Approximating CSPs in more than polynomial time

Michael Lampis Université Paris Dauphine

May 31, 2018 ESIGMA Kick-off Meeting

Overview

Things you will hear in this talk:

- Max-CSPs such as Max-SAT, Max-Cut, etc. are Hard!
- ... even to approximate!
- To solve them we need to:
 - Take into account the input stucture (how?)
 - Invest a little more than polynomial time (how much?)
 - Allow some sub-optimal solutions (but almost optimal!)

Overview

Things you will hear in this talk:

- Max-CSPs such as Max-SAT, Max-Cut, etc. are Hard!
- ... even to approximate!
- To solve them we need to:
 - Take into account the input stucture (how?)
 - Invest a little more than polynomial time (how much?)
 - Allow some sub-optimal solutions (but almost optimal!)

Results based on two papers:

- "Sub-Exponential Approximation Schemes for CSPs: From Dense to Almost-Sparse.", Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos, STACS '16.
- "Complexity and Approximability for Parameterized CSPs.", Holger Dell, Eunjung Kim, Michael Lampis, Valia Mitsou, Tobias Moemke, IPEC'15 (Algorithmica '17).

- We want to solve NP-hard optimization problems
 - ... in this talk: Max-SAT, Max-Cut, Max-CSP in general

- We want to solve NP-hard optimization problems
 - ... in this talk: Max-SAT, Max-Cut, Max-CSP in general

- We want to solve NP-hard optimization problems
 - ... in this talk: Max-SAT, Max-Cut, Max-CSP in general

Definition of "Solve":

- Time-efficiency (polynomial time)
- Optimality
- Generality (handles all instances)

- We want to solve NP-hard optimization problems
 - ... in this talk: Max-SAT, Max-Cut, Max-CSP in general

Definition of "**Solve**":

- Time-efficiency (polynomial time)
- Optimality
- Generality (handles all instances)

Main Challenge: Under standard complexity assumptions ($P \neq NP$, ETH), no algorithm achieves all three!

- In fact, tight hardness known for many problems:
- Max-3-SAT cannot be $(7/8 \epsilon)$ -approximated, cannot be solved in $2^{o(n)}$.

Research Direction:

• Trade Time for Generality and/or Optimality

Dead on Arrival?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

Probably won't work

(at least for Max-3-SAT)

Dead on Arrival?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

Almost-linear PCPs (Moshkovitz& Raz) and P-time hardness (Håstad) give tight inapproximability for Max-3-SAT even for $2^{n^{1-\epsilon}}$ time. (Credit: Dana Moshkovitz)

Dead on Arrival?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

If this is the "normal" behavior of APX problems, what's the point of sub-exponential approximation?

- Is this the "normal" behavior?
- What else can we do?

Strategy

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:

Strategy

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:
- An island of tractability:
- Max-k-CSP admits a PTAS (a (1 ε)-approximation for all ε > 0) for dense instances
- (Arora, Karger, Karpinski '99), (Fernandez de la Vega '96)

Strategy

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:
- An island of tractability:
- Max-k-CSP admits a PTAS (a (1 ε)-approximation for all ε > 0) for dense instances
- (Arora, Karger, Karpinski '99), (Fernandez de la Vega '96)

Extending the island:

- We give a version of the AKK scheme which **can handle sparser instances**, at the expense of needing **sub-exponential time**.
- Our scheme provides a smooth trade-off
 - For dense instances we get a PTAS
 - As instances gradually get more sparse, we need more time...
 - ... until our scheme does not work any more

Summary of results

For any $\epsilon > 0$, $\delta \in [0, 1]$ and fixed $k \ge 2$ we have the following:

- Given a Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- We can produce a (1ϵ) -approximate solution
- In time $2^{O(n^{1-\delta} \ln n/\epsilon^3)}$

Summary of results

For any $\epsilon > 0$, $\delta \in [0, 1]$ and fixed $k \ge 2$ we have the following:

