Approximating CSPs in more than
polynomial time

Michael Lampis
Université Paris Dauphine

May 31, 2018
ESIGMA Kick-off Meeting

Overview

Things you will hear in this talk:

e Max-CSPs such as Max-SAT, Max-Cut, etc. are Hard!
e ...even to approximate!
e [0 solve them we need to:

e Take into account the input stucture (how?)
e Invest a little more than polynomial time (how much?)
e Allow some sub-optimal solutions (but almost optimal!)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 2/16

Overview

Things you will hear in this talk:

e Max-CSPs such as Max-SAT, Max-Cut, etc. are Hard!
e ...even to approximate!
e [0 solve them we need to:

e Take into account the input stucture (how?)
e Invest a little more than polynomial time (how much?)
e Allow some sub-optimal solutions (but almost optimal!)

Results based on two papers:

e "Sub-Exponential Approximation Schemes for CSPs: From Dense to
Almost-Sparse.”, Dimitris Fotakis, Michael Lampis, and Vangelis Th.
Paschos, STACS '16.

e "Complexity and Approximability for Parameterized CSPs.”, Holger
Dell, Eunjung Kim, Michael Lampis, Valia Mitsou, Tobias Moemke,
IPEC’15 (Algorithmica '17).

DAUPHI

UNIVERSITE PARIS

Approximating CSPs 2/16

The Big Picture

Approximating CSPs

The Big Picture

e We want to solve NP-hard optimization problems
e ...inthis talk: Max-SAT, Max-Cut, Max-CSP in general

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 3/16

The Big Picture

e We want to solve NP-hard optimization problems
e ...inthis talk: Max-SAT, Max-Cut, Max-CSP in general

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 3/16

The Big Picture

e We want to solve NP-hard optimization problems
e ...inthis talk: Max-SAT, Max-Cut, Max-CSP in general

Definition of “Solve”:

e Time-efficiency (polynomial time)
e Optimality
e Generality (handles all instances)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 3/16

The Big Picture

e We want to solve NP-hard optimization problems
e ...inthis talk: Max-SAT, Max-Cut, Max-CSP in general

Definition of “Solve”:

e Time-efficiency (polynomial time)
e Optimality
e Generality (handles all instances)

Main Challenge: Under standard complexity assumptions (P#NP, ETH),
no algorithm achieves all three!

e In fact, tight hardness known for many problems:

e Max-3-SAT cannot be (7/8 — ¢)-approximated, cannot be solved in
7o)

Research Direction:
e Trade Time for Generality and/or Optimality

Approximating CSPs 3/16

Dead on Arrival?

e Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in
sub-exponential time?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 4/16

Dead on Arrival?

e Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in
sub-exponential time?

Probably won’t work
=

SN
/ . (Q

(at least for Max-3-SAT)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 4/16

Dead on Arrival?

e Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in
sub-exponential time?

Time complexity

M
exponential R_‘
Exponential
hardness
Sharp —
threshoid
noM1)

polynomial 3 :
|"‘- ~~ -"l | Approximation

random setting algorithm ?/’8 1 factor

Almost-linear PCPs (Moshkovitz& Raz) and P-time hardness (Hastad)
give tight inapproximability for Max-3-SAT even for 2% time.

(Credit: Dana Moshkovitz)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 4/16

Dead on Arrival?

e Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in
sub-exponential time?

If this is the “normal” behavior of APX problems, what'’s the point of
sub-exponential approximation?

e Is this the “normal” behavior?
e What else can we do?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 4/16

e \We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under
ETH).
e We will therefore try to get something else:

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 5/16

e \We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under
ETH).
e We will therefore try to get something else:

An island of tractability:

e Max-k-CSP admits a PTAS (a (1 — ¢)-approximation for all e > 0) for
dense instances
e (Arora, Karger, Karpinski '99), (Fernandez de la Vega '96)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 5/16

e \We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under
ETH).
e We will therefore try to get something else:

An island of tractability:

e Max-k-CSP admits a PTAS (a (1 — ¢)-approximation for all e > 0) for
dense instances
e (Arora, Karger, Karpinski '99), (Fernandez de la Vega '96)

Extending the island:

e We give a version of the AKK scheme which can handle sparser
instances, at the expense of needing sub-exponential time.
e Our scheme provides a smooth trade-off

e For dense instances we get a PTAS
e As instances gradually get more sparse, we need more time. ..
e ...until our scheme does not work any more

