAYBE if the tool does not reach any conclusion.

In this tool commutation of left-linear TRSs is shown by Hindley’s Commutation Theorem:

Theorem 1 ([2, 7]). ARSs A = 〈A, {→α}α∈I〉 and B = 〈A, {→β}β∈J〉 commute if →α and
→β commute for all α ∈ I and β ∈ J .

Here indexes are interpreted as subsystems of the input TRSs. For every pair of subsystems the
tool proves the commutation property, employing the three criteria: simultaneous closedness [5],
parallel closedness [9], parallel upside closedness and outside closedness [6], rule labeling with
weight function [10, 1], and Church-Rosser modulo A/C [3]. A detailed description of CoLL can
be found in [8].

References

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In Proc.
21st RTA, volume 6 of LIPIcs, pages 7–16, 2010.

[2] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[3] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal on Computing, 15(4):1155–1194, 1986.

[4] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. Proc. 25th TACAS,
volume 11429 of LNCS, pages 25–40, 2019.

[5] S. Okui. Simultaneous critical pairs and Church–Rosser property. In Proc. 9th RTA, volume 1379
of LNCS, pages 2–16, 1998.

[6] M. Oyamaguchi and Y. Ohta. On the open problems concerning Church-Rosser of left-linear term
rewriting systems. IEICE Transactions on Information and Systems, 87(2):290–298, 2004.

[7] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[8] K. Shintani and N. Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, volume 9195 of LNAI, pages 127–136, 2015.

[9] Y. Toyama. On the Church-Rosser property of term rewriting systems. NTT ECL Technical
Report, No.17672, NTT, 1981.

[10] V. van Oostrom. Confluence by decreasing diagrams converted. In A. Voronkov, editor, Proc. 19th
RTA, volume 5117 of LNCS, pages 306–320, 2008.

Proceedings of the 10th International Workshop of Confluence, 2021 63

64

infChecker at the 2021 Confluence Competition∗

Raúl Gutiérrez1, Salvador Lucas2, and Miguel Vı́tores2

1 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

mvitvic@posgrado.upv.es

1 Overview

infChecker 1.0 is a tool for checking (in)feasibility of goals G = {Fi}mi=1 where Fi = (sij ./ij
tij)

ni
i=1 and ./ij∈ {→,→∗,→+, ↪→, ↪→∗, ↪→+,�,�, ↓,

↪→

,↔,←↩↪→,↔∗,←↩↪→∗} where predicates ./ij
represent binary relations on terms (most of them well-known or easy generalizations of well-
known relations) defined by provability of goals s ./ij t with respect to a first-order theories
Th./ij [1, 2].

The tool is available here: http://zenon.dsic.upv.es/infChecker/. It is written in
Haskell and implements the Feasibility Framework [1], that describes:

• f-problems, by a tuple τ = (T,G), where T is a P-indexed theory, P is a set of predicates
and G is a sequence of T-conditions. We say that τ is feasible if G is T-feasible; otherwise,
it is infeasible.

• f-processor, as partial functions from f-problems into set of f-problems. Alternatively, it
can return “yes”. An f-processor P(τ) is sound iff P(τ) = “yes” or exists τ ′ ∈ P(τ)
such that τ ′ is feasible. An f-processor P(τ) is complete iff τ is infeasible whenever
P(τ) 6= “yes” and for all τ ′ ∈ P(τ), τ ′ is infeasible.

We implement five processors: PSat to prove infeasibility, PProv to prove feasibility, PNC to
apply narrowing, PSpl to decompose a goal and PUR to simplify the set of rules.

Our feasibility problems accepts different variants of TRS: Term Rewriting Systems, Con-
ditional Term Rewriting Systems, Context-Sensitive Term Rewriting Systems and Conditional
Context-Sensitive Term Rewriting Systems.

By using the proper relation (straight arrows for rewriting and curly arrows for context-
sensitive rewriting) we can use and combine different forms of rewriting.

References

[1] R. Gutiérrez and S. Lucas. Automatically Proving and Disproving Feasibility Conditions. In
N. Peltier and V. Sofronie-Stokkermans, editor, Proc. of IJCAR’2020, LNCS 12167:416–435.
Springer, 2020.

