
Approximating CSPs in more than

polynomial time

Michael Lampis
Université Paris Dauphine

May 31, 2018

ESIGMA Kick-off Meeting

Overview

Approximating CSPs 2 / 16

Things you will hear in this talk:

• Max-CSPs such as Max-SAT, Max-Cut, etc. are Hard!

• . . . even to approximate!

• To solve them we need to:

• Take into account the input stucture (how?)

• Invest a little more than polynomial time (how much?)

• Allow some sub-optimal solutions (but almost optimal!)

Overview

Approximating CSPs 2 / 16

Things you will hear in this talk:

• Max-CSPs such as Max-SAT, Max-Cut, etc. are Hard!

• . . . even to approximate!

• To solve them we need to:

• Take into account the input stucture (how?)

• Invest a little more than polynomial time (how much?)

• Allow some sub-optimal solutions (but almost optimal!)

Results based on two papers:

• ”Sub-Exponential Approximation Schemes for CSPs: From Dense to

Almost-Sparse.”, Dimitris Fotakis, Michael Lampis, and Vangelis Th.

Paschos, STACS ’16.

• ”Complexity and Approximability for Parameterized CSPs.”, Holger

Dell, Eunjung Kim, Michael Lampis, Valia Mitsou, Tobias Moemke,

IPEC’15 (Algorithmica ’17).

The Big Picture

Approximating CSPs 3 / 16

The Big Picture

Approximating CSPs 3 / 16

• We want to solve NP-hard optimization problems

• . . . in this talk: Max-SAT, Max-Cut, Max-CSP in general

The Big Picture

Approximating CSPs 3 / 16

• We want to solve NP-hard optimization problems

• . . . in this talk: Max-SAT, Max-Cut, Max-CSP in general

The Big Picture

Approximating CSPs 3 / 16

• We want to solve NP-hard optimization problems

• . . . in this talk: Max-SAT, Max-Cut, Max-CSP in general

Definition of “Solve”:

• Time-efficiency (polynomial time)

• Optimality

• Generality (handles all instances)

The Big Picture

Approximating CSPs 3 / 16

• We want to solve NP-hard optimization problems

• . . . in this talk: Max-SAT, Max-Cut, Max-CSP in general

Definition of “Solve”:

• Time-efficiency (polynomial time)

• Optimality

• Generality (handles all instances)

Main Challenge: Under standard complexity assumptions (P6=NP, ETH),

no algorithm achieves all three!

• In fact, tight hardness known for many problems:

• Max-3-SAT cannot be (7/8− ǫ)-approximated, cannot be solved in

2o(n).

Research Direction:

• Trade Time for Generality and/or Optimality

Dead on Arrival?

Approximating CSPs 4 / 16

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

Dead on Arrival?

Approximating CSPs 4 / 16

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

Probably won’t work

(at least for Max-3-SAT)

Dead on Arrival?

Approximating CSPs 4 / 16

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

Almost-linear PCPs (Moshkovitz& Raz) and P-time hardness (Håstad)

give tight inapproximability for Max-3-SAT even for 2n
1−ǫ

time.

(Credit: Dana Moshkovitz)

Dead on Arrival?

Approximating CSPs 4 / 16

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

If this is the “normal” behavior of APX problems, what’s the point of

sub-exponential approximation?

• Is this the “normal” behavior?

• What else can we do?

Strategy

Approximating CSPs 5 / 16

• We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under

ETH).

• We will therefore try to get something else:

Strategy

Approximating CSPs 5 / 16

• We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under

ETH).

• We will therefore try to get something else:

An island of tractability:

• Max-k-CSP admits a PTAS (a (1− ǫ)-approximation for all ǫ > 0) for

dense instances

• (Arora, Karger, Karpinski ’99), (Fernandez de la Vega ’96)

Strategy

Approximating CSPs 5 / 16

• We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under

ETH).

• We will therefore try to get something else:

An island of tractability:

• Max-k-CSP admits a PTAS (a (1− ǫ)-approximation for all ǫ > 0) for

dense instances

• (Arora, Karger, Karpinski ’99), (Fernandez de la Vega ’96)

Extending the island:

• We give a version of the AKK scheme which can handle sparser

instances, at the expense of needing sub-exponential time.

• Our scheme provides a smooth trade-off

• For dense instances we get a PTAS

• As instances gradually get more sparse, we need more time. . .