Approximating CSPs 5/16

Summary of results

Forany e > 0, § € [0, 1] and fixed k£ > 2 we have the following:

e Given a Max-k-CSP instance with n*—119 constraints

e We can produce a (1 — ¢)-approximate solution
o Intime 20(n'~°Inn/e)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 6/16

Summary of results

Forany e > 0, § € [0, 1] and fixed k£ > 2 we have the following:

e Given a Max-k-CSP instance with n*—119 constraints

e We can produce a (1 — ¢)-approximate solution
o Intime 20(n'~°Inn/e)

e Note: This includes the AKK PTAS as a special case (6 = 1)
e Advantage: we provide a smooth trade-off from the “easy case”
(dense instances) to more general cases

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 6/16

Summary of results

Forany e > 0, § € [0, 1] and fixed k£ > 2 we have the following:

e Given a Max-k-CSP instance with n*—119 constraints

e We can produce a (1 — ¢)-approximate solution
o Intime 20(n'~°Inn/e)

e Note: This includes the AKK PTAS as a special case (6 = 1)
e Advantage: we provide a smooth trade-off from the “easy case”
(dense instances) to more general cases

e We will also give some “tight” bounds, ruling out natural possible
improvements.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 6/16

Basic scheme (Max Cut)

We are given a dense graph for which we want to find a large cut

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 7/16

Basic scheme (Max Cut)

Randomly select a “sample” of its vertices

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 7/16

Basic scheme (Max Cut)

Guess their correct partition

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 7/16

Basic scheme (Max Cut)

For every vertex outside the sample, examine its neighbors in the sample

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 7/16

Basic scheme (Max Cut)

Greedily set its value depending on this neighborhood

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 7/16

Basic scheme (Max Cut)

e The sample we select has size O(logn) (hidden constants depend on
degree and ¢)
e — running time n°W (will try all partitions of sample)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 7/16

Basic scheme (Max Cut)

e The sample we select has size O(logn) (hidden constants depend on
degree and ¢)
e — running time n°W (will try all partitions of sample)

Why this works (intuitively):

e Because graph is dense — every vertex outside sample S has many
neighbors in .S

e — examining N(u)N S is (whp) a good representation of N(u) in the
optimal solution

e IfavertexinV \ S has >> 50% of its neighbors on one side in the
optimal solution, it will (whp) have >> 50% of its neighbors on that side
In .S

(Fernandez de la Vega '96)

Approximating CSPs 7/16

General scheme (Max-k-CSP)

Max Cut:

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max-2-SAT:

max Z TS =SS A= S
(4,5)eC

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max-3-SAT:

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max-k-CSP:

max p()

where p() is a degree k polynomial.

The AKK scheme offers a PTAS that finds an assignment almost
maximizing p when the polynomial has at least Q(n*) terms.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max Cut:

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max Cut:

max Z Cij T T + Z c;x; + C

(4,5) ¢

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max Cut:
Imax Z ;T

where r; (¥ — z;) is the (linear) polynomial of the remaining variables |
obtain if | factor out z;.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max Cut:
max Z ;175

where r; (¥ — z;) is the (linear) polynomial of the remaining variables |
obtain if | factor out z;.

Main idea: Estimate the values of the r;’s using brute force on a small
sample.

DAUPHINE

Approximating CSPs INIERSITE PATE 8/16

General scheme (Max-k-CSP)

Max Cut:

max Z r;T;
()
S.1.

A

T — €n < ZjEN(i) CijTj < T+ en

where 7; is the estimate | have for r;.

This is now a linear program.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

General scheme (Max-k-CSP)

Max Cut:
max Z r;T;

Summary of algorithm:
e Estimate the r; values using a sample

e Need large enough sample to guarantee +; =~ r;
e Thisturns QIP — ILP

e Solve fractional relaxation of ILP
e Round solution

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 8/16

Sub-exponential Extension (Max Cut)

Summary of algorithm:
e Estimate the r; values using a sample

e Need large enough sample to guarantee #; =~ r;
e Thisturns QIP — ILP

e Solve fractional relaxation of ILP
e Round solution

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 9/16

Sub-exponential Extension (Max Cut)