- Given a Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- We can produce a (1ϵ) -approximate solution
- In time $2^{O(n^{1-\delta} \ln n/\epsilon^{3})}$
- Note: This includes the AKK PTAS as a special case ($\delta = 1$)
- Advantage: we provide a smooth trade-off from the "easy case" (dense instances) to more general cases

For any $\epsilon > 0$, $\delta \in [0, 1]$ and fixed $k \ge 2$ we have the following:

- Given a Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- We can produce a (1ϵ) -approximate solution
- In time $2^{O(n^{1-\delta} \ln n/\epsilon^3)}$
- Note: This includes the AKK PTAS as a special case ($\delta = 1$)
- Advantage: we provide a smooth trade-off from the "easy case" (dense instances) to more general cases
- We will also give some "tight" bounds, ruling out natural possible improvements.

We are given a dense graph for which we want to find a large cut

Randomly select a "sample" of its vertices

Guess their correct partition

For every vertex outside the sample, examine its neighbors in the sample

Greedily set its value depending on this neighborhood

- The sample we select has size $O(\log n)$ (hidden constants depend on degree and ϵ)
- \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)

- The sample we select has size $O(\log n)$ (hidden constants depend on degree and ϵ)
- \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)

Why this works (intuitively):

- Because graph is dense \rightarrow every vertex outside sample S has many neighbors in S
- \rightarrow examining $N(u) \cap S$ is (whp) a good representation of N(u) in the optimal solution
- If a vertex in $V \setminus S$ has >> 50% of its neighbors on one side in the optimal solution, it will (whp) have >> 50% of its neighbors on that side in S

(Fernandez de la Vega '96)

Max Cut:

$$\max \sum_{(i,j)\in E} x_i(1-x_j) + x_j(1-x_i)$$

Max-2-SAT:

$$\max \sum_{(i,j)\in C} x_i(1-x_j) + x_j(1-x_i) + x_i x_j$$

Max-3-SAT:

$$\max \sum_{(i,j,k)\in C} x_i(1-x_j)(1-x_k) + (1-x_i)x_j(1-x_k) + \ldots + x_ix_jx_k$$

Max-*k*-CSP:

 $\max p(\vec{x})$

where p() is a degree k polynomial.

The AKK scheme offers a PTAS that finds an assignment almost maximizing p when the polynomial has at least $\Omega(n^k)$ terms.

Max Cut:

$$\max \sum_{(i,j)\in E} x_i(1-x_j) + x_j(1-x_i)$$

Max Cut:

$$\max\sum_{(i,j)} c_{ij} x_i x_j + \sum_i c_i x_i + C$$

Max Cut:

$$\max\sum_i x_i r_i$$

where $r_i(\vec{x} - x_i)$ is the (linear) polynomial of the remaining variables I obtain if I factor out x_i .

Max Cut:

$$\max\sum_i x_i r_i$$

where $r_i(\vec{x} - x_i)$ is the (linear) polynomial of the remaining variables I obtain if I factor out x_i .

Main idea: Estimate the values of the r_i 's using brute force on a small sample.

Max Cut:

$$\max\sum_i x_i r_i$$

s.t.

$$\hat{r}_i - \epsilon n \le \sum_{j \in N(i)} c_{ij} x_j \le \hat{r}_i + \epsilon n$$

where \hat{r}_i is the estimate I have for r_i .

This is now a **linear** program.

Max Cut:

$$\max\sum_i x_i r_i$$

Summary of algorithm:

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Summary of algorithm:

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution
Summary of algorithm:

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Main idea: Use larger sample

Summary of algorithm:

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Main idea: Use larger sample

- Suppose graph has average degree $\Delta = n^{\delta}$
- We sample $\frac{n \log n}{\Delta} = n^{1-\delta} \log n$ vertices
- \rightarrow whp $\hat{r}_i \approx r_i$.

Summary of algorithm:

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Main idea: **Use larger sample** We are almost done!