• . . . until our scheme does not work any more

Summary of results

Approximating CSPs 6 / 16

For any ǫ > 0, δ ∈ [0, 1] and fixed k ≥ 2 we have the following:

• Given a Max-k-CSP instance with nk−1+δ constraints

• We can produce a (1− ǫ)-approximate solution

• In time 2O(n1−δ lnn/ǫ3)

Summary of results

Approximating CSPs 6 / 16

For any ǫ > 0, δ ∈ [0, 1] and fixed k ≥ 2 we have the following:

• Given a Max-k-CSP instance with nk−1+δ constraints

• We can produce a (1− ǫ)-approximate solution

• In time 2O(n1−δ lnn/ǫ3)

• Note: This includes the AKK PTAS as a special case (δ = 1)

• Advantage: we provide a smooth trade-off from the “easy case”

(dense instances) to more general cases

Summary of results

Approximating CSPs 6 / 16

For any ǫ > 0, δ ∈ [0, 1] and fixed k ≥ 2 we have the following:

• Given a Max-k-CSP instance with nk−1+δ constraints

• We can produce a (1− ǫ)-approximate solution

• In time 2O(n1−δ lnn/ǫ3)

• Note: This includes the AKK PTAS as a special case (δ = 1)

• Advantage: we provide a smooth trade-off from the “easy case”

(dense instances) to more general cases

• We will also give some “tight” bounds, ruling out natural possible

improvements.

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

We are given a dense graph for which we want to find a large cut

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

Randomly select a “sample” of its vertices

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

Guess their correct partition

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

For every vertex outside the sample, examine its neighbors in the sample

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

Greedily set its value depending on this neighborhood

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

• The sample we select has size O(logn) (hidden constants depend on

degree and ǫ)
• → running time nO(1) (will try all partitions of sample)

Basic scheme (Max Cut)

Approximating CSPs 7 / 16

• The sample we select has size O(logn) (hidden constants depend on

degree and ǫ)
• → running time nO(1) (will try all partitions of sample)

Why this works (intuitively):

• Because graph is dense → every vertex outside sample S has many

neighbors in S
• → examining N(u) ∩ S is (whp) a good representation of N(u) in the

optimal solution

• If a vertex in V \ S has >> 50% of its neighbors on one side in the

optimal solution, it will (whp) have >> 50% of its neighbors on that side

in S

(Fernandez de la Vega ’96)

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

(i,j)∈E
xi(1− xj) + xj(1− xi)

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max-2-SAT:

max
∑

(i,j)∈C
xi(1− xj) + xj(1− xi) + xixj

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max-3-SAT:

max
∑

(i,j,k)∈C
xi(1− xj)(1− xk) + (1− xi)xj(1− xk) + . . .+ xixjxk

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max-k-CSP:

max p(~x)

where p() is a degree k polynomial.

The AKK scheme offers a PTAS that finds an assignment almost

maximizing p when the polynomial has at least Ω(nk) terms.

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

(i,j)∈E
xi(1− xj) + xj(1− xi)

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

(i,j)

cijxixj +
∑

i

cixi + C

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

i

xiri

where ri(~x− xi) is the (linear) polynomial of the remaining variables I

obtain if I factor out xi.

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

i

xiri

where ri(~x− xi) is the (linear) polynomial of the remaining variables I

obtain if I factor out xi.

Main idea: Estimate the values of the ri’s using brute force on a small

sample.

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

i

xiri

s.t.

r̂i − ǫn ≤
∑

j∈N(i) cijxj ≤ r̂i + ǫn

where r̂i is the estimate I have for ri.

This is now a linear program.

General scheme (Max-k-CSP)

Approximating CSPs 8 / 16

Max Cut:

max
∑

i

xiri

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Sub-exponential Extension (Max Cut)

Approximating CSPs 9 / 16

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Sub-exponential Extension (Max Cut)

Approximating CSPs 9 / 16

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Main idea: Use larger sample

Sub-exponential Extension (Max Cut)

Approximating CSPs 9 / 16

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Main idea: Use larger sample

• Suppose graph has average degree ∆ = nδ

• We sample n logn
∆ = n1−δ logn vertices

• → whp r̂i ≈ ri.

Sub-exponential Extension (Max Cut)

Approximating CSPs 9 / 16

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Main idea: Use larger sample
We are almost done!

