Learning heuristics for graph algorithms

Benjamin Negrevergne, kickoff Esigma

Tools for data analysis

■ Historically

- Focus on generality
- Data mining algorithms that can work with different algebraic structures
- Data mining algorithms that can work with different constraints
- Focus on efficiency
- parallel and distributed computing
- Nowadays
- Topic 1: Detecting salient events in game data
- Topic 2: Recognizing style automatically (painting/music)
- Topic 3: Distributed deep learning
- Next
- Learning solving strategies for CSP solving

Supervised learning

- Problem

- f : unknown, hard to specify
- E : a set of examples $(x, f(x))$
- Goal, find \hat{f} such that

$$
\hat{f} \sim f
$$

- Approach
- We choose a family of function $\hat{f}=f_{\theta}$ parameterized with θ
- We optimize the parameters θ such that
- f_{θ} minimize the error on the given examples
- f_{θ} generalizes well on new examples drawn from the same distribution

Supervised learning

- We can learn complex relations between inputs and outputs

Baroque

Deep learning

We represent f_{θ} as a neural network organized in layers.

- Each layer learns a vector representation tuned for the next layer.

Deep learning

We represent f_{θ} as a neural network organized in layers.

- Each layer learns a vector representation tuned for the next layer.

Main takeaway: do not try to specify the features yourself.

Learning in graph algorithmics

Can we learn f ?

Learning in graph algorithmics

Can we learn f ?

What is there to learn?

- How to formalize the learning task?

Learning Combinatorial Optimization Algorithms over Graphs

H. Dai et al., NIPS, 2017

Learning Combinatorial Optimization Algorithms over Graphs

H. Dai et al., NIPS, 2017

What is there to learn?

- Given a graph optimization problem G and a distribution \mathbb{D} of problem instances, can we learn a heuristic that generalizes to unseen instances of \mathbb{D}

How to formalize the learning task?

As a regression task

Given

- A set X of points in \mathbb{R}^{2}, with $|X|=n$
- a path $p=\left(x_{1}, \ldots, x_{m}\right)$ with $m<n$ We denote $P=(X, p)$ is a partially solved TSP
Learn

$$
Q:(P, x) \mapsto \text { minimal-final-length }(P \sqcup x)
$$

TSP- ml (P, p):
if $\exists x \in X \backslash P$
$T S P-m l\left(P \sqcup \operatorname{argmax}_{x}(Q(P, x))\right.$

How can we learn Q

- Machine learning algorithms works with vectors

Problem: how to represent a vertex v as a vector μ_{v} ?

- $\mu_{v}=\left(x_{v}, y_{v}\right)$
- only captures local properties of v

How can we learn Q

- Machine learning algorithms works with vectors Problem: how to represent a vertex v as a vector μ_{v} ?
- $\mu_{v}{ }^{0}=\left(x_{v}, y_{v}\right)$
- $\mu_{v}^{1}=F\left(\mu_{0},\left\{\mu_{u}^{0}\right\}_{u \in N(v)},\{w(v, u)\}_{u \in N(v)}\right)$
- $\mu_{v}^{(t+1)}=F\left(\mu_{t},\left\{\mu_{u}^{t}\right\}_{u \in N(v)},\{w(v, u)\}_{u \in N(v)}\right)$

Where F is the aggregation function

How can we learn Q

- Machine learning algorithms works with vectors Problem: how to represent a vertex v as a vector μ_{v} ?
- $\mu_{v}{ }^{0}=\left(x_{v}, y_{v}\right)$
- $\mu_{v}^{1}=F\left(\mu_{0},\left\{\mu_{u}^{0}\right\}_{u \in N(v)},\{w(v, u)\}_{u \in N(v)}\right)$
- $\mu_{v}^{(t+1)}=F\left(\mu_{t},\left\{\mu_{u}^{t}\right\}_{u \in N(v)},\{w(v, u)\}_{u \in N(v)}\right)$

Where F is the aggregation function

- After T iteration, each node embedding μ_{v}^{T} will contain information about its T-hop neighbors

How to choose F

How to choose the aggregation function F ?

- should include some notion of the degree other local vs. global statistics
- should probably be highly non-linear
- should depend on the problem were are looking at

How to choose F

How to choose the aggregation function F ?

- should include some notion of the degree other local vs. global statistics
- should probably be highly non-linear
- should depend on the problem were are looking at

Take away from before: do not try to specify the features yourself!

- End-to-end learning together with Q for the task at hand

How to choose F

How to choose the aggregation function F ?

- should include some notion of the degree other local vs. global statistics
- should probably be highly non-linear
- should depend on the problem were are looking at

Take away from before: do not try to specify the features yourself!

- End-to-end learning together with Q for the task at hand

$$
\mu^{(t+1)}(v)=\operatorname{rel} u\left(\theta_{1} x_{v}+\theta_{2} \sum_{u \in N(v)} \mu_{u}(t)+\theta_{3} \sum_{u \in N(v)} r e l u\left(\theta_{4} w(v, u)\right)\right)
$$

Model parameters: $\theta_{1} \in \mathbb{R}^{p}, \theta_{2}, \theta_{3} \in \mathbb{R}^{p \times p}, \theta_{4} \in \mathbb{R}^{p}$

Reinforcement learning

(1) Solve a TSP
(2) Observe reward
(3) Update parameters of Q and F
$\varepsilon-$ greedy algorithm to balance exploration / exploitation

Quality of the approximation

(c) TSP random

Minimum vertex cover Maximum cut

Minimum vertex cover Maximum cut

Interesting perspectives

■ Vertex embeddings

- if $d\left(\mu^{T}(u), \mu^{T}(v)\right)$ is small, then u, v are "similar" in terms of TSP solving
- μ_{v}^{T} capture the properties of v and its neighborhood that are relevant to solve a TSP
- Does this similarity measure corresponds to any natural property? (e.g. in a social network?)
- Does it correspond to any known graph property?
- What about if we optimize μ_{v} for graph coloring, maxcut ... ?

Interesting perspectives

■ Vertex embeddings

- if $d\left(\mu^{T}(u), \mu^{T}(v)\right)$ is small, then u, v are "similar" in terms of TSP solving
- μ_{v}^{T} capture the properties of v and its neighborhood that are relevant to solve a TSP
- Does this similarity measure corresponds to any natural property? (e.g. in a social network?)
- Does it correspond to any known graph property?
- What about if we optimize μ_{v} for graph coloring, maxcut ... ?

■ Discovering new algorithms

- Dai et al. were able to discover a new algorithm for MAXCUT that hasn't been analyzed before

Interesting perspectives

■ Vertex embeddings

- if $d\left(\mu^{T}(u), \mu^{T}(v)\right)$ is small, then u, v are "similar" in terms of TSP solving
- μ_{v}^{T} capture the properties of v and its neighborhood that are relevant to solve a TSP
- Does this similarity measure corresponds to any natural property? (e.g. in a social network?)
- Does it correspond to any known graph property?
- What about if we optimize μ_{v} for graph coloring, maxcut ... ?

■ Discovering new algorithms

- Dai et al. were able to discover a new algorithm for MAXCUT that hasn't been analyzed before

■ CSP solving

- some problems need both learning and reasoning (e.g. CPC)
- How to combine constraint propagation and learning?

Thanks