[2] S. Lucas and R. Gutiérrez. Use of Logical Models for Proving Infeasibility in Term Rewriting.
Information Processing Letters, 136:90–95, 2018.

∗Partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32 and
by the Spanish Generalitat Valenciana under grant PROMETEO/2019/098.

Proceedings of the 10th International Workshop of Confluence, 2021 65

66

CONFident at the 2021 Confluence Competition∗

Miguel Vı́tores2, Raúl Gutiérrez1, and Salvador Lucas2

1 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
mvitvic@posgrado.upv.es

slucas@dsic.upv.es

1 Overview

CONFident 1.0 is a tool for checking the confluence or non-confluence of systems based on
rewriting by means of its logical representation. The tool is available here: http://zenon.

dsic.upv.es/confident/. It is written in Haskell following a DP-framework structure, i.e., by
defining problems and processors:

• problems are tuples τ = (T,G), where T is a P-indexed theory, P is a set of predicates and
G are logical goals representing conditions to be checked during the analysis: joinability,
reachability, feasibility, etc. We can use predicate symbols as → and →∗ to represent
different kind of relations between terms defined by a logical theory. We say that τ is
confluent if G is T-confluent; otherwise, it is non-confluent.

• processors are defined as partial functions from problems into set of (hopefully simpler)
problems. Our processors are based on transforming problems of confluence into logical
problems that can be solved by external tools (infeasibility checkers, theorem provers,
model generators. . .).

We implement these processors using the logical approach presented in [1, 3, 4] and mecha-
nizing them by external tools like MU-TERM [3], infChecker [1], AGES [2], Prover9 and Mace4 [6]
and Barcelogic1.

References

[1] R. Gutiérrez and S. Lucas. Automatically Proving and Disproving Feasibility Conditions. In
N. Peltier and V. Sofronie-Stokkermans, editor, Proc. of IJCAR’2020, LNCS 12167:416–435.
Springer, 2020.

[2] R. Gutiérrez and S. Lucas. Automatic Generation of Logical Models with AGES. In CADE 2019:
Automated Deduction - CADE 27, LNCS 11716:287:299. Springer, 2019.

[3] R. Gutiérrez and S. Lucas. MU-TERM: Verify Termination Properties Automatically (System
Description). In N. Peltier and V. Sofronie-Stokkermans, editor, Proc. of IJCAR’2020, LNCS
12167:436–447. Springer, 2020.

[4] S. Lucas. Proving semantic properties as first-order satisfiability. Artificial Intelligence 277, paper
103174, 24 pages, 2019.

[5] S. Lucas and R. Gutiérrez. Use of Logical Models for Proving Infeasibility in Term Rewriting.
Information Processing Letters, 136:90–95, 2018.

[6] W. McCune. Prover9 and Mace4. [online]. Available at https://www.cs.unm.edu/~mccune/mace4/.

∗Partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32 and
by the Spanish Generalitat Valenciana under grant PROMETEO/2019/098.

1https://barcelogic.com/

Proceedings of the 10th International Workshop of Confluence, 2021 67

68

NaTT 2.2 in CoCo 2021

Akihisa Yamada

National Institute of Advanced Science and Technology

NaTT [4] is a termination prover for plain term rewriting. It is written in OCaml and the
source code is available at:

https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

Though it has nothing to do with proving confluence, NaTT implements a quick reachability
check [3] for computing estimated dependency graphs [1]. To demonstrate the strength (or
more precisely, weakness) of this reachability check, this year NaTT will participate in the
“infeasibility” category of the Confluence Competition. Infeasibility means negated reachability,
which can be tested by the aforementioned method. To meet the specification of the category,
NaTT had to be modified to be able to

• expose the reachability checking function, and

• parse the COPS format for infeasibility.

An interesting task was the latter. To this end, the author incorporated a generic text-to-and-
from-XML translator that he developed for another project, in order to translate the COPS
format into a newly defined simple XML format for TRSs, which NaTT can understand. As
a positive side effect, NaTT can now directly read the (complex) XML problem format of the
Termination Competition [2]. A negative side effect is that the binary bin/NaTT.exe of version
2.2 does not read the old WST format anymore, but the script bin/NaTT.sh does.