• Must prove sample size enough for r̂i

• Pitfall: Additive error ǫn no longer negligible!

• Must prove rounding step still works

Don’t worry, it all works!

General scheme k ≥ 3

Approximating CSPs 10 / 16

Summary so far k = 2:

• AKK: Average degree Ω(n), sample of O(logn) vertices

• Extension: Average degree nδ, sample of n1−δ logn
• → in time 2

√
n can “solve” Max-Cut for |E| ≥ n1.5

General scheme k ≥ 3

Approximating CSPs 10 / 16

Summary so far k = 2:

• AKK: Average degree Ω(n), sample of O(logn) vertices

• Extension: Average degree nδ, sample of n1−δ logn
• → in time 2

√
n can “solve” Max-Cut for |E| ≥ n1.5

How about Max-3-SAT?

• In poly time can solve instances with n3 clauses

• In 2
√
n time can solve instances with . . . clauses?

General scheme k ≥ 3

Approximating CSPs 10 / 16

Summary so far k = 2:

• AKK: Average degree Ω(n), sample of O(logn) vertices

• Extension: Average degree nδ, sample of n1−δ logn
• → in time 2

√
n can “solve” Max-Cut for |E| ≥ n1.5

How about Max-3-SAT?

• In poly time can solve instances with n3 clauses

• In 2
√
n time can solve instances with n2.5 clauses

General scheme k ≥ 3

Approximating CSPs 10 / 16

AKK scheme for k ≥ 3

• Write p(~x) as
∑

i xiri
• Each ri has degree k − 1
• Write ri =

∑
j xjrij

• Each rij has degree k − 2
• . . .

• Until we get to linear → write ILP

General scheme k ≥ 3

Approximating CSPs 10 / 16

AKK scheme for k ≥ 3

• Write p(~x) as
∑

i xiri
• Each ri has degree k − 1
• Write ri =

∑
j xjrij

• Each rij has degree k − 2
• . . .

• Until we get to linear → write ILP

Note: In order for this to work, all rij... polynomials must be dense

• This is true if original polynomial was dense.

General scheme k ≥ 3

Approximating CSPs 10 / 16

AKK scheme for k ≥ 3

• Write p(~x) as
∑

i xiri
• Each ri has degree k − 1
• Write ri =

∑
j xjrij

• Each rij has degree k − 2
• . . .

• Until we get to linear → write ILP

• In our scheme, if p has nk−1+δ terms

• ri has nk−2+δ terms

• rij has nk−3+δ terms

• . . .

It seems that the “right” density to require is nk−1+δ?

General scheme – summary

Approximating CSPs 11 / 16

• Input: Max-k-CSP instance with nk−1+δ constraints

• Algorithm:

• Sample 2n
1−δ logn/ǫ3 variables, guess their value

• Write CSP as a polynomial optimization problem

• Estimate non-linear coefficients using sample

• Solve fractional LP

• Round solution

General scheme – summary

Approximating CSPs 11 / 16

• Input: Max-k-CSP instance with nk−1+δ constraints

• Algorithm:

• Sample 2n
1−δ logn/ǫ3 variables, guess their value

• Write CSP as a polynomial optimization problem

• Estimate non-linear coefficients using sample

• Solve fractional LP

• Round solution

• Works for any CSP (for fixed k)

• Covers “all instances” for k = 2

General scheme – summary

Approximating CSPs 11 / 16

• Input: Max-k-CSP instance with nk−1+δ constraints

• Algorithm:

• Sample 2n
1−δ logn/ǫ3 variables, guess their value

• Write CSP as a polynomial optimization problem

• Estimate non-linear coefficients using sample

• Solve fractional LP

• Round solution

• Works for any CSP (for fixed k)

• Covers “all instances” for k = 2

Can we do better?

• Smaller sample/faster running time?

• Handle k ≥ 3 better?

Summary – with a picture

Approximating CSPs 12 / 16

Complexity/Density trade-off for Max-k-CSP

Summary – with a picture

Approximating CSPs 12 / 16

Possible Improvements? Faster? More general?

Density lower bound

Approximating CSPs 13 / 16

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Density lower bound

Approximating CSPs 13 / 16

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

In English: For density less than nk−1 we need exponential time to get

(1− ǫ)-approximation.

Density lower bound

Approximating CSPs 13 / 16

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V | = n
and m = O(|V |).

