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Cluster Deletion problem:

Input: A graph and an integer k

Question: Can remove k edges from G so that the new graph is

the disjoint union of cliques?

Variants:

Cluster Editing problem

(known as Correlation Clustering)

FPT-algorithm: 1.62k + n3 [S. Böcker, A golden ratio parameterized

algorithm for Cluster Editing, Journal of Discrete Algorithms Volume 16, October

2012, Pages 79-89]
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What is a good clustering?

A partition of the vertices into vertex sets, called clusters, so that each cluster enjoys

some desirable characteristics of “density” or “good interconnectivity”, while having

few edges between the clusters
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FPT-algorithms and relaxations of clique density:

γ-quasi cliques: [P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A.

Telle, Generalized graph clustering: Recognizing (p, q)-cluster graphs, WG 2010]

Given a function µ and a parameter p, each cluster C should

satisfy µ(C) ≤ p
[D. Lokshtanov and D. Marx, Clustering with local restrictions, Inf. Comput., 222

(2013), pp. 278–292.]

Highly Connected Deletion: each cluster C has

edge-connectivity bigger than |C|/2
[F. Hüffner, C. Komusiewicz, A. Liebtrau, and R. Niedermeier, Partitioning biological

networks into highly connected clusters with maximum edge coverage, IEEE/ACM

Trans. Comput. Biology Bioinform., 11 (2014)]
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s-Defective Clique Editing: a clique missing s edges

Average-s-Plex Delection: average degree at least |C| − s
µ-Clique Deletion: average degree at least µ(|C| − 1)

[J. Guo, I. A. Kanj, C. Komusiewicz, and J. Uhlmann, Editing graphs into disjoint

unions of dense clusters, Algorithmica, 61 (2011), pp. 949–970]

Moreover:

Clusters are of diameter at most s (s-clubs)

[S. Shahinpour and S. Butenko, Distance-based clique relaxations in networks: s-clique

and s-club, in Models, Algorithms, and Technologies for Network Analysis, 2013]
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Every vertex of a cluster should have an edge to all but at most

s−1 other vertices of it (s-plexes)

[B. Balasundaram, S. Butenko, and I. V. Hicks, Clique relaxations in social network

analysis: The maximum k-plex problem, Operations Research, 59 (2011)]

# of clusters to be obtained is exactly p

[ F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger, Tight bounds

for parameterized complexity of cluster editing with a small number of clusters, J.

Comput. Syst. Sci., 80 (2014]
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t-Cut problem:

Input: A graph G and an integer k

Question: is there a partition of a graph into exactly t nonempty

components such that the total number of edges between the

components is at most k

The above problem is NP-complete.

[O. Goldschmidt and D. S. Hochbaum, A polynomial algorithm for the k-cut problem

for fixed k, Math. Oper. Res., 19 (1994)]

The above problem is NP-complete.

[K. Kawarabayashi and M. Thorup, The minimum k-way cut of bounded size is fixed-

parameter tractable, in FOCS 2011, IEEE Computer Society, 2011
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a partition into exactly t nonempty components such that the total

number of edges between the components is at most k





a partition into exactly t nonempty components such that the total

number of edges between the components is at most k and the

connectivities of the clusters are λ1, . . . , λt



The Clustering to Given Connectivities is NP-complete

as a special case of t-Cut

Main result:

Theorem
Clustering to Given Connectivities is FPT

by an algorithm of time 22
22

22
O(k)

· nO(1).
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Merci!