At this point, it turned out that most of the infeasibility problems in COPS database are
conditional TRSs. Therefore, the author had further to parse conditional rules. This was easy
thanks to the above XML translator. However, as NaTT is for plain term rewriting, conditions
are simply ignored. Thus it will only answer YES (unreachable) if unreachability could be
proved without conditions, and will never answer NO (reachable).

References

[1] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor. Compt. Sci.,
236(1–2):133–178, 2000.

[2] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada. The
termination and complexity competition. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and
Bernhard Steffen, editors, TACAS 2019 (3), volume 11429 of LNCS, pages 156–166. Springer, 2019.

[3] Christian Sternagel and Akihisa Yamada. Reachability analysis for termination and confluence of
rewriting. In Tomás Vojnar and Lijun Zhang, editors, TACAS 2019, Part I, volume 11427 of LNCS,
pages 262–278. Springer, 2019.

[4] Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. Nagoya Termination Tool. In Gilles
Dowek, editor, RTA-TLCA 2014, volume 8560 of LNCS, pages 466–475. Springer, 2014.

Proceedings of the 10th International Workshop of Confluence, 2021 69

70

ACP: System Description for CoCo 2021

Takahito Aoto1

Institute of Science and Technology, Niigata University
aoto@ie.niigata-u.ac.jp

A primary functionality of ACP is proving confluence (CR) of term rewriting systems
(TRSs). ACP integrates multiple direct criteria for guaranteeing confluence of TRSs. It also
incorporates divide–and–conquer criteria by which confluence or non-confluence of TRSs can
be inferred from those of their components. Several methods for disproving confluence are also
employed. For some criteria, it supports generation of proofs in CPF format that can be cer-
tified by certifiers. The internal structure of the prover is kept simple and is mostly inherited
from the version 0.11a, which has been described in [3]. It also deal with confluence of oriented
conditional term rewriting systems. Besides confluence, ACP supports proving the UNC prop-
erty (unique normal form property w.r.t. conversion) and the commutation property of term
rewriting systems. The ingredients of the former property have been appeared in [2, 4]. Our
(dis)proofs of commutation are based on a development closed criterion [5] and a simple search
for counter examples. No new criterion has been incorporated from the one submitted for CoCo
2020.

ACP is written in Standard ML of New Jersey (SML/NJ) and the source code is also available
from [1]. It uses a SAT prover such as MiniSAT and an SMT prover YICES as external provers. It
internally contains an automated (relative) termination prover for TRSs but external (relative)
termination provers can be substituted optionally. Users can specify criteria to be used so that
each criterion or any combination of them can be tested. Several levels of verbosity are available
for the output so that users can investigate details of the employed approximations for each
criterion or can get only the final result of prover’s attempt.

References

[1] ACP (Automated Confluence Prover). http://www.nue.ie.niigata-u.ac.jp/tools/acp/.

[2] T. Aoto and Y. Toyama. Automated proofs of unique normal forms w.r.t. conversion for term
rewriting systems. In Proc. of 12th FroCoS, volume 11715 of LNAI, pages 330–347. Springer-Verlag,
2019.

[3] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting system automatically.
In Proc. of 20th RTA, volume 5595 of LNCS, pages 93–102. Springer-Verlag, 2009.

[4] M. Yamaguchi and T. Aoto, A fast decision procedure for uniqueness of normal forms w.r.t.
conversion of shallow term rewriting systems. In Proc. of 5th FSCD, volume 167 of LIPIcs, pages
9:1–9:23. Schloss Dagstuhl, 2020.

[5] J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewriting systems.
Computer Software, 26(2):76–92, 2009.

Proceedings of the 10th International Workshop of Confluence, 2021 71

72

AGCP: System Description for CoCo 2021

Takahito Aoto

Institute of Science and Technology, Niigata University
aoto@ie.niigata-u.ac.jp

AGCP (Automated Groud Confluence Prover) [1] is a tool for proving ground confluence of
many-sorted term rewriting systems. AGCP is written in Standard ML of New Jersey (SML/NJ).
AGCP proves ground confluence of many-sorted term rewriting systems based on two ingredients.
One ingredient is to divide the ground confluence problem of a many-sorted term rewriting
system R into that of S ⊆ R and the inductive validity problem of equations u ≈ v w.r.t. S
for each u → r ∈ R \ S. Here, an equation u ≈ v is inductively valid w.r.t. S if all its ground

instances uσ ≈ vσ is valid w.r.t. S, i.e. uσ
∗↔S vσ. Another ingredient is to prove ground

confluence of a many-sorted term rewriting system via the bounded ground convertibility of
the critical pairs. Here, an equation u ≈ v is said to be bounded ground convertibile w.r.t. a
quasi-order % if uθg

