An efficient algorithm for edge-connectivity degeneracy

and applications algorithm for the k-edge connectivity cores

Core properties
applications
Results and Discussion

Stratis Limnios (LIX,DaSciM Team)

Motivation

Discovering subgraphs with dense connections and/or well interacting nodes is a key problem in graph mining. Hence \mathbf{k}-core decomposition arose, as well as other degeneracy frameworks ((k,l)core [GTV11], k-truss [RMV15]), to takle the following problems :

- dense subgraph discovery,
- influential spreaders discovery,
- community detection seeding,
- event detection.

Cuts versus k-core

degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications

Results and

 DiscussionThe intuition for the proposed edge-connectivity degeneracy is finding subgraphs with high connectivity properties, by means of minimal cuts.

Useful properties and definitions

for the k-edge connectivity degeneracy

The edge connectivity degeneracy framework

Why edge connectivity needs an efficient algorithm :

- finding the minimum k-edge-connected spanning subgraph of G (that is : select as few as possible edges in G that your selection is k-edge-connected) is NP-hard [GJ90].
- Several functions exist in the literature that aim to solve this problem but for most formulations those functions are also hard to approximate.

Dense subgraph discovery

Introduction

useful

 properties and definitions for the k-edge connectivity degeneracyAn efficient algorithm for the k-edge connectivity cores

Core properties and
illustrations for
applications
Results and Discussion

Definition (Densest subgraph [KS09])

The problem of densest subgraph discovery is given by the following formula :

$$
E^{*}(G)=\operatorname{argmax}\{\epsilon(H) \mid H \subseteq G\}
$$

with ϵ a graph density funtion (edge density for instance), and the associated degeneracy

$$
\epsilon^{*}(G)=\max \{\epsilon(H) \mid H \subseteq G\}
$$

For now on $\epsilon(G)=\frac{|E(G)|}{|V(G)|}$.

The well known k-core

Introduction

useful

 properties and definitions for the k-edge connectivity degeneracyAn efficient algorithm for the k-edge connectivity cores

Core properties and
illustrations for
applications
Results and Discussion

Definition (k-core)

Given the previously defined function δ, we define the k-core of a graph as :

$$
\delta^{*}(G)=\max \{\delta(H) \mid H \subseteq G\}
$$

with δ a function yielding the minimal degree in the given subgraph.

$$
\delta(H)=\min \{\operatorname{deg}(v) \mid v \in V(H)\}
$$

Edge connectivity Definition

Introduction

useful

 properties and definitions for the k-edge connectivity degeneracyAn efficient algorithm for the k-edge connectivity cores

Core properties and illustrations for
applications
Results and Discussion

Definition

A graph is d-edge connected if it has at least two vertices and for every two vertices there are d edge disjoint paths between them.

A must have, Menger's theorem

Introduction

useful

An efficient algorithm for the k-edge connectivity cores

Core properties and illustrations for applications

Results and

 Discussion
Theorem (Menger [Men27])

Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum edge cut for x and y is equal to the maximum number of pairwise edge-independent paths from x to y.
Extended to subgraphs : a maximal subgraph disconnected by no less than a k-edge cut is identical to a maximal subgraph with a minimum number k of edge-independent paths between any x, y pairs of nodes in the subgraph.

Towards edge-connectivity cores

useful

An efficient algorithm for the k-edge connectivity cores

Core properties
and
illustrations for
applications
Results and Discussion
\rightarrow As an application of Menger's theorem we will define an edge-connectivity function in means of the minimal cut in a given graph G [Men27] :

$$
\lambda(S)=|\{e \in E(G) \mid\{e\} \cap S \neq \varnothing \wedge\{e\} \cap(V(G) \backslash S) \neq \varnothing\}|
$$

Corollary (k-edge connected graph)

A graph G is d-edge connected if and only if $\lambda(G) \geq d$.

Edge-connectivity degeneracy

cores
Core
properties

Definition (Edge-connectivity degeneracy [Bol13])

Let G be a graph. We define the edge-connectivity degeneracy of G as a follows:

$$
\lambda^{*}(G)=\max \{\lambda(H) \mid H \subseteq G\}
$$

Comments and drawbacks

As we defined the edge-connectivity degeneracy, we need to provide an algorithm that outputs at least a specific core, or at most the whole edge-connectivity decomposition.