Summary of algorithm:
e Estimate the r; values using a sample

e Need large enough sample to guarantee #; =~ r;
e Thisturns QIP — ILP

e Solve fractional relaxation of ILP
e Round solution

Main idea: Use larger sample

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 9/16

Sub-exponential Extension (Max Cut)

Summary of algorithm:
e Estimate the r; values using a sample

e Need large enough sample to guarantee #; =~ r;
e Thisturns QIP — ILP

e Solve fractional relaxation of ILP
e Round solution

Main idea: Use larger sample

e Suppose graph has average degree A = n?

nlogn

o We sample 28" = nl=%logn vertices
e —Whp7; ~r;.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 9/16

Sub-exponential Extension (Max Cut)

Summary of algorithm:
e Estimate the r; values using a sample

e Need large enough sample to guarantee #; =~ r;
e Thisturns QIP — ILP

e Solve fractional relaxation of ILP
e Round solution

Main idea: Use larger sample
We are almost done!

e Must prove sample size enough for #;
e Pitfall: Additive error en no longer negligible!

e Must prove rounding step still works

Don’t worry, it all works!

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 9/16

General scheme k& > 3

Summary so far k = 2:

e AKK: Average degree 2(n), sample of O(logn) vertices
e Extension: Average degree n°, sample of n!=%logn
e — intime 2v™ can “solve” Max-Cut for |E| > n!?®

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 10/ 16

General scheme k& > 3

Summary so far k = 2:

e AKK: Average degree 2(n), sample of O(logn) vertices
e Extension: Average degree n°, sample of n!=%logn
e — intime 2v™ can “solve” Max-Cut for |E| > n!?®

How about Max-3-SAT?

e In poly time can solve instances with n? clauses
e In 2V time can solve instances with . .. clauses?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 10/ 16

General scheme k& > 3

Summary so far k = 2:

e AKK: Average degree 2(n), sample of O(logn) vertices
e Extension: Average degree n°, sample of n!=%logn
e — intime 2v™ can “solve” Max-Cut for |E| > n!?®

How about Max-3-SAT?

e In poly time can solve instances with n? clauses
e In 2V™ time can solve instances with n2-> clauses

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 10/ 16

General scheme k& > 3

AKK scheme for k > 3

Write p(¥) as), zir;
Each r; has degree k — 1
Write T = Zj T ;jT44

Each r;; has degree k£ — 2

Until we get to linear — write ILP

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 10/ 16

General scheme k& > 3

AKK scheme for k > 3

Write p(¥) as), zir;
Each r; has degree k — 1
Write T = Zj T ;jT44

Each r;; has degree k£ — 2

Until we get to linear — write ILP

Note: In order for this to work, all r;; . polynomials must be dense

e This is true if original polynomial was dense.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 10/ 16

General scheme k& > 3

AKK scheme for k > 3

o Write p(7) as > _, x;r;

e FEachr; hasdegree k — 1

o Write r; = Zj TiT5j

e Each r;; has degree k — 2

[‘e n

e Until we get to linear — write ILP

e In our scheme, if p has n*~119 terms
e r; has n*=2%° terms

e r1;; has n*=3%9 terms

[

It seems that the “right” density to require is n*—1+0?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 10/ 16

General scheme — summary

e Input: Max-k-CSP instance with n*~119 constraints
e Algorithm:

Sample 2% "1°gn/<* variables, guess their value
Write CSP as a polynomial optimization problem
Estimate non-linear coefficients using sample
Solve fractional LP

Round solution

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 11/16

General scheme — summary

e Input: Max-k-CSP instance with n*~119 constraints
e Algorithm:

Sample 2% "1°gn/<* variables, guess their value
Write CSP as a polynomial optimization problem
Estimate non-linear coefficients using sample
Solve fractional LP

Round solution

e Works for any CSP (for fixed k)
e Covers “all instances” for k = 2

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 11/16

General scheme — summary

e Input: Max-k-CSP instance with n*~119 constraints
e Algorithm:

Sample 2% "1°gn/<* variables, guess their value
Write CSP as a polynomial optimization problem
Estimate non-linear coefficients using sample
Solve fractional LP

Round solution

e Works for any CSP (for fixed k)
e Covers “all instances” for k = 2

Can we do better?

e Smaller sample/faster running time?
e Handle k£ > 3 better?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 11/16

