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Motivation

Discovering subgraphs with dense connections and/or well inter-
acting nodes is a key problem in graph mining. Hence k-core de-
composition arose, as well as other degeneracy frameworks ((k,l)-
core [GTV11], k-truss [RMV15]), to takle the following problems :

dense subgraph discovery,
influential spreaders discovery,
community detection seeding,
event detection.
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Cuts versus k-core

The intuition for the proposed edge-connectivity degeneracy
is finding subgraphs with high connectivity properties, by means
of minimal cuts.
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The edge connectivity degeneracy framework

Why edge connectivity needs an efficient algorithm :

finding the minimum k-edge-connected spanning
subgraph of G (that is : select as few as possible edges in
G that your selection is k-edge-connected) is NP-hard
[GJ90].
Several functions exist in the literature that aim to solve
this problem but for most formulations those functions are
also hard to approximate.
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Dense subgraph discovery

Definition (Densest subgraph [KS09])
The problem of densest subgraph discovery is given by the
following formula :

E∗(G) = argmax{ε(H)|H ⊆ G}

with ε a graph density funtion (edge density for instance), and
the associated degeneracy

ε∗(G) = max{ε(H)|H ⊆ G}
.

For now on ε(G) = |E(G)|
|V (G)| .
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The well known k-core

Definition (k-core)
Given the previously defined function δ, we define the k-core of
a graph as :

δ∗(G) = max{δ(H)|H ⊆ G}
with δ a function yielding the minimal degree in the given
subgraph.

δ(H) = min{deg(v)|v ∈ V (H)}

3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3
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Edge connectivity Definition

Definition
A graph is d-edge connected if it has at least two vertices and
for every two vertices there are d edge disjoint paths between
them.
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A must have, Menger’s theorem

Theorem (Menger [Men27])
Let G be a finite undirected graph and x and y two distinct
vertices. Then the size of the minimum edge cut for x and y is
equal to the maximum number of pairwise edge-independent
paths from x to y.
Extended to subgraphs : a maximal subgraph disconnected by
no less than a k-edge cut is identical to a maximal subgraph
with a minimum number k of edge-independent paths between
any x, y pairs of nodes in the subgraph.
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Towards edge-connectivity cores

→ As an application of Menger’s theorem we will define an
edge-connectivity function in means of the minimal cut in a
given graph G [Men27] :

λ(S) = |{e ∈ E(G)|{e} ∩ S 6= ∅ ∧ {e} ∩ (V (G) \ S) 6= ∅}|

Corollary (k-edge connected graph)
A graph G is d-edge connected if and only if λ(G) ≥ d.
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Edge-connectivity degeneracy

Definition (Edge-connectivity degeneracy [Bol13])
Let G be a graph. We define the edge-connectivity
degeneracy of G as a follows :

λ∗(G) = max{λ(H) | H ⊆ G}
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Comments and drawbacks

As we defined the edge-connectivity degeneracy, we need to pro-
vide an algorithm that outputs at least a specific core, or at most
the whole edge-connectivity decomposition.

Unfortunatly one will face the following problems :

Computing one core can be done in O(n3) (Gabow
algorithm [Gab95]) without using minimal cuts.
Moreover, computing minimal cuts in a graph can be done
in O(n2log(n)) with the Karger-Stein and provides an
algorithm in O(n2log3n) for edge connectivity cores
[KS96].
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Density and degeneracy inequalities

Proposition
For every undirected graph G the following inequality holds :

2ε∗(G) ≥ δ∗(G) ≥ λ∗(G) ≥ ε∗(G)

Corollary (2)

For every undirected graph G, we have :

δ∗(G)

2
≤ λ∗(G) ≤ δ∗(G)
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Proof of proposition 1 (1/4)

Theorem (The handshaking)
For every undirected graph G, it holds that :

|E(G)| = 1

2

∑
v∈V (G)

degG(v)

Proof for the proposition (from left to right) : Let H be a
subgraph of G, then thanks to the handshaking theorem :

∀H ⊆ G : |E(H)| = 1

2

∑
v∈V (H)

degH(v)

|E(G)| ≥ nH
2
min{degH(v), v ∈ H}
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Proof of proposition 1 (2/4)

then :
2ε(H) ≥ δ(H)

hence, since the above inequality holds for all subgraphs H of
G :

2ε∗(G) ≥ δ∗(G)

Suppose there exists a subgraph Hopt ⊆ G such as δ∗(G) =
δ(Hopt) = k, then, since k is the minimum degree in Hopt we
can assume that the minimal cut in Hopt is at most k since the
worst case scenario is that the minimal cut happens around the
vertex with minimal degree.