Unfortunatly one will face the following problems :

- Computing one core can be done in $\mathcal{O}\left(n^{3}\right)$ (Gabow algorithm [Gab95]) without using minimal cuts.
- Moreover, computing minimal cuts in a graph can be done in $\mathcal{O}\left(n^{2} \log (n)\right)$ with the Karger-Stein and provides an algorithm in $\mathcal{O}\left(n^{2} \log ^{3} n\right)$ for edge connectivity cores [KS96].

Density and degeneracy inequalities

Proposition

For every undirected graph G the following inequality holds :

$$
2 \epsilon^{*}(G) \geq \delta^{*}(G) \geq \lambda^{*}(G) \geq \epsilon^{*}(G)
$$

Corollary (2)

For every undirected graph G, we have :

$$
\frac{\delta^{*}(G)}{2} \leq \lambda^{*}(G) \leq \delta^{*}(G)
$$

Proof of proposition 1 (1/4)

Introduction

useful

 properties and definitions for the k-edge connectivity degeneracyAn efficient algorithm for the k-edge connectivity cores

Core properties and
illustrations for applications

Results and Discussion

Theorem (The handshaking)

For every undirected graph G, it holds that :

$$
|E(G)|=\frac{1}{2} \sum_{v \in V(G)} d e g_{G}(v)
$$

Proof for the proposition (from left to right) : Let H be a subgraph of G, then thanks to the handshaking theorem :

$$
\forall H \subseteq G:|E(H)|=\frac{1}{2} \sum_{v \in V(H)} d e g_{H}(v)
$$

$$
|E(G)| \geq \frac{n_{H}}{2} \min \left\{\operatorname{deg}_{H}(v), v \in H\right\}
$$

Proof of proposition 1 (2/4)

Introduction

useful

properties
and
definitions
for the
k-edge
connectivity
degeneracy

An efficient algorithm for the k-edge connectivity cores

Core
properties and
illustrations for applications

Results and Discussion
then :

$$
2 \epsilon(H) \geq \delta(H)
$$

hence, since the above inequality holds for all subgraphs H of G :

$$
2 \epsilon^{*}(G) \geq \delta^{*}(G)
$$

Suppose there exists a subgraph $H_{\text {opt }} \subseteq G$ such as $\delta^{*}(G)=$ $\delta\left(H_{\text {opt }}\right)=k$, then, since k is the minimum degree in $H_{\text {opt }}$ we can assume that the minimal cut in $H_{\text {opt }}$ is at most k since the worst case scenario is that the minimal cut happens around the vertex with minimal degree.

Hence ensuring $\lambda^{*}(G) \leq \delta^{*}(G)$

Proof of proposition 1 (3/4)

Introduction

useful

properties and
definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core
properties and
illustrations for
applications
Results and Discussion

To prove that $\lambda^{*}(G) \geq \epsilon^{*}(G)$ we will suppose that $\lambda^{*}(G)=k$ and that there exists a subgraph H of G where $\epsilon^{*}(G)=\epsilon(H)>$ k. In this configuration, we can assume that the node having the minimum degree, say k^{\prime}, will be inferior to k. Then, cutting out this node from H we get a subgraph H^{\prime} such as :

$$
\begin{aligned}
\epsilon\left(H^{\prime}\right) & \geq \frac{|E(H)|-k^{\prime}}{n_{H}-1} \\
& >\frac{|E(H)|-\epsilon(H)}{n_{H}-1} \\
& >\frac{|E(H)|-\epsilon(H)}{n_{H}-1}
\end{aligned}
$$

Proof of proposition 1 (4/4)

POLYTECHNIQUE

Introduction

```
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
```

An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications
Results and
Discussion

And note that:

$$
\begin{aligned}
\frac{|E(H)|-\epsilon(H)}{n_{H}-1}-\epsilon(H) & =\frac{|E(H)|-\epsilon(H)-n_{H} \epsilon(H)+\epsilon(H)}{n_{H}-1} \\
\frac{|E(H)|-n_{H} \epsilon(H)}{n_{H}-1} & =0
\end{aligned}
$$

Hence showing the contradiction as we found a densest graph in G than $H . \square$

Nested subgraphs

Introduction

useful

properties
and
definitions
for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core properties and
illustrations for
applications

Results and

 Discussion
Theorem

Let G be a graph and let $\mathcal{C}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a collection of vertex disjoint connected subgraphs of G. Let also G^{\prime} be the graph obtained if we contract in G all edges in the graphs in \mathcal{C}. If G^{\prime} is d-edge connected and each graph in \mathcal{C} is d-edge connected or a single vertex, then G contains a subgraph that is d-edge connected.