Summary — with a picture

Time

poly(n)

n“t o nf Density

Complexity/Density trade-off for Max-k-CSP

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 12/16

Summary — with a picture

Time
2n
?
-,
7|
poly(n) :
n“t o nf Density

Possible Improvements? Faster? More general?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 12/16

Density lower bound

Theorem: Assuming ETH, for all £ > 3, 3r < 1 s.t. Ve > 0 no algorithm
can r-approximate Max-k-SAT with i < n*¥~1 in time 27"

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 13716

Density lower bound

Theorem: Assuming ETH, for all £ > 3, 3r < 1 s.t. Ve > 0 no algorithm
can r-approximate Max-k-SAT with i < n*¥~1 in time 27"

In English: For density less than n*~! we need exponential time to get
(1 — €)-approximation.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 13/16

Density lower bound

Theorem: Assuming ETH, for all £ > 3, 3r < 1 s.t. Ve > 0 no algorithm
can r-approximate Max-k-SAT with i < n*¥~1 in time 27"

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V| = n
and m = O(|V]).

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 13/16

Density lower bound

Theorem: Assuming ETH, for all £ > 3, 3r < 1 s.t. Ve > 0 no algorithm
can r-approximate Max-k-SAT with i < n*¥~1 in time 27"

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V| = n

and m = O(|V]).

Proof: (k = 3)

e Addn new variables yi,...,yn

e [oreachclause (z; vV z;), foreach k € {1,...,n} we construct the

clauses (z; V z; V yi) and (z; V x; V —yx)
e Gap remains!
e Number of clauses ~ n?

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 13/16

Density lower bound

Theorem: Assuming ETH, for all £ > 3, 3r < 1 s.t. Ve > 0 no algorithm
can r-approximate Max-k-SAT with i < n*¥~1 in time 27"

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V| = n

and m = O(|V]).

Proof: (k = 3)

e Addn new variables yi,...,yn

e [oreachclause (z; vV z;), foreach k € {1,...,n} we construct the

clauses (z; V z; V yi) and (z; V x; V —yx)
e Gap remains!
e Number of clauses ~ n?

Reduction similar for &k > 3

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 13/16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs A

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

In English: Our sample size is optimal. For density n° we need time
2n1—5

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on instances with |V| = n
and |E| = O(|V]).

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with
V| = n.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with
V| = n.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with
V| = n.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with
V| = n.

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with
V| = n.

e A constant gap remains for any A
o |V'|=nA, |E|=nA? Avg. degree = A
e If we cound do better than 2/V'I/2 then —=ETH

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Running time lower bound

Theorem: Assuming ETH, for all 6 € (0,1), 3r < 1 s.t. Ve > 0 no
algorithm can r-approximate Max Cut with |E| = n*9 in time 2" "

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with
V| = n.

e A constant gap remains for any A
o |V'|=nA, |E|=nA? Avg. degree = A
e If we cound do better than 2/V'I/2 then —=ETH

e Bonus: The two reductions compose! Optimal running times
everywhere!

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 14 /16

Conclusions

e Density is a crucial parameter for approximating Max-k-CSP

e Especially useful in sub-exponential setting
e Smooth trade-off between performance and generality
“Tight” bounds

e Lesson: Don't forget to take into account input structure!

M (H) = (37) /B

3987 + 4365 =4 472°
o(+))l

(@)~ (3-(< -)

DAUPHINE

UNIVERSITE PARIS

Approximating CSPs 15/16

Leveraging Structure to Solve CSP

@ Must take into account that input may have some useful
properties (otherwise problem too hard!)

@ So far, we have used simple properties (density)

@ Time to measure structure in a more sophisticated way!

o Parameterized Complexity == Trading Time for Generality
o Define some distance k from a tractable case (distance from
triviality)

e Try to produce algorithm whose performance slowly
degenerates as k increases.

@ Use tools from Graph Theory to describe input structure.

Valia Mitsou Complexity & Approximability for Parameterized CSP 1 /11

Structural CSP

@ Define some graph structure of ¢.

@ Study CSPs for special graph classes.

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 /11

@ Define some graph structure of ¢.

«O> «Fr « = 4 > P NEa

Structural CSP

Incidence graph representation of a CSP

@ (Unsigned) variables and constraints are represented by
vertices;

@ a constraint vertex is connected to a variable vertex iff the
corresponding constraint involves the corresponding variable.

