
Ecole Polytechnique
Promotion X2012
RIOCHET Ronan

RESEARCH INTERNSHIP REPORT

Structural change detection in generalized
linear models - AXA GLOBAL DIRECT

Département de Mathématiques appliquées
MAP594: Modélisation probabiliste et statistique
Directeur de stage : Stéphane Gaïffas
Maître de stage : Constance Dumaine
Dates du stage: 16/03/2015 - 24/07/2015
Adresse de l’organisme:
AXA GLOBAL DIRECT
48 rue Carnot
91150 Suresnes

Déclaration d’intégrité relative au plagiat

Je soussigné Ronan Riochet certifie sur l’honneur:

• Que les résultats décrits dans ce rapport sont l’aboutissement de mon
travail.

• Que je suis l’auteur de ce rapport.

• Que je n’ai pas utilisé des sources ou résultats tiers sans clairement les
citer et les référencer selon les règles bibliographiques préconisées.

mention à recopier

Je déclare que ce travail ne peut être suspecté de plagiat.

Date: Signature:

1

Contents
1 Introduction 4

2 Theoretical part 5
2.1 Test for one structural change . 5

2.1.1 Standard linear regression: the Chow test 6
2.1.2 Generalized linear model: the Likelihood-ratio test (or F-

test) . 6
2.1.3 Dynamic detection . 7

2.2 Dynamic monitoring for linear models 9
2.2.1 Generalized linear models 12
2.2.2 Boundary functions . 12
2.2.3 Limits . 13

2.3 Partitioning . 14
2.4 Penalization to describe significant changes 16

3 Application to a logistic regression model 18
3.1 Structural change in the Competitive Conversion model 18
3.2 Model presentation . 19

4 Empirical studies 21
4.1 Implementation for logistic regression 21

4.1.1 Empirical fluctuation process 21
4.1.2 Partitioning . 21
4.1.3 Twisted logistic regression 21

4.2 Case studies . 22
4.2.1 Control case . 22
4.2.2 Case study I: December 2013 25
4.2.3 Case study II: June 2015 28

5 Conclusion 30

References 31

List of Figures 32

6 Annexe 33

2

Acknowledgement

First of all I would like to thank Axa Global Direct for welcoming me for this
internship and giving me a great chance for learning and professional develop-
ment. I would like to express my particular gratitude to André Weilert and
Joanna Chardon for welcoming me in their team.

My deepest thanks go to Constance Dumaine and Aimé Lachapelle. Con-
stance was a great tutor and gave me the necessary advices and guidance to
succeed in this internship. She was also very present and careful all along these
months. I thank Aimé for encouraging me joining the team for this internship
and am sincerely grateful for the precious advices he gave me when I needed.

Finally I would like to thank Clara, Henri, Kevin, Guillaume and Mattia
for their help and all the interesting discussions we shared, along with all the
members of the team for the great times we spent together.

3

1 Introduction

In the context of use of time-continuous data, time consistency of models is a
burning question. The main objective of this internship was to find a way to
detect structural changes of our models in real time. In the first time, the idea
was to find a way to monitor a model and to detect when it was obsolete. This
would allow one to keep the model up-to-date, refitting it as soon as it is not
consistent anymore. The second objective was to analyse the structural change
so as to link it to external events and better understand the market.

The second objective was to build a Competitive Conversion model and apply
the theory of structural change detection to it. This model was a supervised
classification model, aimed to infer on prospects’ conversion1 given competition
variables. Several methods were tested and the final model was used to test the
theory on structural change detection.

This report is split into three sections. The first section gather the theoret-
ical parts dealing with time consistency and structural change detection. The
second section deals with the Competitive Conversion model and how to ap-
ply the previous theory to it. Finally the last one provides an overview of the
implementation of all the procedure in Python, followed by two case studies.

1When a potential client subscribes to an insurance, hence becoming a client.

4

2 Theoretical part

2.1 Test for one structural change
Structural change detection has been introduced by Gregory Chow in 1960 for
standard linear models, and adapted later for generalized linear models. In
both cases, the model is split into two distinct models, before and after the
break point. This split model, called alternative model, is then compared to
the null model fitted on the entire period. Since the null model is a special case
of the alternative, the alternative model always leads to better results2. The
principle of the following tests is to compare results of the two models and see
if this difference is significant.

