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Introduction
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Graph Comparison

Graph

G := (V ,E ) an ordered pair compromising a set V of vertices and a set E
of edges.

Problem: Graph Comparison

Given two graphs G ,G ′ ∈ G, find a mapping s

s := G × G → R

where s(G ,G ′) measures the similarity between G ,G ′

Applications: Graph Classification / Clustering

Computational Biology, Information Retrieval, Cybersecurity...
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Graph Kernel

Graph Kernel

K is a positive definite (pd) function G × G → R defined on G with a
corresponding Hilbert space H, inner product 〈·, ·〉H and a map φ : G → H
such that:

k(G ,G ′) = 〈φ(G ), φ(G ′)〉H ∀G ,G ′ ∈ G
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Graph Kernel

R-Convolution kernel

Kconvolution(G ,G ′) =
∑

(x ,G)∈R

∑

(x ′,G ′)∈R

kpart(x , x
′)

R is the decomposition of graph

kpart is usually a simple function, i.e.

kpart(x , x
′) = 1 if x , x ′ isomorphic

= 0 otherwise
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Graph Kernel

Optimal Assignment Kernel

Kassignment : G × G → R is defined for every G ,G ′ ∈ G as

Kassignment(G ,G
′) =

{
maxπ∈S|x|

∑|x |
i=1 kbase(xi , x

′
π(i)) if |g ′| > |g |,

maxπ∈S|x′|
∑|x ′|

i=1 kbase(xπ(i), x
′
i ) otherwise.

(x1, x2, . . . , xn) decomposition of G , n denoted as |x |
S|x | a permutation of |x | elements
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Graph Kernel

Advantages

Reveal structural correspondence between two graphs

Do not suffer from diagonal dominance problem

However...

Theorem: [Vert, 2008] The optimal assignment kernel is not always
positive definite.
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Valid Optimal Assignment Kernel [Kriege, 2016]

Hierarchy

Let T be a rooted tree such that the leaves of T are the elements of X .
Each inner vertex v in T will correspond to a subset of X compromising
all the leaves of the subtrees rooted at v . Let w : V (T )→ R+

0 a weight
function such that w(v) ≥ w(parent(v)) for all v ∈ T . (T ,w) is referred
as a hierarchy on X .

Hierarchy-induced Kernel

Let H = (T ,w) be a hierarchy on X , then the function defined as
k(x , y) = w(LCA(x , y)) for all x , y ∈ X is the kernel on X induced by H.
LCA(·, ·) refers to Least Common Ancestor.
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Valid Optimal Assignment Kernel
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Feature map
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Valid Optimal Assignment Kernel

Histogram

Hk(X ) =
∑

x∈X
φ(x) ◦ φ(x)
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Strong Kernel

A function k : X × X → R≥0 is called strong kernel if

k(x , y) ≥ min{k(x , z), k(z , y)} ∀x , y , z ∈ X
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Valid Optimal Assignment Kernel

Theorem 1

A kernel k on X is strong if and only if it is induced by a hierarchy on X .

Theorem 2

Let k be a strong base kernel and histogram Hk defined as previous, then
the optimal assignment kernel K k

B(X ,Y ) = Ku(Hk(X ),Hk(Y )) for all
X ,Y ∈ [X ]n.
where Ku is the histogram intersection kernel defined as

Ku(g , h) =
t∑

i=1

min([g ]i , [h]i )

Collary

If the base kernel k is strong, than K k
B is valid.
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Pyramid Matching Kernel [Nikolentzos, 2017]

Basic idea

Matching vector representations of the vertices of two graphs:

Bag-of-Vectors representation of graph

map these vectors to multi-resolution histograms, and compare with a
weighted histogram intersection measure

histogram construction: partitioning the embedding space into grid
regions of increasingly larger size

K4(G ,G ′) = I (HL
G ,H

L
G ′) +

L−1∑

l=0

1

2l−1
(I (H l

G ,H
l
G ′)− I (H l+1

G ,H l+1
G ′ ))

13 / 31



Hierarchy Construction

Figure: Illustration of Grid Partition. Data points from IMDB-MULTI(Node
embeddings projected to 2D space)
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Embeddings Optimal Assignment Kernel
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Embeddings Optimal Assignment Kernel

Adjacency matrix

For graph G = (V ,E ), its adjacency matrix A|V |×|V | is defined as

Aij =

{
1 if (vi , vj) ∈ E

0 otherwise.

Embedding of nodes

Given a graph G = (V ,E ), its node embeddings are generated by the
eigenvectors of adjacency matrix A as A = UΛU> with row vectors of U
as representations of nodes.

Kernel function

K k
B(X ,X ′) = max

B∈B(X ,X ′)

∑

(x,x′)∈B

k(x, x′)
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Hierarchy Construction

Hierarchical clustering to create irregular multi-resolution partition

Spherical K-Means

K-Means operates on an unit sphere (embeddings are normalized to
unit norm)

Objective function: arg maxC Q({Ci}ki=1) =
∑k

i=1

∑
x∈Ci
〈x, ci 〉

Advantage: directly optimize the similarity (inner product) between
nodes

Advantage: faster than hierarchical clustering (agglomerative) with
reasonable memory requirements
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Hierarchy Construction

Figure: Illustration of Hierarchical Clustering. Data points from
IMDB-MULTI(Node embeddings projected to 2D space)
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Hierarchy Construction

Algorithm 1: Spherical KMeans for Hierarchy
Construction
Data: X,K ,L
Result: Adjacency List of Nodes
initialization;
while i <= L do

if i==0 then
Apply S-KMeans(K ) on X;
Note clusters as C 0

j , j = 1, . . . ,K ;