X
c1

z
c2

w
c3

y

Figure: The incidence graph representation of the previous formula
(=xVZ)A(xVyV-w)A(-zVw).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 /11

o Study CSPs for special graph classes.

«40>» «Fr «=)» < > Q>

Structural CSP

Example classes

@ Low degree: Bounding degree of incidence graph doesn't help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 /11

Structural CSP

Example classes

@ Low degree: Bounding degree of incidence graph doesn't help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 /11

Structural CSP

Example classes

@ Low degree: Bounding degree of incidence graph doesn't help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

@ Acyclicity: Start from the leaves and work your way up
(poly-time).

Valia Mitsou Complexity & Approximability for Parameterized CSP 2 /11

Distance from being acyclic

o Treewidth

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 /11

Distance from being acyclic

o Treewidth

o Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 /11

Distance from being acyclic

o Treewidth
@ Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic. Y

)

.
.

o Vertex Cover: Set of vertices whose
removal leaves an independent set.

2.2

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 /11

Distance from being acyclic

o Treewidth

@ Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

o Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs < vc: Independent set is acyclic.

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 /11

Distance from being acyclic

o Treewidth

@ Feedback Vertex Set: Set of vertices
whose removal leaves the graph acyclic.

o Vertex Cover: Set of vertices whose
removal leaves an independent set.

fvs < vc: Independent set is acyclic.
tw < fvs + 1:
@ Make a tree-decomposition of the forest;

@ Put the fvs in all bags;

Valia Mitsou Complexity & Approximability for Parameterized CSP 3 /11

Structural Parameterizations

cw
t
/ mtw N
tw
i nd

fvs y
Nye/

Parameter map: g < p (which reads ‘q dominates p') between
two parameters means that g is bounded when p is bounded.

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 /11

Structural Parameterizations

W-hard

FPT

Goal: design algorithms for most dominant parameter (hold
downward) and hardness for least dominant (hold upward).

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 /11

Structural Parameterizations

NO FPT-AS
\ tw
nd $ nd
fvs
FPT FPT
v

New approach: study FPT approximations to evade hardness. In
this talk we examine the existence of FPT Approximation Schemes.

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 /11

Structural Parameterizations

NO FPT-AS

Definition

FPT Approximation Scheme (FPT-AS): Ve > 0 there is an (1 — €)-
approximation algorithm running in time O(f (e, k) - poly(n)).

Valia Mitsou Complexity & Approximability for Parameterized CSP 4 /11

cw

?

mtw
d\
$ nd
fvs

)/

=] =
Valia Mitsou

Complexity & Approximability for Parameterized CSP 5 /11

DA

CNFSAT and MAXCNFEFSAT

Theorem [Szeider 2004]

MAXCNFSAT parameterized by incidence
treewidth (tw*) is FPT.

FPT /

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 /11

CNFSAT and MAXCNFEFSAT

Theorem [Szeider 2004]

MAXCNFSAT parameterized by incidence
treewidth (tw*) is FPT.

o,

A L
Theorem [Ordyniak, Paulusma, Szeider 2013] m$tvv W-hard
CNFSAT parameterized by cw* is W([1]-hard. \

nd

FPT

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 /11

CNFSAT and MAXCNFEFSAT

Theorem [Szeider 2004]

MAXCNFSAT parameterized by incidence
treewidth (tw*) is FPT.

Jow
| 4 | W-hard

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSAT parameterized by cw* is W([1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 /11

CNFSAT and MAXCNFEFSAT

Theorem [Szeider 2004]

MAXCNFSAT parameterized by incidence
treewidth (tw*) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSAT parameterized by cw* is W([1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

— We extend W([1]-hardness to incidence
neighborhood diversity (nd").

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 /11

CNFSAT and MAXCNFEFSAT

Theorem [Szeider 2004]

MAXCNFSAT parameterized by incidence
treewidth (tw*) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSAT parameterized by cw* is W([1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].

— We extend W[1]-hardness to incidence
neighborhood diversity (nd").

— We also present an FPT-AS for cw*.

Valia Mitsou Complexity & Approximability for Parameterized CSP 5 /11

On the positive side. . .

MAXCNFSAT parameterized by cw* admits an FPT-AS. \

Valia Mitsou Complexity & Approximability for Parameterized CSP 6 /11

On the positive side. . .