Figure 1: Structural change example: Old Faithful’s eruptions. In red
the null model, in blue the alternative model (source: https://thetarzan.
wordpress.com/2011/06/16/the-chow-test-in-r-a-case-study-of-yellowstones-
old-faithful-geyser/

.

2In the optimization problems, the variable space of the null model is included in the
variable space of the alternative model.

5

2.1.1 Standard linear regression: the Chow test

Let (Yi)i=1,...,n be a set of observations and (Xi)i=1,...,n explanatory variables
such that:

Yi = β0 + β1Xi + εi, i = 1, ..., n

The data is split into two subsets (Y
(1)
i , X

(1)
i)i=1,...,n(1) and (Y

(2)
i , X

(2)
i)i=1,...,n(1)

such that :

Y
(1)
i = β

(1)
0 + β1X

(1)
i + εi, i = 1, ..., n(1)

Y
(2)
i = β

(2)
0 + β1X

(2)
i + εi, i = 1, ..., n(2)

Let d be the number of parameters, S the sum of squared residuals for the
combined data, S(1) and S(2) the sum of squared residuals for the subsets 1 and
2, respectively. Under the hypothesis H0 : β(1) = β(2), the Chow test statistic:

S − S(1) − S(2)

S(1) + S(2)

n− 2d

d

follows the F-distribution with d and n − 2d degrees of freedom. Hence, this
statistic provides a test to detect a structural dissimilarity between the two
subsets. To detect a structural change over time we simply take

(Y
(1)
i , X

(1)
i)i=1,...,n(1) = (Yi, Xi)i=1,...,k

(Y
(2)
i , X

(2)
i)i=1,...,n(2) = (Yi, Xi)i=k+1,...,n

2.1.2 Generalized linear model: the Likelihood-ratio test (or F-test)

Likelihood-ratio test Consider two nested models3, a null and an alternative
model, such that the null model is included in the alternative model. Since the
estimates are computed via maximum-likelihood and the null model is included
in the alternative model, the alternative model will end up with a greater likeli-
hood. The likelihood ratio test is designed to test if this difference is significant.

The likelihood-ratio test statistic (often denoted by D) is twice the difference
in these log-likelihoods:

D = −2ln

(
likelihood for the null model

likelihood for the alternative model

)
D = -2ln(likelihood for the null model) + 2ln(likelihood for the alternative model)

Under the null hypothesis that the two models are equal, D follows a Chi-
squared distribution with degrees of freedom (dalternative−dnull), the difference
of numbers of parameters between the two models.

3Two statistical models are nested if the first model can be transformed into the second
model by imposing constraints on the parameters of the first model.

6

One can use this statistic to test if a new variable should be included in a
model. The null model is the model without the variable, whereas the alternative
model takes the new variable into account. If the new variable increases signifi-
cantly the likelihood, we can reject the null hypothesis H0: "βnew variable = 0"

Application to structural change We can use the same test to test for
structural change. Let the null model be the model fitted on the all period, and
the alternative model (or split model) be the model fitted independently on the
first and the second period.

The D statistic is:

D = −2ln

(n∏
i=1

L(Xi,Yi,β)

k∏
i=1

L(Xi,Yi,β(1))∗
n∏

i=k+1

L(Xi,Yi,β(2))

)

where k is the break point, β(1) and β(2) computed before and after the break
point. Under the null hypothesis of no change, D follows Chi-squared distribu-
tion with degrees of freedom equal to d, dimension of β.

Hence, in a model with d parameters where the previous likelihood ratio is D
at time t, the p-value cdf−1χ2(d)

(D) is the risk of type-I error, which is detecting
a break at t when there is no break.

Figure 2: Chi squared distribution for df=10 (source: www.di-mgt.com.au/
chisquare-calculator.html)

2.1.3 Dynamic detection

To detect such a change dynamically, we may want to choose a sample size
m ∈ N and each time m new observations arrive, apply F-test to subsets
(Yi, Xi)i=1,...,n and (Yi, Xi)i=n+1,...,n+m. However, this procedure would lead
to an increase in risk of type-I error.

7

Indeed, suppose that H0 is always true (no change in the model) and that
observations are independent enough to admit that events {“type-I error at time
k”, k>0} are independent. After n periods, the probability of having rejected
H0 at least once will be: 1− (1− α)n → 1.