- Must prove sample size enough for \hat{r}_i
 - Pitfall: Additive error ϵn no longer negligible!
- Must prove rounding step still works

Don't worry, it all works!

Summary so far k = 2:

- AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- Extension: Average degree n^{δ} , sample of $n^{1-\delta} \log n$
- \rightarrow in time $2^{\sqrt{n}}$ can "solve" Max-Cut for $|E| \ge n^{1.5}$

Summary so far k = 2:

- AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- Extension: Average degree n^{δ} , sample of $n^{1-\delta} \log n$
- \rightarrow in time $2\sqrt{n}$ can "solve" Max-Cut for $|E| \ge n^{1.5}$

How about Max-3-SAT?

- In poly time can solve instances with n^3 clauses
- In $2\sqrt{n}$ time can solve instances with ... clauses?

Summary so far k = 2:

- AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- Extension: Average degree n^{δ} , sample of $n^{1-\delta} \log n$
- \rightarrow in time $2\sqrt{n}$ can "solve" Max-Cut for $|E| \ge n^{1.5}$

How about Max-3-SAT?

- In poly time can solve instances with n^3 clauses
- In $2^{\sqrt{n}}$ time can solve instances with $n^{2.5}$ clauses

General scheme $k \geq 3$

AKK scheme for $k\geq 3$

- Write $p(\vec{x})$ as $\sum_i x_i r_i$
- Each r_i has degree k-1
- Write $r_i = \sum_j x_j r_{ij}$
- Each r_{ij} has degree k-2
- ...
- Until we get to linear \rightarrow write ILP

AKK scheme for $k\geq 3$

- Write $p(\vec{x})$ as $\sum_i x_i r_i$
- Each r_i has degree k-1
- Write $r_i = \sum_j x_j r_{ij}$
- Each r_{ij} has degree k-2
- ...
- Until we get to linear \rightarrow write ILP

Note: In order for this to work, all $r_{ij...}$ polynomials must be **dense**

• This is true if original polynomial was dense.

General scheme $k \geq 3$

AKK scheme for $k\geq 3$

- Write $p(\vec{x})$ as $\sum_i x_i r_i$
- Each r_i has degree k-1
- Write $r_i = \sum_j x_j r_{ij}$
- Each r_{ij} has degree k-2
- ...
- Until we get to linear \rightarrow write ILP
- In our scheme, if p has $n^{k-1+\delta}$ terms
- r_i has $n^{k-2+\delta}$ terms
- r_{ij} has $n^{k-3+\delta}$ terms
- ...

It seems that the "right" density to require is $n^{k-1+\delta}$?

General scheme – summary

- Input: Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- Algorithm:
 - Sample $2^{n^{1-\delta}\log n/\epsilon^3}$ variables, guess their value
 - Write CSP as a polynomial optimization problem
 - Estimate non-linear coefficients using sample
 - Solve fractional LP
 - Round solution

General scheme – summary

- Input: Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- Algorithm:
 - Sample $2^{n^{1-\delta}\log n/\epsilon^3}$ variables, guess their value
 - Write CSP as a polynomial optimization problem
 - Estimate non-linear coefficients using sample
 - Solve fractional LP
 - Round solution
- Works for any CSP (for fixed k)
- Covers "all instances" for k = 2

General scheme – summary

- Input: Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- Algorithm:
 - Sample $2^{n^{1-\delta}\log n/\epsilon^3}$ variables, guess their value
 - Write CSP as a polynomial optimization problem
 - Estimate non-linear coefficients using sample
 - Solve fractional LP
 - Round solution
- Works for any CSP (for fixed k)
- Covers "all instances" for k = 2

Can we do better?

- Smaller sample/faster running time?
- Handle $k \ge 3$ better?

Summary – with a picture

Summary – with a picture

In English: For density less than n^{k-1} we need exponential time to get $(1 - \epsilon)$ -approximation.

