Using Graph Kernels to Address the Graph Similarity and Learning Problems

Giannis Nikolentzos

31 May 2018

Graphs Are Everywhere

Machine Learning on Graphs

Machine learning tasks on graphs:

- Node classification: given a graph with labels on some nodes, provide a high quality labeling for the rest of the nodes
- Graph clustering: given a graph, group its vertices into clusters taking into account its edge structure in such a way that there are many edges within each cluster and relatively few between the clusters
- Link Prediction: given a pair of vertices, predict if they should be linked with an edge
- Graph classification: given a set of graphs with known class labels for some of them, decide to which class the rest of the graphs belong

Graph Classification

class -1

class -1

???

class 1

???

- Input data $x \in \mathcal{X}$
- Output $y \in\{-1,1\}$
- Training set $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Goal: estimate a function $f: \mathcal{X} \rightarrow \mathbb{R}$ to predict y from $\mathrm{f}(\mathrm{x})$

Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

- structure
- sequence
- chemical properties

Perform graph classification to predict the function of proteins
Borgwardt et al. "Protein function prediction via graph kernels". Bioinformatics 21

Motivation - Malware Detection

Given a computer program, create its control flow graph

processed pages.append(processed_page)
processed pages.append(processed_page)
visited += 1
visited += 1
links = extract_links(html_code)
links = extract_links(html_code)
for link in links:
for link in links:
if link not in visited_links:
if link not in visited_links:
links to_visit.append(link)
links to_visit.append(link)
return create_vocabulary(processed_pages)
def parse page(html code):
punct ${ }^{-}=$re.compīle $\left(r^{\prime}([\wedge A-Z a-z 0-9])^{\prime}\right)$
soup $=$ BeautifulSoup (html_code, 'html.parser')
text $=$ soup.get text()
processed_text $=$ punct.sub(" ", text)
tokens $=\overline{\text { processed_text.split() }}$
tokens $=$ [token.lower() for token in tokens]
return tokens
def create vocabulary(processed pages):
vocabulary $=\{ \}$
for processed_page in processed_pages:
for token in processed page
if token in vocabulary:
vocabulary[token] += 1
else:
vocabulary[token] = 1
return vocabulary

Perform graph classification to predict if there is malicious code inside the program or not

Gascon et al. "Structural detection of android malware using embedded call graphs". In AISec'13
$6 / 24 \quad$ Giannis Nikolentzos Using Graph Kernels to Address the Graph Similarity and Learning Problems

Graph Comparison

Graph classification very related to graph comparison

Example

Although graph comparison seems a tractable problem, it is very complex

We are interested in algorithms capable of measuring the similarity between two graphs in polynomial time

Graph Kernels

Definition (Graph Kernel)

A graph kernel $k: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{R}$ is a kernel function over a set of graphs \mathcal{G}

- It is equivalent to an inner product of the embeddings $\phi: \mathcal{X} \rightarrow \mathbb{H}$ of a pair of graphs into a Hilbert space: $k\left(G_{1}, G_{2}\right)=\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle$
- Makes the whole family of kernel methods (e.g. SVMs) applicable to graphs

Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks

Walk: $4 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$

Vishwanathan et al. "Graph Kernels". JMLR 11, 2010

Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks
- shortest path lengths

SP length between vertices 2 and $8: 4$

Borgwardt and Kriegel. "Shortest-path kernels on graphs". In ICDM'05

Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks
- shortest path lengths
- cyclic patterns

Cycle: $4 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4$

Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks
- shortest path lengths
- cyclic patterns

- rooted subtrees

Subtree rooted at vertex 3

Shervashidze et al. "Weisfeiler-Lehman Graph Kernels". JMLR 12, 2011

Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks
- shortest path lengths
- cyclic patterns

- rooted subtrees
- graphlets

Shervashidze et al. "Efficient graphlet kernels for large graph comparison.". In AISTATS'09

A Degeneracy Framework for Graph Comparison

- a framework for increasing the expressive power of existing algorithms
- can be applied to any algorithm that compares graphs
- utilizes k-core decomposition to build a hierarchy of nested subgraphs

k-core

Definition (k-core)

The k-core of a graph is defined as a maximal subgraph in which every vertex is connected to at least k other vertices within that subgraph

A k-core decomposition of a graph consists of finding the set of all k-cores

The set of all k-cores forms a nested sequence of subgraphs

The degeneracy $\delta^{*}(G)$ is defined as the maximum k for which graph G contains a non-empty k-core subgraph

Degeneracy Framework for Graph Comparison

Idea: use the nested sequence of subgraphs generated by k-core decomposition to capture structure at multiple different scales