As an example, in Monitoring Structural Change (1996), Chu et al. propose
the following experiment:

In the simulation, we generate data from yt = 0.6xt+ εt where εt
is niid(0,1) and xt is an AR(1) with the AR coefficient 0.8. The in-
sample size is 270; nominal size is 5%. The number of replications
is 4,000.

[To detect structural change at a given time] we wait for (say) 5
periods, then perform a post-sample F test. If the F test is passed,
we update the model by including these 5 new data points and wait
for another 5 periods and repeat the post-sample F test; otherwise,
we signal a rejection of stability.

Simulation results show that thirty periods later,’ we have a one-
third chance of mistakenly signaling instability. The probability of
type one error increases to 70% one hundred periods later. If the
data are collected daily, ten months later we will wrongly reject the
true hypothesis of stability more than 95% of the time.

This shows that the likelihood-ratio test is not well-suited for monitoring
structural change as new data arrive. To do so we would like to build a
continuous-time process describing fluctuations, which can be controlled over
time.

Sequential analysis provides techniques for monitoring time series’ fluctua-
tions, initially used in quality control theory (Wald’s Sequential Probability
Ratio Test, 1945). One of these techniques is the CUSUM algorithm. Given a
"quality number" θ and observations (yt)t≥0 distributed under p(θ), the CUSUM
algorithm proposes a criterion to determine changes in θ. The principle of this
algorithm is to control the cumulative sum of the difference between (yt)t≥0)
and a target value.

To detect structural change in a linear regression model, an approach provided
by Chu et al. is to apply CUSUM algorithm to the linear regression model. In
that case, θ is the estimates of the model and the target value is the prediction of
the model. Hence, it consists in monitoring the cumulative sum of the empirical
errors of the model.

8

2.2 Dynamic monitoring for linear models
Consider the standard linear regression model:

yi = xTi βi + ui, for i = 1, ...,m+ 1, ...

where yi is the observation, xi is a d × 1 vector of regressors, with the first
component equal to unity, βi is the d× 1 vector of regression coefficients and u
is an i.i.d. and centered error term.

Consider also the two following assumptions on the observations:

Assumption A.2:

lim
n→∞

1
n

n∑
i=1

XiX
′
i = R, a.s.

where R is a (d× d) real, non-sigular, symmetric matrix.

This assumption is true if the variables are linearly independent.

Assumption A.3: The residuals ui are stationary with

E[ui|Ti] = 0 and V ar(ui|Ti) = σ2,

where Ti is the σ-field generated by {Yj , Xj , uj |s ≤ i}

Under these assumptions we will be able to construct a fluctuation process
which we can control over time. To do so we consider a stable period, in which
we know there is no structural change. This is the "non-contamination" as-
sumption:

Assumption NC : βi = β0, ∀i = 1, 2, ...,m

We fit the model on this stable period and start monitoring after the mth

observation. Hence, in the following, we keep on testing null hypothesis:

H0 : βi = β0, i > m

This is a three-step procedure:

• We compute {ψi}i>m, an i.i.d. and centered random variable describing
the fluctuations of our model.

• We construct the standardized cumulative sum of (ψi)i

• We control this sum as a time depending process

9

In our case, a good ψ is simply the empirical error term u. The following
theorems build a fluctuation process from this ψ.

Theorem 1. (Donsker Theorem) If X1, X2, ... are independent and identi-
cally distributed with mean 0 and variance σ2, the random function Yn defined
by

Sm(t, ω) = 1
σ
√
m

{ bmtc∑
i=1

ψi(ω)

}
+ (mt− bmtc) 1

σ
√
m
ψbmtc+1(ω), 0 ≤ t ≤ 1

converges to the Wiener process W weakly.

Corollary 1. Under H0, if V ar(ψ(Y, β,X)) is non-singular:

V ar(ψ(Y, β(m), X))−
1
2m−

1
2

bmtc∑
i=1

ψ(Yi, β
(m), Xi)

unif−−−→ W (t)

where W (·) is a Wiener process.