∗←→
% R vθg for any its ground instance uσg ≈ vσg, where x

∗←→
%

y iff there

exists x = x0 ↔ · · · ↔ xn = y such that x % xi or y % xi for every xi.
Rewriting induction [3] is a well-known method for proving inductive validity of many-

sorted term rewriting systems. In [1], an extension of rewriting induction to prove bounded
ground convertibility of the equations has been reported. Namely, for a reduction quasi-order
% and a quasi-reducible many-sorted term rewriting system R such that R ⊆ �, the extension
proves bounded ground convertibility of the input equations w.r.t. %. The extension not only
allows to deal with non-orientable equations but also with many-sorted TRSs having non-free
constructors. Several methods that add wider flexibility to the this approach are given in
[2]: when suitable rules are not presented in the input system, additional rewrite rules are
constructed that supplement or replace existing rules in order to obtain a set of rules that
is adequate for applying rewriting induction; and an extension of the system of [2] is used if
if the input system contains non-orientable constructor rules. AGCP uses these extension of
the rewriting induction to prove not only inductive validity of equations but also the bounded
ground convertibility of the critical pairs. Finally, some methods to deal with disproving ground
confluence are added as reported in [2].

No new ground (non-)confluence criterion has been incorporated from the one submitted
for CoCo 2020.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. of 1st
FSCD, volume 52 of LIPIcs, pages 33:1–33:12. Schloss Dagstuhl, 2016.

[2] T. Aoto, Y. Toyama and Y. Kimura. Improving Rewriting Induction Approach for Proving Ground
Confluence. In Proc. of 2nd FSCD, volume 84 of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl, 2017.

[3] U.S. Reddy. Term rewriting induction. In Proc. of CADE-10, volume 449 of LNAI, pages 162–177.
Springer-Verlag, 1990.

Proceedings of the 10th International Workshop of Confluence, 2021 73

74

CoCo 2021 Participant: CeTA 2.40∗

René Thiemann1

University of Innsbruck, Austria

The tool CeTA [1] is a certifier for, among other properties, (non-)confluence of term rewrite
systems with and without conditions. Its soundness is proven as part of the formal proof
library IsaFoR, the Isabelle Formalization of Rewriting. For a complete reference of supported
techniques we refer to the certification problem format (CPF) and the IsaFoR/CeTA website:

http://cl-informatik.uibk.ac.at/isafor/

In the following, we describe the relevant changes of version 2.40 of CeTA w.r.t. confluence
proving. Although there are no new dedicated confluence techniques in CeTA, we like to mention
an extended support for termination proofs. This extension has the potential to increase the
power of confluence techniques that rely upon termination or relative termination.

In particular there is an extension that consists of a generalization of the weighted path
order (WPO) [3, 2], where we now added support for multiset comparisons (cases (2c) and
(2d)). Consequently, the generalized version of WPO subsumes the recursive path order.

Definition 1 (Generalized WPO). Let A be a weakly monotone algebra over signature Σ, %
a precedence, π a status, and let c : Σ → {lex,mul}. Let ≥A be simple w.r.t. π. The WPO
reduction pair (�WPO,%WPO) is defined as follows: s �WPO t iff s >A t, or s ≥A t and

1. s = f(s1, . . . , sn) and ∃i ∈ π(f). si %WPO t, or

2. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO tj and

(a) f � g,

(b) f % g and c(f) = c(g) = lex and π(f)[s1, . . . , sn] �lex
WPO π(g)[t1, . . . , tm],

(c) f % g and c(f) = c(g) = mul and π(f)[s1, . . . , sn] �mul
WPO π(g)[t1, . . . , tm], or

(d) f % g and c(f) 6= c(g) and π(f)[s1, . . . , sn] 6= [] and π(g)[t1, . . . , tm] = [].

