Graph homomorphism and similarity measures

Eunjung Kim, LAMSADE/CNRS ESIGMA Kick-off meeting, 31 May 2018

Graph kernel method

graphs

G

dist???((, , ,)

(feature) vectors

[2,3,5,5,6,3,2,0,4]

[1,3,4,2,5,3,4,0,0]

 $k(G,H) = \langle \phi(G), \phi(H) \rangle$

* kernel = inner product on some space, which in turn defines a metric via $d(x,y):=\sqrt{\langle x-y,x-y\rangle}$.

- Easy computation: we can avoid actually defining an explicit mapping, computing the mapping, or doing coordinate-wise computation in the feature space.
- Good math make it work: if a function k meets <u>some criteria</u> (p.d.kernel), then it's an inner product of some space and a distance is well-defined. ()

[Borgwardt and Stegle's slide "An introduction to Graph Kernes" 2010]

Graph kernel (via random walk)

Idea, as much as I get from Ioannis' talk:

Homomorphism

mapping $\boldsymbol{\varphi}$: V(F) \rightarrow V(G) s.t. (a,b) implies ($\boldsymbol{\varphi}(a), \boldsymbol{\varphi}(b)$)

H

Isomorphism via homomorphism

G and H are isomorphic if and only if #HOM(F,G) = #HOM(F,H) for every graph F

> László Lavász, "Operations with structures" . Acta Mathematica Hungarica 1967

Homomorphism vector

G

Н

HOM(G) = [#HOM(F1,G), #HOM(F2,G), #HOM(F3,G),]

HOM(H)=[#HOM(F1,H), #HOM(F2,H), #HOM(F3,H);]

#

G and H are isomorphic if and only if HOM(F,G)=HOM(F,H) for every graph F

Color-refinement: heuristic isomorphism test

Given labeled graphs G and G'

Figures excerpted from Shervashidze et. al. 2011

1st iteration Result of steps 1 and 2: multiset-label determination and sorting

Color-refinement

1st iteration Result of step 3: label compression					
1,4		6	3,245		10
2,3	>	7	4,1135		11
2,35	 →	8	4,1235		12
2,45		9	5,234		13
с					
-					~

Color-refinement

Color-refinement

color-refinement algorithm ultimate isomorphism test

What is this vector?

G

H

HOM(G)|all graphs # HOM(H)|all graphs

Indistinguishable under color-refinement

G and H are indistinguishable under colorrefinement if and only if HOM(F,G)=HOM(F,H) for every tree F

Dell, Grohe and Rattan, "Lovász Meets Weisfeiler and Leman" ICALP 2018

Color-refinement from Lovász' perspective

color-refinement algorithm

G

H

ultimate isomorphism test

HOM(G)|all trees HOM(G)|all graphs II * HOM(H)|all trees HOM(H)|all graphs

Color-refinement from Lovász' perspective

1-Weisfeiler-Leman algorithm (color-refinement)

k-Weisfeiler-Leman algorithm n-Weisfeiler-Leman algorithm

G

HOM(G)|all trees

HOM(G) tw $\leq k$

HOM(G)|all graphs

#

Η

HOM(H)|all trees

 $HOM(H)| tw \le k$

HOM(H)|all graphs

DGR 2018

Take-home message

"State-of-the-art graph kernel methods work for a good reason, now with theoretical support." "How can we use it?"

Future Work?