In the two previous propositions, β is the true parameter which is unknown
in our case. However we have the following result:

Theorem 2. If V̂ ar(ψ(Y, β̂(m), X)) is non-singular:

V̂ ar(ψ(Y, β̂(m), X))−
1
2m−

1
2

bmtc∑
i=1

ψ(Yi, β̂
(m), Xi)

unif−−−→ W (t)− tW (1)

Proof. As said before, the following we have the following assumption

Assumption A.2:

lim
m→∞

1
m

m∑
i=1

XiX
′
i = R, a.s.

where R is a (d× d) real, non-singular, symmetric matrix.

R being symmetric, it is orthogonally diagonalizable, so we can write

lim
m→∞

1
m

m∑
i=1

XiX
′
i = P ′DP, a.s.

⇒ lim
m→∞

1
m

m∑
i=1

PXi√
D(1,1)

(
PXi√
D(1,1)

)′
= D̃, a.s.

where D̃ is diagonal, D̃(1,1) = 1 and P ′P = PP ′ = Id. Hence, we assume that
the model has been reparameterized such that:

R =

[
1 0
0 R∗

]
which implies that lim

n→∞
1
n

m∑
i=1

Xi = [1, 0, ..., 0]′.

10

Assumption A.3: The residuals ui are stationary with

E[ui|Ti] = 0 and V ar(ui|Ti) = σ2,

where Ti is the σ-field generated by {Yj , Xj , uj |s ≤ i}

Rewrite ψi as ψi = ui −X ′i(β̂ − β) and Bm(t) = 1
σ̂
√
m

[mt]∑
i=1

ui −X ′i(β̂(m) − β).

σ̂B(m)(t) = m−
1
2

[mt]∑
i=1

ui − m−
1
2

[mt]∑
i=1

X ′i(β̂
(m) − β)

(*) (**)

First of all, it is a well known fact that for i.i.d. residuals (ui)i=1,...n we have:

(*) unif−−−→ σW (t)

To proof that (**) unif−−−→ tW (1), consider:

n−
1
2

[mt]∑
i=1

X ′i(β̂
(m) − β) =

[
1
m

[mt]∑
i=1

X ′i

]
·
[√
m(β̂(m) − β)

]
From Assumption A.2 we have

[
n−

1
2

[mt]∑
i=1

X ′i

]
→ [t, 0, ..., 0] as n→∞. We can

also express
[
1
m (β̂(m) − β)

]
as[√

m(β̂(m) − β)
]

=
√
m

[
(
m∑
i=1

XiX
′
i)
−1(

m∑
i=1

XiYi)− β
]

=
√
m(

m∑
i=1

XiX
′
i)
−1
[
(
m∑
i=1

XiYi)− (
m∑
i=1

XiX
′
i)β

]
= m−

1
2

[
1
m

m∑
i=1

XiX
′
i

]−1[m∑
i=1

Xi(Yi −X ′iβ)

]

= n−
1
2

[
1
m

m∑
i=1

XiX
′
i

]−1
n∑
i=1

X
(1)
i ui

n∑
i=1

X
(∗)
i ui

= n−

1
2

[
1 0
0 R∗

]−1
m∑
i=1

ui
m∑
i=1

X
(∗)
i ui

+ op(1)

Which leads to (**) = t

{
m−

1
2

m∑
i=1

ut

}
+ op(1) and proves the theorem.

11

2.2.1 Generalized linear models

In generalized linear models, nothing says that the residuals satisfy the FCLT
(in a logistic regression model for example we can’t state E[ûi] = 0). However,
GLMs are computed via maximum likelihood estimation:

���������
min
β

∑
i

(Yi − βXi)
2 → min

β
−

n∑
i

`(Xi, Yi, β)

where `(Xi, Yi, β) is the log-likelihood of the ith observation for a given β. The
idea in the following is to take the derivative of the cost function:

����ψi = ûi → ψi = −∇β`(Xi, Yi, β)

Hence, we know that the empirical mean of (ψi)i=1...n is zero. Indeed the
opposite of the log-likelihood is convex and coercive so at the minimum:

∇β`(X,Y, β) = 0 ⇒
∑
i

ψi = 0 ⇒ Ê[ψ] = 0

The previous theorems apply in this case. In Tests for Constancy of Model
Parameters Over Time (2002), Hjort and Koning provides a proof of the for
M-score processes.