The relation s %WPO t is defined in a similar way and we refer to theory Orderings/WPO MS.thy

within IsaFoR for the full formal definition.

We would like to welcome all confluence tool developers to experiment whether our new
extension is indeed helpful for confluence proving, and are looking forward to certify these new
kinds of proofs via CeTA.1

References

[1] René Thiemann and Christian Sternagel. Certification of Termination Proofs Using CeTA. In
Theorem Proving in Higher Order Logics, 22nd International Conference, Proceedings, volume 5674
of LNCS, pages 452–468. 2009.

[2] René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada. Certifying the Weighted
Path Order. In Formal Structures for Computation and Deduction, 5th International Conference,
Proceedings, volume 167 of LIPIcs, pages 4:1–4:20, 2020.

[3] Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. A Unified Ordering for Termination
Proving. Sci. Comput. Program., 111:110–134, 2015.

∗This work was supported by the Austrian Science Fund (FWF) project Y757.
1The CPF-format has not yet been extended to cover the extension of WPO to multisets. We invite all tool

authors to get in contact with us to fix the precise format for WPO with multiset comparisons.

Proceedings of the 10th International Workshop of Confluence, 2021 75

Author Index

Aoto, Takahito 71, 73

Dupont, Benjamin 15

Faggian, Claudia 31

Guerrieri, Giulio 31
Gutiérrez, Raúl 65, 67

Hellström, Lars 9
Hirokawa, Nao 53
Hochrainer, Jamie 57

Kenyon-Roberts, Andrew 37

Lochmann, Alexander 25, 59
Lucas, Salvador 65, 67

Malbos, Philippe 15

Meha, Uran 43
Middeldorp, Aart 25, 51, 55, 57, 59
Mitterwallner, Fabian 25, 55, 57, 59

Nishida, Naoki 51, 61

Ren, Isaac 15

Shintani, Kiraku 51, 53, 63

Thiemann, René 75
Treglia, Riccardo 31

van Oostrom, Vincent 1
Vı́tores, Miguel 65, 67

Waldmann, Johannes 51

Yamada, Akihisa 69

76

	Foreword
	IWC 2021
	Multi-redexes and multi-treks induce residual systemsVincent van Oostrom
	Wrap ambiguities and how to enumerate themLars Hellström
	Completion of operadic rewriting systems by Gaussian eliminationBenjamin Dupont, Philippe Malbos, Isaac Ren
	Formalized Signature Extension Results for Confluence, Commutation and Unique Normal FormsAlexander Lochmann, Fabian Mitterwallner, Aart Middeldorp
	Evaluation in the computational calculus is non-confluentClaudia Faggian, Giulio Guerrieri, Riccardo Treglia
	A Confluent Trace Semantics for Probabilistic Lambda CalculusAndrew Kenyon-Roberts
	Confluence in string rewriting systems compatible with a crystal structureUran Meha

	CoCo 2021
	Confluence Competition 2021Aart Middeldorp, Naoki Nishida, Kiraku Shintani, Johannes Waldmann
	CoLL-Saigawa 1.6: A Joint Confluence ToolKiraku Shintani, Nao Hirokawa
	CoCo 2021 Participant: CSI 1.2.5Fabian Mitterwallner, Aart Middeldorp
	CoCo 2021 Participant: FORT-h 1.1Fabian Mitterwallner, Jamie Hochrainer, Aart Middeldorp
	CoCo 2021 Participant: FORTify 1.1Alexander Lochmann, Fabian Mitterwallner, Aart Middeldorp
	CO3 (Version 2.2)Naoki Nishida
	CoLL 1.6: A Commutation ToolKiraku Shintani
	infChecker at the 2021 Confluence CompetitionRaúl Gutiérrez, Salvador Lucas, Miguel Vítores
	CONFident at the 2021 Confluence CompetitionMiguel Vítores, Raúl Gutiérrez, Salvador Lucas
	NaTT 2.2 in CoCo 2021Akihisa Yamada
	ACP: System Description for CoCo 2021Takahito Aoto
	AGCP: System Description for CoCo 2021Takahito Aoto
	CoCo 2021 Participant: CeTA 2.40René Thiemann

	Author Index