Density lower bound

Approximating CSPs 13 / 16

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V | = n
and m = O(|V |).
Proof: (k = 3)

• Add n new variables y1, . . . , yn
• For each clause (xi ∨ xj), for each k ∈ {1, . . . , n} we construct the

clauses (xi ∨ xj ∨ yk) and (xi ∨ xj ∨ ¬yk)
• Gap remains!

• Number of clauses ≈ n2

Density lower bound

Approximating CSPs 13 / 16

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V | = n
and m = O(|V |).
Proof: (k = 3)

• Add n new variables y1, . . . , yn
• For each clause (xi ∨ xj), for each k ∈ {1, . . . , n} we construct the

clauses (xi ∨ xj ∨ yk) and (xi ∨ xj ∨ ¬yk)
• Gap remains!

• Number of clauses ≈ n2

Reduction similar for k > 3

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

In English: Our sample size is optimal. For density nδ we need time

2n
1−δ

.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on instances with |V | = n
and |E| = O(|V |).

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

• A constant gap remains for any ∆
• |V ′| = n∆, |E| = n∆2, Avg. degree = ∆
• If we cound do better than 2|V

′|/∆ then ¬ETH

Running time lower bound

Approximating CSPs 14 / 16

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

• A constant gap remains for any ∆
• |V ′| = n∆, |E| = n∆2, Avg. degree = ∆
• If we cound do better than 2|V

′|/∆ then ¬ETH

• Bonus: The two reductions compose! Optimal running times

everywhere!

Conclusions

Approximating CSPs 15 / 16

• Density is a crucial parameter for approximating Max-k-CSP

• Especially useful in sub-exponential setting

• Smooth trade-off between performance and generality

• “Tight” bounds

• Lesson: Don’t forget to take into account input structure!

Leveraging Structure to Solve CSP

Must take into account that input may have some useful
properties (otherwise problem too hard!)

So far, we have used simple properties (density)

Time to measure structure in a more sophisticated way!

Parameterized Complexity == Trading Time for Generality
Define some distance k from a tractable case (distance from
triviality)
Try to produce algorithm whose performance slowly
degenerates as k increases.

Use tools from Graph Theory to describe input structure.

Valia Mitsou Complexity & Approximability for Parameterized CSP 1 / 11

Structural CSP

Define some graph structure of φ.

Study CSPs for special graph classes.

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most times is
NP-complete).

Acyclicity: Start from the leaves and w rk your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Structural CSP

Define some graph structure of φ.

Study CSPs f r special graph classes.

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most times is
NP-complete).

Acyclicity: Start from the leaves and w rk your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Structural CSP

Define some graph structure of φ.
Study CSPs f r special graph classes.

Incidence graph representation of a CSP

(Unsigned) variables and constraints are represented by
vertices;

a constraint vertex is connected to a variable vertex iff the
corresponding constraint involves the corresponding variable.

Figure: The incidence graph representation of the previous formula
(¬x ∨ z) ∧ (x ∨ y ∨ ¬w) ∧ (¬z ∨ w).

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most times is
NP-complete).
Acyclicity: Start from the leaves and w rk your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Structural CSP

Define some graph structure of φ.

Study CSPs for special graph classes.

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most times is
NP-complete).

Acyclicity: Start from the leaves and w rk your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Structural CSP

Define some graph structure of φ.

Study CSPs f r special graph classes.

Example classes

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

Acyclicity: Start from the leaves and w rk your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Structural CSP

Define some graph structure of φ.

Study CSPs f r special graph classes.

Example classes

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

Acyclicity: Start from the leaves and w rk your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Structural CSP

Define some graph structure of φ.

Study CSPs f r special graph classes.

Example classes

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

Acyclicity: Start from the leaves and work your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 / 11

Distance from being acyclic

Treewidth

Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs ≤ vc : Independent set is acyclic.
tw ≤ fvs + 1:

Make a tree-decomposition of the forest;

Put the fvs in all bags;

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 / 11

Distance from being acyclic

Treewidth

Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs ≤ vc : Independent set is acyclic.
tw ≤ fvs + 1:

Make a tree-decomposition of the forest;

Put the fvs in all bags;

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 / 11

Distance from being acyclic

Treewidth

Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs ≤ vc : Independent set is acyclic.
tw ≤ fvs + 1:

Make a tree-decomposition of the forest;

Put the fvs in all bags;

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 / 11

Distance from being acyclic

Treewidth

Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs ≤ vc : Independent set is acyclic.

tw ≤ fvs + 1:

Make a tree-decomposition of the forest;

Put the fvs in all bags;

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 / 11

Distance from being acyclic

Treewidth

Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs ≤ vc : Independent set is acyclic.
tw ≤ fvs + 1:

Make a tree-decomposition of the forest;

Put the fvs in all bags;

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 / 11

Structural Parameterizations

Parameter map: q ← p (which reads ‘q dominates p’) between
two parameters means that q is bounded when p is bounded.