An efficient algorithm
for the k-edge connectivity cores

The Motivation

It is obvious that the provided algorithm will not be very fast. Indeed, one has to find an original use and computational scheme in order to draw all the informations contained in such cores. Here are the different approches we will be investigating :

- How to compute efficiently these specific cores.
- Which core holds the most relevant informations.
- How to use these cores for applications.

Karger-Stein fast mincut algorithm (1/2)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy

An efficient algorithm for the k-edge connectivity cores

Core properties
and
illustrations for
applications
Results and Discussion

CONTRACT [KS96] :

Data: A graph $G=(V, E), t \in \mathbb{N}$
Result: minimum cut of G while $|V(G)|>t$ do

Pick a random edge e of the G;
$G \leftarrow G$;
return G
end
Algorithm 1: Contraction algorithm $\mathcal{O}(n)$

Karger-Stein fast mincut algorithm (2/2)

Introduction useful properties and definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core properties and
illustrations for
applications
Results and Discussion

FASTCUT [KS96] :

Data: A graph $G=(V, E)$
Result: minimum cut of G
$n \leftarrow|V(G)|$;
if $n<6$ then
compute minimum cut of G via brute force and return it; else

$$
\mathrm{t} \leftarrow 1+\frac{n}{\sqrt{2}} ;
$$

$$
H_{1} \leftarrow C O N T R A C T(G, t)
$$

$$
H_{2} \leftarrow C O N T R A C T(G, t)
$$

$$
X_{1} \leftarrow F A S T C U T\left(H_{1}\right)
$$

$$
X_{2} \leftarrow F A S T C U T\left(H_{2}\right)
$$

return minimum cut of X_{1} and X_{2}
end

K-edge connectivity finding algorithm (1/2)

Introduction useful properties and definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core
properties
and
illustrations for applications

Results and Discussion

Let $k=\delta^{*}(G)$. We know that $k / 2 \leq \lambda^{*}(G) \leq k$. For every $z \in[k / 2, k]$ (starting from k) we find the z-edge-connectivity core as follows :

Initialisation : Set found $=$ FALSE.
Step 1 : Let A_{k} be the k-core of G.
Step 2 : We run the Karger-Stein algorithm on A_{k} in order to find an edge cut of size $<z$. If no such set is found, then we know that $\lambda^{*}\left(A_{k}\right) \geq z \Rightarrow \lambda^{*}(G) \geq z$. If such a cut is found for some $S \subseteq V\left(A_{k}\right)$ we set found $=$ TRUE, $A_{k}^{(1)}=A_{k}[S]$ and $A_{k}^{(2)}=A_{k} \backslash S$. We recursively run the Karger-Stein algorithm on $A_{k}^{(1)}$ and $A_{k}^{(2)}$. When this recursion finishes we obtain a partition of A_{k} in to sets $\mathcal{S}=\left\{S_{1}, \ldots, S_{q}\right\}$ where each S_{i} either is a singleton or induces a z-edge-connected subgraph in A_{k}.

K-edge connectivity finding algorithm (2/2)

Step 3 : If \mathcal{S} is not trivial, we know that $\lambda^{*}\left(A_{k}\right) \geq z \Rightarrow \lambda^{*}(G) \geq$ z. We then construct G^{\prime} by contracting all non-trivial S_{i} 's. We denote by G^{\prime} the resulting graph. Notice that, by Proposition 2, $\lambda^{*}\left(G^{\prime}\right) \geq z \Leftrightarrow \lambda^{*}(G) \geq z$. We then set $G:=G^{\prime}$, found $:=$ TRUE and we go to step 1 .