Definition (core kernel)

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. Let also k be any kernel for graphs. Then, the core variant of the base kernel k is defined as

$$
k_{c}\left(G, G^{\prime}\right)=k\left(C_{0}, C_{0}^{\prime}\right)+k\left(C_{1}, C_{1}^{\prime}\right)+\ldots+k\left(C_{\delta_{\text {min }}}^{*}, C_{\delta_{\text {min }}^{*}}^{\prime}\right)
$$

where $\delta_{\text {min }}^{*}$ is the minimum of the degeneracies of the two graphs, and $C_{0}, C_{1}, \ldots, C_{\delta_{\text {min }}^{*}}$ and $C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{\delta_{\text {min }}^{*}}^{\prime}$ are the 0 -core, 1 -core, $\ldots, \delta_{\text {min }}^{*}$-core subgraphs of G and G^{\prime} respectively

Example

Example

Example

Example

$$
\begin{aligned}
& C_{2} \\
& k_{c}\left(G, G^{\prime}\right)=k\left(C_{0}, C_{0}^{\prime}\right)+k\left(C_{1}, C_{1}^{\prime}\right)+k\left(C_{2}, C_{2}^{\prime}\right)
\end{aligned}
$$

Example

C_{3}
C_{3}^{\prime}

$$
k_{c}\left(G, G^{\prime}\right)=k\left(C_{0}, C_{0}^{\prime}\right)+k\left(C_{1}, C_{1}^{\prime}\right)+k\left(C_{2}, C_{2}^{\prime}\right)+k\left(C_{3}, C_{3}^{\prime}\right)
$$

Computational Complexity

Computational complexity depends on:

- the properties of the base kernel
- the degeneracy of the graphs under comparison

Given a pair of graphs and an algorithm A for comparing two graphs, computing the core variant requires $\delta_{\text {min }}^{*} \mathcal{O}_{A}$ time, where \mathcal{O}_{A} be the time complexity of algorithm A

The degeneracy of a graph is upper bounded by the largest eigenvalue of its adjacency matrix λ_{1}

In most real-world graphs, $\lambda_{1} \ll n$, then $\delta_{\text {min }}^{*} \ll n$, hence time complexity not prohibitive

Dimensionality Reduction View

k-core decomposition can be seen as a method for performing dimensionality reduction on graphs

- each core can be considered as an approximation of the graph
- features of low importance are removed

Problem: For very large graphs, the running time of algorithms with high complexity (e.g. shortest path kernel) is prohibitive

Solution: Use high-order cores

Datasets

Task: graph classification \rightarrow standard datasets from chemoinformatics, bioinformatics and social networks

Dataset	MUTAG	ENZYMES	NCI1	PTC-MR	D\&D	$\begin{gathered} \text { IMDB } \\ \text { BINARY } \end{gathered}$	$\begin{gathered} \text { IMDB } \\ \text { MULTI } \end{gathered}$	$\begin{aligned} & \hline \text { REDDIT } \\ & \text { BINARY } \end{aligned}$	$\begin{gathered} \text { REDDIT } \\ \text { MULTI-5K } \end{gathered}$	$\begin{gathered} \text { REDDIT } \\ \text { MULTI-12K } \end{gathered}$
Max \# VERTICES	28	126	111	109	5748	136	89	3782	3648	3782
Min \# vertices	10	2	3	2	30	12	7	6	22	2
Average \# vertices	17.93	32.63	29.87	25.56	284.32	19.77	13.00	429.61	508.50	391.40
Max \# EDGES	33	149	119	108	14267	1249	1467	4071	4783	5171
Min \# EdGes	10	1	2	1	63	26	12	4	21	1
AvErage \# EDGES	19.79	62.14	32.30	25.96	715.66	96.53	65.93	497.75	594.87	456.89
\# GRAPHS	188	600	4110	344	1178	1000	1500	2000	4999	11929
\# CLASSES	2	6	2	2	2	2	3	2	5	11

Classification using:

- SVM \rightarrow precompute kernel matrix
- Hyperparameters of SVM (i.e. C) and kernels optimized on training set using cross-validation

We compare an algorithm's output with the expected outcome:

- Accuracy: proportion of good predictions

Base Kernels

We employed the following kernels:
(1) Graphlet kernel (GR) [Shervashidze et al., 2009]: The graphlet kernel counts identical pairs of graphlets (i.e. subgraphs with k nodes where $k \in 3,4,5)$ in two graphs
(2) Shortest path kernel (SP) [Borgwardt and Kriegel, 2005]: The shortest path kernel counts pairs of shortest paths in two graphs having the same source and sink labels and identical length
(0) Weisfeiler-Lehman subtree kernel (WL) [Shervashidze et al., 2011]: The Weisfeiler-Lehman subtree kernel for a number of iterations counts pairs of matching subtree patterns in two graphs, while at each iteration updates the labels of the vertices of the two graphs
(9) Pyramid match graph kernel (PM) [Nikolentzos et al., 2017]: The pyramid match graph kernel first embedds the vertices of the graphs in a vector space. It then partitions the feature space into regions of increasingly larger size and takes a weighted sum of the matches that occur at each level

Graph Classification

| | Dataset | MUTAG | ENZYMES | NCI1 | PTC-MR |
| :--- | :---: | :---: | :---: | :---: | :---: | D\&D

$\begin{array}{c}\text { Dataset } \\ \text { Method }\end{array}$		$\begin{array}{c}\text { IMDB } \\ \text { BINARY }\end{array}$	$\begin{array}{c}\text { IMDB } \\ \text { MULTI }\end{array}$	$\begin{array}{c}\text { REDDIT } \\ \text { BINARY }\end{array}$	$\begin{array}{c}\text { REDDIT } \\ \text { MULTI-5K }\end{array}$		
	REDDIT						
MULTI-12K						$]$	GR
:---							
Core GR							

Degree distribution of D\&D (left) and REDDIT-BINARY (right) datasets. Both axis of the right figure are logarithmic.

Runtime Performance

Comparison of running times of base kernels vs their core variants (relative increase in running time)

	MUTAG	ENZYMES	NCII	PTC-MR	D\&D	IMDB BINARY	IMDB MULTI	REDDIT BINARY	REDDIT MULTI-5K	REDDIT MULTI-12K
SP	$1.69 x$	$2.52 x$	$1.62 x$	$1.65 x$	$3.00 x$	$12.42 x$	$17.34 x$	$1.04 x$	$1.05 x$	1.18 x
GR	1.85 x	2.94 x	1.75 x	1.50 x	3.44 x	7.95 x	8.20 x	2.24 x	2.37 x	2.80 x
WL	1.76 x	2.77 x	1.68 x	1.62 x	3.34 x	7.13 x	6.84 x	1.52 x	1.58 x	1.54 x
PM	1.87 x	2.79 x	1.68 x	1.50 x	3.67 x	6.92 x	6.33 x	1.90 x	1.98 x	1.96 x
δ^{*}	2	4	3	2	7	29	37	6	8	8

- In most cases, extra computational cost is negligible
- Extra computational cost is very related to the maximum of the degeneracies of the graphs of the dataset δ^{*}

Conclusion

- Graph kernels have shown good performance on several tasks
- We defined a general framework for improving the performance of graph comparison algorithms
- The proposed framework allows existing algorithms to compare structure in graphs at multiple different scales
- The conducted experiments highlight the superiority in terms of accuracy of the core variants over their base kernels at the expense of only a slight increase in computational time

Selected Publications I

Borgwardt, K. M. and Kriegel, H. (2005).
Shortest-path kernels on graphs.
In Proceedings of the 5th International Conference on Data Mining, pages 74-81.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J., and Kriegel, H.-P. (2005).
Protein function prediction via graph kernels.
Bioinformatics, 21(suppl 1):i47-i56.

Gascon, H., Yamaguchi, F., Arp, D., and Rieck, K. (2013).
Structural Detection of Android Malware using Embedded Call Graphs.
In Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pages 45-54.

Horváth, T., Gärtner, T., and Wrobel, S. (2004).
Cyclic Pattern Kernels for Predictive Graph Mining.
In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 158-167.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. (2004).
Extensions of Marginalized Graph Kernels.
In Proceedings of the 21st International Conference on Machine Learning, pages 552-559.

Selected Publications II

Nikolentzos, G., Meladianos, P., and Vazirgiannis, M. (2017).
Matching Node Embeddings for Graph Similarity.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

Shervashidze, N., Petri, T., Mehlhorn, K., Borgwardt, K. M., and Vishwanathan, S. (2009).
Efficient Graphlet Kernels for Large Graph Comparison.
In Proceedings of the International Conference on Artificial Intelligence and Statistics, pages 488-495.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., and Borgwardt, K. M. (2011).
Weisfeiler-Lehman Graph Kernels.
The Journal of Machine Learning Research, 12:2539-2561.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. (2010).
Graph Kernels.
The Journal of Machine Learning Research, 11:1201-1242.