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 / 11

Structural Parameterizations

Goal: design algorithms for most dominant parameter (hold
downward) and hardness for least dominant (hold upward).

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 / 11

Structural Parameterizations

New approach: study FPT approximations to evade hardness. In
this talk we examine the existence of FPT Approximation Schemes.

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 / 11

Structural Parameterizations

Definition

FPT Approximation Scheme (FPT-AS): ∀ǫ > 0 there is an (1− ǫ)-
approximation algorithm running in time O(f (ǫ, k) · poly(n)).

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 / 11

CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw
∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

We extend W[1]-hardness to incidence
neighb rho d diversit (nd∗).

We also present an FPT-AS for cw∗.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 / 11

CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw
∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

We extend W[1]-hardness to incidence
neighb rho d diversit (nd∗).

We also present an FPT-AS for cw∗.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 / 11

CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw
∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

We extend W[1]-hardness to incidence
neighb rho d diversit (nd∗).

We also present an FPT-AS for cw∗.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 / 11

CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw
∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

We extend W[1]-hardness to incidence
neighb rho d diversit (nd∗).

We also present an FPT-AS for cw∗.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 / 11

CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw
∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].
→ We extend W[1]-hardness to incidence
neighborhood diversity (nd∗).

We also present an FPT-AS for cw∗.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 / 11

CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw
∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].
→ We extend W[1]-hardness to incidence
neighborhood diversity (nd∗).
→ We also present an FPT-AS for cw∗.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 / 11

On the positive side. . .

Theorem

MaxCNFSat parameterized by cw
∗ admits an FPT-AS.

Reminder

FPT-AS (FPT Approximation Scheme) f r a maximization problem
parameterized by k : ∀ǫ > there exists an (1− ǫ)-approximation
algorithm running in O(f (ǫ, k) · poly(n)).

Valia Mitsou Complexity & Approximability for Parameterized CSP 6 / 11

On the positive side. . .

Theorem

MaxCNFSat parameterized by cw
∗ admits an FPT-AS.

Reminder

FPT-AS (FPT Approximation Scheme) for a maximization problem
parameterized by k : ∀ǫ > 0 there exists an (1− ǫ)-approximation
algorithm running in O(f (ǫ, k) · poly(n)).

Valia Mitsou Complexity & Approximability for Parameterized CSP 6 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

Arrange the clauses in increasing order of arity (0 to a).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

Arrange the clauses in increasing order of arity (0 to a).
Split them into big (arity at least g(ǫ)), small (arity at most g ′(ǫ),
and medium.
Consider the following cases:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are big:

ignore small clauses;

a random assignment satisfies ≥ (1− ǫ)(1− −g(ǫ)) ·m
clauses (with high probability).

Since m ≥ OPT , SOL ≥ (1− ǫ′)OPT , for some ǫ′

depending on ǫ.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are big:

ignore small clauses;

a random assignment satisfies ≥ (1− ǫ)(1− −g(ǫ)) ·m
clauses (with high probability).

Since m ≥ OPT , SOL ≥ (1− ǫ′)OPT , for some ǫ′

depending on ǫ.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are big:

ignore small clauses;

a random assignment satisfies ≥ (1− ǫ)(1− 2−g(ǫ)) ·m
clauses (with high probability).

Since m ≥ OPT , SOL ≥ (1− ǫ′)OPT , for some ǫ′

depending on ǫ.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are big:

ignore small clauses;

a random assignment satisfies ≥ (1− ǫ)(1− 2−g(ǫ)) ·m
clauses (with high probability).