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with |V| = n and m = O(|V|).

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with |V| = nand m = O(|V|). Proof: (k = 3)

- Add *n* new variables y_1, \ldots, y_n
- For each clause $(x_i \lor x_j)$, for each $k \in \{1, ..., n\}$ we construct the clauses $(x_i \lor x_j \lor y_k)$ and $(x_i \lor x_j \lor \neg y_k)$
- Gap remains!
- Number of clauses $\approx n^2$

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with |V| = n and m = O(|V|). Proof: (k = 3)

- Add *n* new variables y_1, \ldots, y_n
- For each clause $(x_i \lor x_j)$, for each $k \in \{1, ..., n\}$ we construct the clauses $(x_i \lor x_j \lor y_k)$ and $(x_i \lor x_j \lor \neg y_k)$
- Gap remains!
- Number of clauses $pprox n^2$

Reduction similar for k > 3

In English: Our sample size is optimal. For density n^{δ} we need time $2^{n^{1-\delta}}$.

Starting Point: Max Cut is "APX-ETH"-hard on instances with |V| = n and |E| = O(|V|).

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

- A constant gap remains for any Δ
- $|V'| = n\Delta$, $|E| = n\Delta^2$, Avg. degree $= \Delta$
- If we cound do better than $2^{|V'|/\Delta}$ then $\neg \text{ETH}$

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

- A constant gap remains for any Δ
- $|V'| = n\Delta$, $|E| = n\Delta^2$, Avg. degree $= \Delta$
- If we cound do better than $2^{|V'|/\Delta}$ then $\neg \text{ETH}$
- **Bonus:** The two reductions compose! Optimal running times everywhere!

Conclusions

- Density is a crucial parameter for approximating Max-k-CSP
 - Especially useful in sub-exponential setting
 - Smooth trade-off between performance and generality
 - "Tight" bounds
- Lesson: Don't forget to take into account input structure!

- Must take into account that input may have some useful properties (otherwise problem too hard!)
- So far, we have used simple properties (density)
- Time to measure structure in a more sophisticated way!
 - Parameterized Complexity == Trading Time for Generality
 - Define some distance k from a tractable case (distance from triviality)
 - Try to produce algorithm whose performance **slowly degenerates** as *k* increases.
- Use tools from Graph Theory to describe input structure.

イロト イポト イヨト イヨト 三日

- Define some graph structure of ϕ .
- Study CSPs for special graph classes.

イロト イヨト イヨト

э

• Define some graph structure of ϕ .

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Ξ.

Incidence graph representation of a CSP

- (Unsigned) variables and constraints are represented by vertices;
- a constraint vertex is connected to a variable vertex iff the corresponding constraint involves the corresponding variable.

Figure: The incidence graph representation of the previous formula $(\neg x \lor z) \land (x \lor y \lor \neg w) \land (\neg z \lor w).$

• Study CSPs for special graph classes.

・ロト ・回ト ・ヨト ・ヨト

Ξ.
Example classes

• Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).

イロト イヨト イヨト

Example classes

• Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).

イロト イヨト イヨト

Example classes

- Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).
- Acyclicity: Start from the leaves and work your way up $\overline{(poly-time)}$.

• Treewidth

Valia Mitsou Complexity & Approximability for Parameterized CSP 3/11

<ロ> (日) (日) (日) (日) (日)

э

- Treewidth
- Feedback Vertex Set: Set of vertices whose removal leaves the graph acyclic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Treewidth
- Feedback Vertex Set: Set of vertices whose removal leaves the graph acyclic.
- Vertex Cover: Set of vertices whose removal leaves an independent set.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Treewidth

- Feedback Vertex Set: Set of vertices whose removal leaves the graph acyclic.
- Vertex Cover: Set of vertices whose removal leaves an independent set.
- $fvs \leq vc$: Independent set is acyclic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Treewidth

- Feedback Vertex Set: Set of vertices whose removal leaves the graph acyclic.
- Vertex Cover: Set of vertices whose removal leaves an independent set.