Note centroids as c0j ;

else

for every CL−1
j do

Apply S-KMeans(K );

∀x ∈ CL
k , parent(x) = cLk ;

end

end

end

. . . . . .
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Weight function

For inner node v that corresponds to a cluster C of data points, its weight
is set equal to:

w(v) = min
x∈C
〈x, c〉

Its corresponding feature value ω(v) = w(v)− w(c)
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Figure: An example of a hierarchy where each vertex v is annotated by its
weights w(v) : ω(v) and its color indicates the graph to which it belongs (left),
and the derived feature vectors (right).
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Weight function




r u1 u2 u3 u4 u5 u6 u7 u8 u9 u10u11
G1 .4 .3 0 .2 .2 .4 .3 0 0 0 0 .4
G2 .4 0 .4 .2 0 .4 0 .4 0 0 .4 0
G3 .4 0 .4 .2 0 .4 0 0 .4 .4 0 0




r u1 u2 u3 u4 u5

0

0.2
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0.6




G1 G2 G3

G1 1.5 1.0 1.0
G2 1.0 1.4 1.4
G3 1.0 1.4 1.4




21 / 31



Analysis

Theorem

Let C be the set of points of a cluster and c its centroid. Let also x, y be
any two points of C. Then, it holds that

〈x, y〉 ≥ 4 min
z∈C
〈z, c〉 − 3

For clusters at low levels (where inner products between datapoints are
high), the bound become tight and as we aim to maximize the similarity
k(x, y), Our method offers good approximation to the objective function:
maxB∈B(X ,X ′)

∑
(x,x′)∈B k(x, x′)
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An Variant of EOA: EOA-SP

Using K-Means instead of Spherical K-Means

Weight function w set as the depth of the node:
w(v) = path length(v , root) for all v ∈ V (T )

Feature value ω computed as

ω(v) =
w(parent(v))

w(v)

which assures the weights of children are always greater than these of
their parents.
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Experimental Evaluation
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Graph Classification

XXXXXXXXXMethod
Datasets

MUTAG ENZYMES NCI1 PTC-MR D&D

GL 80.29 (± 0.70) 22.18 (± 0.74) 62.52 (± 0.14) 55.71 (± 0.19) 74.55 (± 0.36)

SP 83.79 (± 1.09) 28.86 (± 0.94) 61.85 (± 0.11) 56.63 (± 0.59) 76.02 (± 0.37)

WL 80.84 (± 1.87) 39.98 (± 0.98) 78.03 (± 0.10) 55.99 (± 0.84) 74.65 (± 0.47)

WL-OA 81.13 (± 2.20) 40.36 (± 2.30) 81.22 (± 0.41) 55.47 (± 0.98) 76.44 (± 0.33)

PM 82.90 (± 1.40) 28.65 (± 0.72) 66.17 (± 0.19) 55.44 (± 1.12) 75.40 (± 0.60)

E-OA-SP 86.64 (± 0.64) 34.98 (± 1.34) 75.25 (± 0.32) 59.37 (± 1.76) 76.15 (± 0.22)

E-OA 87.64 (± 0.73) 33.23 (± 0.82) 71.41 (± 0.43) 56.85 (± 1.05) 75.69 (± 0.21)

XXXXXXXXXMethod
Datasets IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

GL 60.33 (± 0.25) 36.53 (± 0.93) 76.15 (± 0.21) 35.41 (± 0.12) 22.52 (± 0.15)

SP 60.21 (± 0.58) 39.62 (± 0.57) 83.60 (± 0.18) 49.13 (± 0.14) 35.96 (± 0.08)

WL 73.36 (± 0.38) 51.06 (± 0.47) 75.12 (± 0.44) 49.33 (± 0.28) 33.68 (± 0.10)

WL-OA 73.61 (± 0.60) 50.48 (± 0.33) 79.34 (± 0.43) 53.33 (± 0.25) 44.12 (± 0.13)

PM 67.91 (± 0.98) 45.03 (± 0.77) 82.35 (± 0.52) 43.04 (± 0.46) 37.98 (± 0.16)

E-OA-SP 69.16 (± 0.43) 30.47 (± 0.92) 90.67 (± 0.21) 50.68 (± 0.31) 44.26 (± 0.08)

E-OA 64.71 (± 0.56) 44.58 (± 1.16) 87.92 (± 0.12) 47.94 (± 0.47) 42.80 (± 0.22)

Table: Classification accuracy (± standard deviation), averaged on 10 iterations.
Model is optimized using 10-fold cross validation.
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Graph Classification
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Text Categorization

Method BBCSport Subjectivity Polarity TREC Twitter

BOW TF-IDF 98.38 90.67 77.14 97.00 75.12

CR 99.59 90.90 77.79 96.60 72.65

RAND-OA 96.08 89.89 75.72 97.00 75.25

E-OA-SP 99.05 91.25 76.96 97.00 75.41

E-OA 99.45 91.92 77.87 97.80 76.34

Table: Classification accuracy of the 3 variants of the proposed kernel (using
pre-trained and randomly initialized embeddings), the bag-of-words representation
with tf-idf weights (BOW TF-IDF) and the centroid representation (CR) on the 5
text categorization datasets.
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Conclusion
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Conclusion and future works

What we did?

A kernel comparing sets of vectors (node embeddings)

Achieve good performance on graph classification and text
categorization tasks with respect to state-of-the-art methods

What could be next?

apply method on labeled graphs

find more stable hierarchical clustering method

find better parameters(hierarchy tree depth, branching width, ...)

find better node embeddings
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Thank you!
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