Since m ≥ OPT , SOL ≥ (1− ǫ′)OPT , for some ǫ′

depending on ǫ.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are small:

ignore large clauses;

degree on one side of the incidence graph is bounded
no large biclique subgraphs;

By [Gurski, Wanke 2000], the incidence graph has bounded
treewidth solve optimally the remaining small clauses;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are small:

ignore large clauses;

degree on one side of the incidence graph is bounded
no large biclique subgraphs;

By [Gurski, Wanke 2000], the incidence graph has bounded
treewidth solve optimally the remaining small clauses;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are small:

ignore large clauses;

degree on one side of the incidence graph is bounded
→ no large biclique subgraphs;

By [Gurski, Wanke 2000], the incidence graph has bounded
treewidth solve optimally the remaining small clauses;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) all clauses are small:

ignore large clauses;

degree on one side of the incidence graph is bounded
→ no large biclique subgraphs;

By [Gurski, Wanke 2000], the incidence graph has bounded
treewidth → solve optimally the remaining small clauses;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1 ǫ

neighb rs in Y (call this set B ′).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:

variable occurences(B) ≥ |B | · D = m·d
ǫ2

;

variable occurences(S) ≤ |S | · d ≤ m · d .

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1 ǫ

neighb rs in Y (call this set B ′).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:

variable occurences(B) ≥ |B | · D = m·d
ǫ2

;

variable occurences(S) ≤ |S | · d ≤ m · d .

→ ∃y ∈ V that appears 1/ǫ2 more times in B than in S .

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1 ǫ

neighb rs in Y (call this set B ′).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:
From the previous observation, we iteratively create
a set of variables Y with the following properties:

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1 ǫ

neighb rs in Y (call this set B ′).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:
From the previous observation, we iteratively create
a set of variables Y with the following properties:

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1 ǫ

neighb rs in Y (call this set B ′).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:
From the previous observation, we iteratively create
a set of variables Y with the following properties:

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1/ǫ
neighbors in Y (call this set B ′).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

B: Clauses of arity ≥ D = g(ǫ).

S: Clauses of arity ≤ d = g′(ǫ).

D = d · ǫ4

(Almost) no medium-size clauses and B , S are balanced:
From the previous observation, we iteratively create
a set of variables Y with the following properties:

Y hits few clauses of S (call this set S ′);

at most ǫ2 clauses of B have ≤ 1/ǫ
neighbors in Y (call this set B ′).

Randomly assigning Y should satisfy whp ≥
(1 − ǫ2) · (1 − 2−1/ǫ) of B \ B ′, while S \ S ′

can be solved optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

Lemma

We can always find a small set M (|M| ≤ ǫ ·m) of medium-size
clauses (arities d ∼ D).

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

Lemma

We can always find a small set M (|M| ≤ ǫ ·m) of medium-size
clauses (arities d ∼ D).

Define 1/ǫ + 1 independent intervals of medium-arity clauses
(right-left bounds are an L(= ǫ−4)-factor apart).

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

Lemma

We can always find a small set M (|M| ≤ ǫ ·m) of medium-size
clauses (arities d ∼ D).

There should be at least one interval [d ,D] (D = L ·d) containing
≤ ǫ ·m clauses.

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 / 11

An FPT-AS for MaxCNFSat parameterized by cw
∗

Lemma

We can always find a small set M (|M| ≤ ǫ ·m) of medium-size
clauses (arities d ∼ D).

Removing them divides the clauses into small (S) and big (B).

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;

Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;

G∗

S has bounded treewidth solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .

Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

The algorithm

Find interval [d,D] of at most ǫ ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ǫ2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B .

If at most |B | ≤ ǫ2 ·m

Ignore B ;
G∗

S has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B .
Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 / 11

Conclusions

Trading Time-Generality-Approximation

Crucial: Take into account input structure!

Long-term Goal: Map out complete trade-offs

For each desired approximation ratio, for each class of inputs
(defined by k), what is the correct running time?

A concrete problem for ESIGMA

Use these techniques for approximate formula
representation (aka formula learning/knowledge
compilation).

What are the key measures of input structure?

Valia Mitsou Complexity & Approximability for Parameterized CSP 10 / 11

Thank you!

Questions?

Valia Mitsou Complexity & Approximability for Parameterized CSP 11 / 11

	Overview
	The Big Picture
	Dead on Arrival?
	Strategy
	Summary of results
	Basic scheme (Max Cut)
	General scheme (Max-k-CSP)
	Sub-exponential Extension (Max Cut)
	General scheme k3
	General scheme – summary
	Summary – with a picture
	Density lower bound
	Running time lower bound
	Conclusions
	Thank you!