Hence ensuring λ∗(G) ≤ δ∗(G)
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Proof of proposition 1 (3/4)

To prove that λ∗(G) ≥ ε∗(G) we will suppose that λ∗(G) = k
and that there exists a subgraph H of G where ε∗(G) = ε(H) >
k. In this configuration, we can assume that the node having the
minimum degree, say k′, will be inferior to k. Then, cutting out
this node from H we get a subgraph H ′ such as :

ε(H ′) ≥ |E(H)| − k′
nH − 1

>
|E(H)| − ε(H)

nH − 1

>
|E(H)| − ε(H)

nH − 1

16 / 42



Introduction

useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy

An efficient
algorithm for
the k-edge
connectivity
cores

Core
properties
and
illustrations
for
applications

Results and
Discussion

Proof of proposition 1 (4/4)

And note that :

|E(H)| − ε(H)

nH − 1
− ε(H) =

|E(H)| − ε(H)− nHε(H) + ε(H)

nH − 1

|E(H)| − nHε(H)

nH − 1
= 0

Hence showing the contradiction as we found a densest graph in
G than H.
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Nested subgraphs

Theorem
Let G be a graph and let C = {C1, . . . , Cr} be a collection of
vertex disjoint connected subgraphs of G. Let also G′ be the
graph obtained if we contract in G all edges in the graphs in C.
If G′ is d-edge connected and each graph in C is d-edge
connected or a single vertex, then G contains a subgraph that is
d-edge connected.
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The Motivation

It is obvious that the provided algorithm will not be very fast.
Indeed, one has to find an original use and computational scheme
in order to draw all the informations contained in such cores. Here
are the different approches we will be investigating :

How to compute efficiently these specific cores.
Which core holds the most relevant informations.
How to use these cores for applications.
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Karger-Stein fast mincut algorithm (1/2)

CONTRACT [KS96] :

Data: A graph G = (V,E), t ∈ N
Result: minimum cut of G
while |V (G)| > t do

Pick a random edge e of the G;
G← G;
return G

end
Algorithm 1: Contraction algorithm O(n)
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Karger-Stein fast mincut algorithm (2/2)

FASTCUT [KS96] :

Data: A graph G = (V,E)
Result: minimum cut of G
n← |V (G)|;
if n<6 then

compute minimum cut of G via brute force and return it;
else

t← 1 + n√
2
;

H1 ← CONTRACT (G, t);
H2 ← CONTRACT (G, t);
X1 ← FASTCUT (H1);
X2 ← FASTCUT (H2);
return minimum cut of X1 and X2

end
Algorithm 2: Fastcut algorithm O(n2log(n))
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K-edge connectivity finding algorithm (1/2)

Let k = δ∗(G). We know that k/2 ≤ λ∗(G) ≤ k. For every
z ∈ [k/2, k] (starting from k) we find the z-edge-connectivity
core as follows :

Initialisation : Set found = FALSE.

Step 1 : Let Ak be the k-core of G.

Step 2 : We run the Karger-Stein algorithm on Ak in order to
find an edge cut of size < z. If no such set is found, then we
know that λ∗(Ak) ≥ z ⇒ λ∗(G) ≥ z. If such a cut is found
for some S ⊆ V (Ak) we set found = TRUE, A(1)

k = Ak[S] and
A

(2)
k = Ak \S. We recursively run the Karger-Stein algorithm on

A
(1)
k and A(2)

k . When this recursion finishes we obtain a partition
of Ak in to sets S = {S1, . . . , Sq} where each Si either is a
singleton or induces a z-edge-connected subgraph in Ak.
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K-edge connectivity finding algorithm (2/2)

Step 3 : If S is not trivial, we know that λ∗(Ak) ≥ z ⇒ λ∗(G) ≥
z. We then construct G′ by contracting all non-trivial Si’s. We
denote by G′ the resulting graph. Notice that, by Proposition 2,
λ∗(G′) ≥ z ⇔ λ∗(G) ≥ z. We then set G := G′, found :=
TRUE and we go to step 1.

Step 4 : If S is trivial and found = TRUE we use the essential
singletons in S to build the z-edge core partition and stop.

Step 5 : If S is trivial and found = FALSE we set k := k − 1
and we go to step 1.

Because of Corollary 2, k will never become less than δ∗(G)/2,
therefore the above algorithm will terminate.
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Notes and Remarks on computation and complexity

To compute the recursive decomposition of Ak we used Breadth
first Search (BFS) algorithm as each level of the tree contains
the decompositions of the previous level.