$fvs \leq vc$: Independent set is acyclic.

 $tw \leq fvs + 1$:

- Make a tree-decomposition of the forest;
- Put the *fvs* in all bags;

Parameter map: $q \leftarrow p$ (which reads 'q dominates p') between two parameters means that q is bounded when p is bounded.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Goal: design algorithms for most dominant parameter (hold downward) and hardness for least dominant (hold upward).

3 🔺 🖌 🖻

New approach: study FPT approximations to evade hardness. In this talk we examine the existence of FPT Approximation Schemes.

Definition

FPT Approximation Scheme (FPT-AS): $\forall \epsilon > 0$ there is an $(1 - \epsilon)$ -approximation algorithm running in time $O(f(\epsilon, k) \cdot \text{poly}(n))$.

・ 同 ト ・ ヨ ト ・ ヨ

æ

Valia Mitsou Complexity & Approximability for Parameterized CSP 5/11

<ロ> <部> <部> <き> <き>

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

伺 ト イ ヨ ト イ ヨ

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

.

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

Hardness even holds for a more restricted parameter *modular treewidth* [Paulusma, Slivovsky, Szeider 2013].

• • = • • = •

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

Hardness even holds for a more restricted parameter *modular treewidth* [Paulusma, Slivovsky, Szeider 2013].

ightarrow We extend W[1]-hardness to incidence neighborhood diversity (nd^*) .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\rm MAxCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

Hardness even holds for a more restricted parameter *modular treewidth* [Paulusma, Slivovsky, Szeider 2013].

ightarrow We extend W[1]-hardness to incidence neighborhood diversity (nd^*).

ightarrow We also present an FPT-AS for $cw^*.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

MAXCNFSAT parameterized by cw^* admits an FPT-AS.

Valia Mitsou Complexity & Approximability for Parameterized CSP 6/11

イロト イヨト イヨト

э

Theorem

MAXCNFSAT parameterized by cw^* admits an FPT-AS.

Reminder

FPT-AS (FPT Approximation Scheme) for a maximization problem parameterized by $k: \forall \epsilon > 0$ there exists an $(1 - \epsilon)$ -approximation algorithm running in $O(f(\epsilon, k) \cdot \text{poly}(n))$.

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Arrange the clauses in increasing order of arity (0 to a).

Valia Mitsou Complexity & Approximability for Parameterized CSP 7/11

イロト イボト イヨト イヨト

Arrange the clauses in increasing order of arity (0 to a).

Split them into big (arity at least $g(\epsilon)$), small (arity at most $g'(\epsilon)$, and medium.

Consider the following cases:

< ロ > < 同 > < 三 > < 三 >

(Almost) all clauses are big:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7/11

イロト イボト イヨト イヨト

э

(Almost) all clauses are big:

ignore small clauses;

イロト イボト イヨト イヨト

(Almost) all clauses are big:

- ignore small clauses;
- a random assignment satisfies $\geq (1 \epsilon)(1 2^{-g(\epsilon)}) \cdot m$ clauses (with high probability).

くロ と く 同 と く ヨ と 一

(Almost) all clauses are big:

- ignore small clauses;
- a random assignment satisfies ≥ (1 − ε)(1 − 2^{-g(ε)}) · m clauses (with high probability).
- Since m ≥ OPT, SOL ≥ (1 − ε')OPT, for some ε' depending on ε.