MAXCNFSAT parameterized by cw* admits an FPT-AS. \

Reminder

FPT-AS (FPT Approximation Scheme) for a maximization problem
parameterized by k: Ve > 0 there exists an (1 — €)-approximation
algorithm running in O(f (e, k) - poly(n)).

Valia Mitsou Complexity & Approximability for Parameterized CSP 6 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

0 m a

clause sizes,

Arrange the clauses in increasing order of arity (0 to a).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e).
L J

D=d-é*

0 m a

clause sizes,

Arrange the clauses in increasing order of arity (0 to a).

Split them into big (arity at least g(¢)), small (arity at most g’(e),
and medium.

Consider the following cases:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e). <m-e B]
L | J

0 D a

clause sizes,

D=d-é*

(Almost) all clauses are big:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e). <m-e | B]
L | J

0 D a

clause sizes,

D=d-é*

(Almost) all clauses are big:

@ ignore small clauses;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e). <m-e | B]
L | J

0 D a

clause sizes,

D=d-é*

(Almost) all clauses are big:
@ ignore small clauses;

@ a random assignment satisfies > (1 — €)(1 —278()) . m
clauses (with high probability).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e). <m-e | B]
L | J

0 D a

clause sizes,

D=d-é*

(Almost) all clauses are big:
@ ignore small clauses;
@ a random assignment satisfies > (1 — €)(1 —278()) . m
clauses (with high probability).
@ Since m > OPT, SOL > (1 — ¢')OPT, for some ¢
depending on e.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e). [S
L | J

0 d a

clause sizes,

D=d-é*

(Almost) all clauses are small:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Clauses of arity < d = g’(e). [
L

D=d-é*

0

(Almost) all clauses are small:

@ ignore large clauses;

Valia Mitsou

clause sizes,

Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
S: Clauses of arity < d = g’(e). [S
L | J

0 d a

clause sizes,

D=d-é*

(Almost) all clauses are small:
@ ignore large clauses;

@ degree on one side of the incidence graph is bounded
— no large biclique subgraphs;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Clauses of arity < d = g’(e). [S I <m-e
L | J

D=d-é*
d

0

clause sizes,

(Almost) all clauses are small:
@ ignore large clauses;
@ degree on one side of the incidence graph is bounded
— no large biclique subgraphs;

e By [Gurski, Wanke 2000], the incidence graph has bounded
treewidth — solve optimally the remaining small clauses;

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Clauses of arity < d = g’(e). ,—S (> e m) E—

L 1
D=d-é*

0 d D

— B e m—
€E-m
|

a

clause sizes,

(Almost) no medium-size clauses and B, S are balanced:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Cl farity < d = g’ (e). —S e m—
auses of arity < g (E) S (_) <

<e-m
L 1
D=d-é*

0 d D

clause sizes,

(Almost) no medium-size clauses and B, S are balanced:

e variable occurences(B) > |B| - D = "%zd;

@ variable occurences(S) < |S|-d < m-d.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Clauses of arity < d = g’(e). ,—S (> e

m)—|<e-m,—B(2 EZA’HL)—‘
L -

1
D=d-é*

0 d D a

clause sizes,

(Almost) no medium-size clauses and B, S are balanced:
e variable occurences(B) > |B|- D = ";—'zd;

@ variable occurences(S) < |S|-d < m-d.
— Jy € V that appears 1/& more times in B than in S.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Clauses of arity < d = g’(e). ,—S (> e

m)—|<e-m,—B(2 EZA’HL)—‘
L -

1
D=d-é*

0 d D a
clause sizes,

(Almost) no medium-size clauses and B, S are balanced:
From the previous observation,

we iteratively create
a set of wvariables Y with the

following properties:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
2
S: Clauses of arity < d = g’(e). ,—S (>€e-m) E—
€-m
=

,—B(z - m)——

1
D=d-é*

0 d D a
clause sizes,

(Almost) no medium-size clauses and B, S are balanced:

From the previous observation, we iteratively create

a set of wvariables Y with the following properties:
@ Y hits few clauses of S (call this set S’);

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).
2

S: Clauses of arity < d = g’(e). — B (=€ m)—|

I

I,—S(ze?wn)—|§6.m
|

J
D=d-é*

0 d D a
clause sizes,

(Almost) no medium-size clauses and B, S are balanced:

From the previous observation, we

a set of wvariables Y with the following properties:
@ Y hits few clauses of S (call this set S’);
@ at most €2 clauses of B have < 1/c

neighbors in Y (call this set B').

iteratively create

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

B: Clauses of arity > D = g(e).