Step 4: If \mathcal{S} is trivial and found $=$ TRUE we use the essential singletons in \mathcal{S} to build the z-edge core partition and stop.

Step 5 : If \mathcal{S} is trivial and found $=$ FALSE we set $k:=k-1$ and we go to step 1 .

Because of Corollary $2, k$ will never become less than $\delta^{*}(G) / 2$, therefore the above algorithm will terminate.

Notes and Remarks on computation and complexity

Introduction

useful

To compute the recursive decomposition of A_{k} we used Breadth first Search (BFS) algorithm as each level of the tree contains the decompositions of the previous level.

Complexity : We remind that the best existing algorithm for this task has a complexity of $\mathcal{O}\left(n^{2} \log ^{3} n\right)$. Here we provided an algorithm that computes the k-edge connectivity core more efficiently, i.e. considering the number of nodes in the $(k / 2)^{t h}$-core is $n_{k / 2}$, the complexity of the proposed algorithm is at most $\mathcal{O}\left(\frac{k}{2} n_{k / 2}^{2} \log ^{2}\left(n_{k / 2}\right)\right)$.

Core properties

and illustrations for applications

Datasets used for the experiments

Introduction

useful

properties
and
definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core

properties and
illustrations for
applications
Results and Discussion

We used the following datasets from Stanford's library SNAP, those datasets are social networks, such as collaboration networks :

Network Name	Nodes	Edges	$k_{\max }$	$\|\mathcal{C}\|$
Email-Enron	33,696	180,811	43	275
DBLP (weighted)	$1,088,681$	$4,512,205$	258	4

Comparing edge-connectivity cores and degree cores (first case)

Introduction useful properties and definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core

properties and
illustrations for applications Discussion

We noticed while experimenting two tendances in the edge connectivity core production :

Comparing edge-connectivity cores and degree cores (second case)

Introduction useful properties and definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core

 properties and illustrations for applicationsResults and Discussion

- Core decompositions for the DBLP (1999 - 2016) dataset

Further study

As we notice, the edge-connectivity cores are either very similar to the deepest k-core very fast, either very similar to the corresponding k -core. This, especially for the first case, can problematic as the time to compute the whole edge connectivity cores decomposition is very slow, even with our algorithm.

Thankfully, since the complexity of our approche is depending on the size of the $(k / 2)^{t h}$-core, the algorithm can work well even on very large datasets.

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 42-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Illustration of the first behaviour (EmailEnron)

and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 40-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Illustration of the first behaviour (EmailEnron)

and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 38-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 37-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 36-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 34-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications
Results and
Discussion

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 32-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 31-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and
Discussion

Illustration of the first behaviour (EmailEnron)

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications
Results and
Discussion

Figure - Enron 28-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction

useful

 properties and definitions for the k-edge connectivity degeneracyAn efficient algorithm for the k-edge connectivity cores

Core

properties
and
illustrations for applications

Results and Discussion

Figure - Enron 27-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction

useful

 properties and definitions for the k-edge connectivity degeneracyAn efficient algorithm for the k-edge connectivity cores

Core

properties
and
illustrations for
applications
Results and Discussion

Figure - Enron 26-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Introduction useful properties and definitions for the k-edge connectivity degeneracy
An efficient algorithm for the k-edge connectivity cores

Core

properties
and
illustrations for
applications
Results and Discussion

Figure - Enron 24-core (blue) and 22-edge-connectivity core (red)

Illustration of the first behaviour (EmailEnron)

Core

properties
and
illustrations
for
applications

Illustration of the second behaviour (DBLP)

and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores

Core

properties
and
illustrations
for
applications
Results and

Getting good spreaders

Introduction useful

Since the returned subgraphs are highly connected, we assume that if one node of one of these subgraphs is infected then the infection will spread very fast to the rest of this subgraph.

Hence we had the following idea :
\rightarrow we keep the contracted subgraphs at each step of the algorithm, previously in dark red (for the first ones found) to lighter red (for the last ones encountered) and aim to extract the separating edges. Finally we keep the nodes at the end of these edges with the higher degrees.