3

(Almost) all clauses are small:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7/11

イロト イボト イヨト イヨト

э

(Almost) all clauses are small:

• ignore large clauses;

イロト イボト イヨト イヨト

э

(Almost) all clauses are small:

- ignore large clauses;
- degree on one side of the incidence graph is bounded \rightarrow no large biclique subgraphs;

イロト イポト イヨト イヨト

(Almost) all clauses are small:

- ignore large clauses;
- degree on one side of the incidence graph is bounded → no large biclique subgraphs;
- By [Gurski, Wanke 2000], the incidence graph has bounded treewidth → solve optimally the remaining small clauses;

(Almost) no medium-size clauses and B, S are balanced:

Valia Mitsou Complexity & Approximability for Parameterized CSP 7/11

イロト イポト イヨト イヨト

(Almost) no medium-size clauses and B, S are balanced:

- variable occurences $(B) \ge |B| \cdot D = \frac{m \cdot d}{\epsilon^2}$;
- variable occurences $(S) \leq |S| \cdot d \leq m \cdot d$.

くロ と く 同 と く ヨ と 一

(Almost) no medium-size clauses and B, S are balanced:

- variable occurences $(B) \ge |B| \cdot D = \frac{m \cdot d}{\epsilon^2}$;
- variable occurences $(S) \leq |S| \cdot d \leq m \cdot d$.
- $\rightarrow \exists y \in V$ that appears $1/\epsilon^2$ more times in *B* than in *S*.

An FPT-AS for MaxCNFSat parameterized by cw^*

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties:

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э

An FPT-AS for MAXCNFSAT parameterized by cw^{*}

(Almost) no medium-size clauses and B, S are balanced: the previous observation, we iteratively create From a set of variables Y with the following properties: • Y hits few clauses of S (call this set S');

Complexity & Approximability for Parameterized CSP 7 / 11

An FPT-AS for MaxCNFSat parameterized by cw^*

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties: • Y hits few clauses of S (call this set S');

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties: • Y hits few clauses of S (call this set S');

Randomly assigning Y should satisfy whp $\geq (1 - \epsilon^2) \cdot (1 - 2^{-1/\epsilon})$ of $B \setminus B'$, while $S \setminus S'$ can be solved optimally.

< 同 > < 三 > < 三 > -

Complexity & Approximability for Parameterized CSP 7/11

An FPT-AS for $\mathrm{MAxCNFSAT}$ parameterized by cw^*

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

$$0 \quad \frac{1}{\epsilon} \quad \frac{L}{\epsilon} \quad \frac{L^2}{\epsilon} \quad \cdots \quad \frac{L^{1/\epsilon}}{\epsilon} \quad a_{\underline{clause sizes}}$$

Define $1/\epsilon + 1$ independent intervals of medium-arity clauses (right-left bounds are an $L(=\epsilon^{-4})$ -factor apart).

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

There should be at least one interval [d, D] $(D = L \cdot d)$ containing $\leq \epsilon \cdot m$ clauses.

イロト イボト イヨト イヨト

3

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

Removing them divides the clauses into small (S) and big (B).

• Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
 If |S| ≤ ε² ⋅ m

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of *B*.

イロト イヨト イヨト

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore *S*;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore *S*;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore *S*;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S^* has bounded treewidth \rightarrow solve optimally.

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore *S*;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S^* has bounded treewidth \rightarrow solve optimally.
- Otherwise

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S^* has bounded treewidth \rightarrow solve optimally.
- Otherwise
 - Find set of variables Y as in the last case and set it randomly to satisfy most of B.

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S^* has bounded treewidth \rightarrow solve optimally.
- Otherwise
 - Find set of variables Y as in the last case and set it randomly to satisfy most of B.
 - Ignore part of S that contains variables from Y and solve the rest optimally.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Conclusions

- Trading Time-Generality-Approximation
- Crucial: Take into account input structure!
- Long-term Goal: Map out complete trade-offs
 - For each desired approximation ratio, for each class of inputs (defined by k), what is the correct running time?
- A concrete problem for ESIGMA
 - Use these techniques for **approximate formula representation** (aka formula learning/knowledge compilation).
 - What are the key measures of input structure?

Thank you! Questions?

Valia Mitsou Complexity & Approximability for Parameterized CSP 11 / 11

< □ > < □ > < □ > < □ > < □ >

æ