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Tools for data analysis

B Historically

® Focus on generality

o Data mining algorithms that can work with different algebraic
structures
o Data mining algorithms that can work with different constraints

® Focus on efficiency
o parallel and distributed computing
B Nowadays

® Topic 1. Detecting salient events in game data
e Topic 2: Recognizing style automatically (painting/music)
® Topic 3: Distributed deep learning

Bl Next

e Learning solving strategies for CSP solving
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Supervised learning

B Problem

e f : unknown, hard to specify

e F : aset of examples (x, f(x))

» Goal, find f such that

~

ff

B Approach

® \We choose a family of function f = fy parameterized with
e We optimize the parameters 6 such that

o fyg minimize the error on the given examples
o fy generalizes well on new examples drawn from the same distribution
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Supervised learning

» We can learn complex relations between inputs and outputs

> Baroque
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Deep learning

We represent fy as a neural network organized in layers.
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» Each layer learns a vector representation tuned for the next layer.
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Deep learning

We represent fy as a neural network organized in layers.

hi=g()_ x-0;)
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Q- Ukiyo-e

—

» Each layer learns a vector representation tuned for the next layer.

Main takeaway: do not try to specify the features yourself.
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Learning in graph algorithmics
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Learning in graph algorithmics

Can we learn f 7

» What is there to learn?
» How to formalize the learning task?



Learning Combinatorial Optimization
Algorithms over Graphs

H. Da1 T AL., NIPS, 2017



Learning Combinatorial Optimization
Algorithms over Graphs

H. Da1 T AL., NIPS, 2017

What is there to learn?

» Given a graph optimization problem G and a distribution D of
problem instances, can we learn a heuristic that generalizes to unseen
instances of D



How to formalize the learning task ?

As a regression task

Given

e A set X of points in R?, with |[X|=n

® apath p=(x1,...,xn) with m<n

We denote P = (X, p) is a partially solved TSP
Learn
Q : (P, x) — minimal-final-length(P U x)
Q —

TSP- ml (P, p):

if 3x € X \ P

TSP-mI(P U argmax,(Q(P, x))



How can we learn

» Machine learning algorithms works with vectors
Problem: how to represent a vertex v as a vector p,?

o uy = (X, 1) P only captures local properties of v
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How can we learn

» Machine learning algorithms works with vectors
Problem: how to represent a vertex v as a vector p,?

i ,uvo = (XV7yV)

* :ui = F(:U’07 {M?]}UGN(V)? {W(Va u)}uGN(v))
. P
o 1 = Fue, {pt Y ueni) {w(v, ) buen(w)

Where F is the aggregation function

» After T iteration, each node embedding u‘,T will contain information
about its T-hop neighbors



How to choose F

How to choose the aggregation function F 7

® should include some notion of the degree other local vs. global
statistics

® should probably be highly non-linear

® should depend on the problem were are looking at

10
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How to choose F

How to choose the aggregation function F 7

® should include some notion of the degree other local vs. global
statistics

® should probably be highly non-linear

® should depend on the problem were are looking at

Take away from before: do not try to specify the features yourself!
» End-to-end learning together with @ for the task at hand

1D (V) = relu(f1x, + 0 Z fu(t) + 03 Z relu(Baw(v, u)))

ueN(v) ueN(v)

Model parameters: 61 € RP, 05,03 € RP*P, 6, € RP
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Reinforcement learning

@ Solve a TSP
@ Observe reward
© Update parameters of Q and F

¢ — greedy algorithm to balance exploration / exploitation
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Quality of the approximation
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Approximation ratio to optimal
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Minimum vertex cover
Maximum cut
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Interesting perspectives

B Vertex embeddings

o if d(u”(u),uT(v)) is small, then u, v are “similar” in terms of TSP
solving
e 1] capture the properties of v and its neighborhood that are
relevant to solve a TSP
o Does this similarity measure corresponds to any natural property?
(e.g. in a social network?)
o Does it correspond to any known graph property?
o What about if we optimize pu, for graph coloring, maxcut ...?

14

Benjamin Negrevergne



Interesting perspectives

B Vertex embeddings

o if d(u”(u),uT(v)) is small, then u, v are “similar” in terms of TSP
solving
e 1] capture the properties of v and its neighborhood that are
relevant to solve a TSP
o Does this similarity measure corresponds to any natural property?
(e.g. in a social network?)
o Does it correspond to any known graph property?
o What about if we optimize pu, for graph coloring, maxcut ...?

B Discovering new algorithms

® Dai et al. were able to discover a new algorithm for MAXCUT that
hasn't been analyzed before

Benjamin Negrevergne

14



Interesting perspectives

B Vertex embeddings
o if d(u”(u),uT(v)) is small, then u, v are “similar” in terms of TSP
solving

e 1] capture the properties of v and its neighborhood that are
relevant to solve a TSP

o Does this similarity measure corresponds to any natural property?
(e.g. in a social network?)

o Does it correspond to any known graph property?

o What about if we optimize pu, for graph coloring, maxcut ...?

B Discovering new algorithms

® Dai et al. were able to discover a new algorithm for MAXCUT that
hasn't been analyzed before

B CSP solving
» some problems need both learning and reasoning (e.g. CPC)

® How to combine constraint propagation and learning?
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Thanks
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