Results

 and Discussion

 and Discussion}

Evaluation

Introduction
useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient algorithm for the k-edge connectivity
cores

Core
properties
and
illustrations for
applications
Results and Discussion

We will evaluate the spreaders we found with the Susceptible-Infected-Recovered (SIR) model on the previously presented datasets :

Network Name	Nodes	Edges	$k_{\max }$	$T_{\max }$	$\|\mathcal{C}\|$	$\|\mathcal{T}\|$	β
Email-Enron	33,696	180,811	43	22	275	45	0.01
Wiki-Vote	7,066	100,736	53	23	336	50	0.009

Experimental Set-up

Simulation of the spreading process

Introduction useful properties and definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core
properties and
illustrations for
applications

Results and

 Discussion
Susceptible-Infected-Recovered (SIR) model

(1) Set candidate node as infected (I state)
(2) An infected node can infect its susceptible neighbors with probability β
(3) An infected node can recover (stop being active) with probability γ
(4) Count the total number of infected individuals (avg. over multiple runs)

State diagram of the SIR model

The SIR model

Introduction useful properties and definitions for the k-edge connectivity degeneracy

An efficient algorithm for the k-edge connectivity cores

Core properties and
illustrations for
applications
Results and Discussion

Susceptible-Infected-Recovered (SIR) model
(1) Set β close to the epidemic threshold $\tau=\frac{1}{\lambda_{1}}$

- λ_{1} being the largest eigenvalue of \mathbf{A} (adjacency matrix)
(2) Set $\gamma=0.8$

State diagram of the SIR model
[Anderson et al., Oxford university press '92]

Stepwise evalution of spreading performance

Introduction useful
properties
and
definitions
for the
k-edge
connectivity
degeneracy
An efficient
algorithm for
the k-edge
connectivity
cores
Core
properties
and
illustrations
for
applications

Time Step

	Method	2	4	6	8	10	Final step	Max step
	edge core	21.47	115.13	350.13	428.23	250.93	$2,647.74$	28
Email-	truss	8.44	46.66	204.08	418.77	355.84	$2,596.52$	33
Enron	core	4.78	31.97	152.55	367.28	364.13	$2,465.60$	37
	top degree	6.89	34.13	155.48	360.89	357.08	$2,471.67$	36
	edge core	5.15	12.15	24.72	40.96	52.74	626.09	34
Wiki-	truss	2.92	6.92	15.27	28.73	42.46	560.66	52
Vote	core	1.92	4.78	10.65	20.66	32.40	466.01	57
	top degree	2.43	5.46	12.05	23.05	35.55	502.88	62

Discutions and future work

As we saw, the cores produced by the edge-connectivity have a lot of very interesting properties, such as the ability to produce very good spreaders.

Nevertheless, another application of this work can focus on influence maximisation problems. For instance one can find a sufficiently dense/big core and try a greedy algorithm in order to find the most influencial nodes in those subgraphs (lets say one for each disconnected subgraph) with the intuition that it will influence very quickly the rest of the subgraph, hence maximizing influence localy.

Thank
You!

Introduction
Béla Bollobás, Modern graph theory, vol. 184, Springer Science \& Business Media, 2013.

Harold N Gabow, A matroid approach to finding edge connectivity and packing arborescences, Journal of Computer and System Sciences 50 (1995), no. 2, 259-273.
國 Michael R. Garey and David S. Johnson, Computers and intractability; a guide to the theory of np-completeness, W. H. Freeman \& Co., New York, NY, USA, 1990.

國 Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis, D-cores : Measuring collaboration of directed graphs based on degeneracy, Data Mining (ICDM), 2011 IEEE 11th International Conference on, IEEE, 2011, pp. 201-210.

Introduction
David R. Karger and Clifford Stein, A new approach to the minimum cut problem, J. ACM 43 (1996), no. 4, 601-640.

Ramir Khuller and Barna Saha, On finding dense subgraphs, Automata, Languages and Programming (2009), 597-608.

囯 Karl Menger, Zur allgemeinen kurventheorie, Fundamenta Mathematicae 10 (1927), no. 1, 96-115.
(图 Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis Vazirgiannis, Spread it good, spread it fast : Identification of influential nodes in social networks, Proceedings of the 24th International Conference on World Wide Web (New York, NY, USA), WWW '15 Companion, ACM, 2015, pp. 101-102.

