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Tools for data analysis

� Historically

• Focus on generality

Data mining algorithms that can work with different algebraic
structures
Data mining algorithms that can work with different constraints

• Focus on efficiency

parallel and distributed computing

� Nowadays

• Topic 1: Detecting salient events in game data

• Topic 2: Recognizing style automatically (painting/music)

• Topic 3: Distributed deep learning

� Next

• Learning solving strategies for CSP solving
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Supervised learning

� Problem

• f : unknown, hard to specify

• E : a set of examples (x , f (x))

I Goal, find f̂ such that
f̂ ∼ f

� Approach

• We choose a family of function f̂ = fθ parameterized with θ

• We optimize the parameters θ such that

fθ minimize the error on the given examples
fθ generalizes well on new examples drawn from the same distribution
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Supervised learning

I We can learn complex relations between inputs and outputs

f


 7→ Baroque
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Deep learning

We represent fθ as a neural network organized in layers.

Ukiyo-e

I Each layer learns a vector representation tuned for the next layer.

Main takeaway: do not try to specify the features yourself.

Benjamin Negrevergne 5



Deep learning

We represent fθ as a neural network organized in layers.

Ukiyo-e

I Each layer learns a vector representation tuned for the next layer.

Main takeaway: do not try to specify the features yourself.

Benjamin Negrevergne 5



Learning in graph algorithmics

f



 7→

Can we learn f ?

I What is there to learn?
I How to formalize the learning task?
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Learning Combinatorial Optimization
Algorithms over Graphs

H. Dai et al., NIPS, 2017

What is there to learn?

I Given a graph optimization problem G and a distribution D of
problem instances, can we learn a heuristic that generalizes to unseen
instances of D
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How to formalize the learning task ?

As a regression task

Given

• A set X of points in R2, with |X | = n

• a path p = (x1, . . . , xm) with m < n

We denote P = (X , p) is a partially solved TSP

Learn
Q : (P, x) 7→ minimal-final-length(P t x)

Q

 ?
?

? ? ?
? ?

 7→

TSP- ml (P, p):
if ∃x ∈ X \ P

TSP-ml(P t argmaxx(Q(P, x))
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How can we learn Q

I Machine learning algorithms works with vectors
Problem: how to represent a vertex v as a vector µv?

• µv

0

= (xv , yv ) I only captures local properties of v

• µ1
v = F (µ0, {µ0

u}u∈N(v), {w(v , u)}u∈N(v))

• . . .

• µ(t+1)
v = F (µt , {µt

u}u∈N(v), {w(v , u)}u∈N(v))

Where F is the aggregation function

I After T iteration, each node embedding µT
v will contain information

about its T-hop neighbors
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How to choose F

How to choose the aggregation function F ?

• should include some notion of the degree other local vs. global
statistics

• should probably be highly non-linear

• should depend on the problem were are looking at

Take away from before: do not try to specify the features yourself!
I End-to-end learning together with Q for the task at hand

µ(t+1)(v) = relu(θ1xv + θ2
∑

u∈N(v)

µu(t) + θ3
∑

u∈N(v)

relu(θ4w(v , u)))

Model parameters: θ1 ∈ Rp, θ2, θ3 ∈ Rp×p, θ4 ∈ Rp
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Reinforcement learning

1 Solve a TSP

2 Observe reward

3 Update parameters of Q and F

ε− greedy algorithm to balance exploration / exploitation
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Quality of the approximation

(c) TSP random
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Minimum vertex cover
Maximum cut
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Minimum vertex cover
Maximum cut
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Interesting perspectives

� Vertex embeddings

• if d(µT (u), µT (v)) is small, then u, v are “similar” in terms of TSP
solving

• µT
v capture the properties of v and its neighborhood that are

relevant to solve a TSP

Does this similarity measure corresponds to any natural property?
(e.g. in a social network?)
Does it correspond to any known graph property?
What about if we optimize µv for graph coloring, maxcut . . . ?

� Discovering new algorithms

• Dai et al. were able to discover a new algorithm for MAXCUT that
hasn’t been analyzed before

� CSP solving
I some problems need both learning and reasoning (e.g. CPC)

• How to combine constraint propagation and learning?
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Thanks
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