Complexity : We remind that the best existing algorithm for
this task has a complexity of O(n2log3n). Here we provided an
algorithm that computes the k-edge connectivity core more effi-
ciently, i.e. considering the number of nodes in the (k/2)th-core
is nk/2, the complexity of the proposed algorithm is at most
O(k2n2k/2log2(nk/2)).
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Datasets used for the experiments

We used the following datasets from Stanford’s library SNAP,
those datasets are social networks, such as collaboration net-
works :

Network Name Nodes Edges kmax |C|
Email-Enron 33, 696 180, 811 43 275

DBLP (weighted) 1, 088, 681 4, 512, 205 258 4
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Comparing edge-connectivity cores and degree cores
(first case)

We noticed while experimenting two tendances in the edge connec-
tivity core production :

– Core decompositions for the Email-Enron dataset28 / 42
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Comparing edge-connectivity cores and degree cores
(second case)

– Core decompositions for the DBLP (1999− 2016) dataset
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Further study

As we notice, the edge-connectivity cores are either very similar
to the deepest k-core very fast, either very similar to the
corresponding k-core. This, especially for the first case, can
problematic as the time to compute the whole edge connectivity
cores decomposition is very slow, even with our algorithm.

Thankfully, since the complexity of our approche is depending on
the size of the (k/2)th-core, the algorithm can work well even
on very large datasets.
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 42-core (blue) and 22-edge-connectivity core (red)31 / 42



Introduction

useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy

An efficient
algorithm for
the k-edge
connectivity
cores

Core
properties
and
illustrations
for
applications

Results and
Discussion

Illustration of the first behaviour (EmailEnron)

Figure – Enron 41-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 40-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 39-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 38-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 37-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 36-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 35-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 34-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 33-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 32-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 31-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 30-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 28-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 27-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 26-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 24-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the first behaviour (EmailEnron)

Figure – Enron 22-core (blue) and 22-edge-connectivity core (red)31 / 42
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Illustration of the second behaviour (DBLP)

– edge core decomposition for the DBLP dataset
32 / 42
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Getting good spreaders

Since the returned subgraphs are highly connected, we assume
that if one node of one of these subgraphs is infected then the
infection will spread very fast to the rest of this subgraph.

Hence we had the following idea :

→ we keep the contracted subgraphs at each step of the
algorithm, previously in dark red (for the first ones found) to
lighter red (for the last ones encountered) and aim to extract
the separating edges. Finally we keep the nodes at the end of
these edges with the higher degrees.
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Evaluation

We will evaluate the spreaders we found with the Susceptible-
Infected-Recovered (SIR) model on the previously presented
datasets :

Network Name Nodes Edges kmax Tmax |C| |T | β

Email-Enron 33, 696 180, 811 43 22 275 45 0.01
Wiki-Vote 7, 066 100, 736 53 23 336 50 0.009
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Experimental Set-up
Simulation of the spreading process

Susceptible-Infected-Recovered (SIR) model

1 Set candidate node as infected (I state)
2 An infected node can infect its susceptible neighbors with probability
β

3 An infected node can recover (stop being active) with probability γ
4 Count the total number of infected individuals (avg. over multiple

runs)

S I R
β γ

1− β 1− γ

State diagram of the SIR model

[Anderson et al., Oxford university press ’92]36 / 42
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The SIR model

Susceptible-Infected-Recovered (SIR) model

1 Set β close to the epidemic threshold τ = 1
λ1

λ1 being the largest eigenvalue of A (adjacency matrix)

2 Set γ = 0.8

S I R
β γ

1− β 1− γ

State diagram of the SIR model

[Anderson et al., Oxford university press ’92]
37 / 42
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Stepwise evalution of spreading performance

Time Step
Method 2 4 6 8 10 Final step Max step

edge core 21.47 115.13 350.13 428.23 250.93 2, 647.74 28
Email- truss 8.44 46.66 204.08 418.77 355.84 2, 596.52 33
Enron core 4.78 31.97 152.55 367.28 364.13 2, 465.60 37

top degree 6.89 34.13 155.48 360.89 357.08 2, 471.67 36

edge core 5.15 12.15 24.72 40.96 52.74 626.09 34
Wiki- truss 2.92 6.92 15.27 28.73 42.46 560.66 52
Vote core 1.92 4.78 10.65 20.66 32.40 466.01 57

top degree 2.43 5.46 12.05 23.05 35.55 502.88 62
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Discutions and future work

As we saw, the cores produced by the edge-connectivity have a
lot of very interesting properties, such as the ability to produce
very good spreaders.

Nevertheless, another application of this work can focus on in-
fluence maximisation problems. For instance one can find a
sufficiently dense/big core and try a greedy algorithm in order
to find the most influencial nodes in those subgraphs (lets
say one for each disconnected subgraph) with the intuition that
it will influence very quickly the rest of the subgraph, hence
maximizing influence localy.
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