S: Clauses of arity < d = g’(e). ,—S (> e - m) — < ,—B (> €. ’HL)—|
€E-m
L - 1 |
D=d-é*

0 d D

a
clause sizes
(Almost) no medium-size clauses and B, S are balanced:
From the previous observation, we iteratively create
a set of wvariables Y with the following properties:
@ Y hits few clauses of S (call this set S’);
@ at most €2 clauses of B have < 1/c

neighbors in Y (call this set B').

Randomly assigning Y should satisfy whp >
(1—€*)-(1—27")of B\ B/, while S\ &

can be solved optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 7 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

We can always find a small set M (|M| < € - m) of medium-size
clauses (arities d ~ D).

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

We can always find a small set M (|M| < € - m) of medium-size
clauses (arities d ~ D).

(e
o | =
o | e

Lll/e I
a

clause sizes

77
B

€

Define 1/c 4+ 1 independent intervals of medium-arity clauses
(right-left bounds are an L(= ¢~*)-factor apart).

Valia Mitsou

Complexity & Approximability for Parameterized CSP 8 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

We can always find a small set M (|M| < € - m) of medium-size
clauses (arities d ~ D).

Lll/e
a

€ clause sizes

d D

o | =
o | e

77
B

There should be at least one interval [d, D] (D = L-d) containing
< €-m clauses.

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 /11

An FPT-AS for MAXCNFSAT parameterized by cw*

We can always find a small set M (|M| < € - m) of medium-size
clauses (arities d ~ D).

| S T B |

L L 1 1 5 XXX]I-/ J

o L L L, p L .
€ € € € clause sizes

Removing them divides the clauses into small (S) and big (B).

Valia Mitsou Complexity & Approximability for Parameterized CSP 8 /11

The algorithm

e Find interval [d,D] of at most ¢ - m clauses of medium arities
as in the previous Lemma and ignore them.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most ¢ - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most ¢ - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).
0 If S| <€ - m

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most ¢ - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).
0 If S| <€ - m
e Ignore S;

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).
0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).

0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

o If at most |[B| < e?-m

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).

0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

o If at most |[B| < e?-m
e Ignore B;

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

e Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

e Split remaining clauses into S (arity < d) and B (arity > D).

0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

o If at most |[B| < e?-m

e Ignore B;
e G¢ has bounded treewidth — solve optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).
0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

o If at most |[B| < €2-m

e Ignore B;

e G¢ has bounded treewidth — solve optimally.
@ Otherwise

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).
0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

o If at most |[B| < €2-m

e Ignore B;

e G¢ has bounded treewidth — solve optimally.
@ Otherwise

e Find set of variables Y as in the last case and set it randomly
to satisfy most of B.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

The algorithm

Find interval [d,D] of at most € - m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).
0 If S| <€ - m

e Ignore S;
e Randomly assign variables to satisfy most of B.

o If at most |[B| < €2-m

e Ignore B;

e G¢ has bounded treewidth — solve optimally.
@ Otherwise

e Find set of variables Y as in the last case and set it randomly
to satisfy most of B.

e Ignore part of S that contains variables from Y and solve the
rest optimally.

Valia Mitsou Complexity & Approximability for Parameterized CSP 9 /11

Conclusions

@ Trading Time-Generality-Approximation

@ Crucial: Take into account input structure!

@ Long-term Goal: Map out complete trade-offs

e For each desired approximation ratio, for each class of inputs
(defined by k), what is the correct running time?

A concrete problem for ESIGMA

@ Use these techniques for approximate formula
representation (aka formula learning/knowledge
compilation).

@ What are the key measures of input structure?

Valia Mitsou Complexity & Approximability for Parameterized CSP 10 /11

Thank you!
Questions?

Valia Mitsou

=

Complexity & Approximability for Parameterized CSP 11 /11

	Overview
	The Big Picture
	Dead on Arrival?
	Strategy
	Summary of results
	Basic scheme (Max Cut)
	General scheme (Max-k-CSP)
	Sub-exponential Extension (Max Cut)
	General scheme k3
	General scheme – summary
	Summary – with a picture
	Density lower bound
	Running time lower bound
	Conclusions
	Thank you!