2.2.2 Boundary functions

We would like to build boundary functions such that, under the null hypothesis
of no change, the path of Sn crosses with prescribed probability. We will use the
following result from Boundary Crossing of Brownian Motion by Lerche (1984):

P

{
|W (t

t−1)| ≥
√

t
t−1 (λ2 + ln t

t−1)

}
= 2
(
1− Φ(λ) + λφ(λ)

)
, t > 1

Suppose thatW (·) is a standard Wiener process, thenX(t) = (t−1)W (t
t−1) is

a Brownian bridge on]1,∞[. To prove it we simply show that X(·) is a Gaussian
process, with E(X) = 0, Cov(X(t), X(s)) = min(s, t)− st and lim

t→0
X(t)0.

Let W (·) be a standard Wiener process. The following crossing probability
holds for W:

P

{
|W (s)| ≥

√
s(λ2 + ln(s))

}
= 2

(
1− Φ(λ) + λφ(λ)

)
Replacing s by t

t−1 , it follows that:

P

{
|W (t

t−1)| ≥
√

t
t−1 (λ2 + ln t

t−1)

}
= 2

(
1− Φ(λ) + λφ(λ)

)
P

{
(t− 1)|W (t

t−1)| ≥
√
t(t− 1)(λ2 + ln t

t−1)

}
= 2

(
1− Φ(λ) + λφ(λ)

)
P

{
|B(t)| ≥

√
t(t− 1)(λ2 + ln t

t−1)

}
= 2

(
1− Φ(λ) + λφ(λ)

)
where B(·) is a Brownian bridge.

12

As a consequence, if ψ’s mean moves significantly from 0, the algorithm will
detect a change after a certain number of observations. In that case, the delay
between structural change and detection depends on both the change and the
λ. See Figure 3 for an example.

Figure 3: Example of use of empirical fluctuation process, d=4

2.2.3 Limits

After a structural change, the distribution of ψ changes and the so the distri-
bution of its standardized cumulative sum. By controlling the cumulative sum
of ψ and not ψ in itself, we lower the risk of type-I error. It is as if we waited
for a significant number of ’abnormal’ observations before rejecting the null hy-
pothesis of no change. The limit of this method is that there must be a delay
between the structural change and its detection.

The second limit is just a consequence of the first one: after a structural
change the model’s structure may move back to the initial one before the empir-
ical process crosses the boundary function. In that case, the previous procedure
wouldn’t detect this temporary change.

13

2.3 Partitioning
We have seen a statistic allowing the user to detect when the model is obsolete.
However, this approach makes difficult to infer the precise break point. Indeed,
at the time we detect something, the only information we have is that there has
been one or several structural change(s) since the end of the fitting period (the
non-contamination period). This can be enough in the case where we only want
to keep our model updated. However, here we would like to know the precise
date when the change occurs since it is likely to be linked to external events.

Now that we have a time interval in which we know there has been at least one
break, we can test all the dates as if they were break points and keep the date
leading to the lowest p-value. In the case where there has been only one break
point this procedure will detect the break point and hence solves our problem.

However, as we saw earlier, when the empirical fluctuation process detects
something, there might have already been several structural changes. The
F-test still works for several break points. We split the data into n+1 sub-
sets (X(1), ..., X(n+1)) and estimates (β(1), ..., β(n+1)) on each subsets. The
likelihood-ratio statistic is then:

D = −2ln

(n∏
i=1

L(Xi,Yi,β)

b1∏
i=1

L(Xi,Yi,β(1)) ∗ ... ∗
n∏

i=bk

L(Xi,Yi,β(k+1))

)

Under the null hypothesis, D follows a chi square distribution with nd degrees
of freedom.

If the number of breaks is known, for example n, we just have to compute the
likelihood-ratio statistic for all the possible k-uplets of break points. The k-uplet
leading to the highest likelihood-ratio is the one we will keep as solution of our
problem. This partitioning is the one that improves the most the likelihood of
our model. Unfortunately, most of the time it is difficult to infer on the precise
number of structural change.

In that case, we have to compare different partitions for different numbers
of break points. The likelihood of the optimal partition increases with the
number of break points. Indeed, every partition with k break points is a special
case of another partition with k+1 break points. Since GLMs are fitted via
maximum likelihood estimation, the likelihood of the optimum increases each
time a break point is added. However, each time a break point is added, the
number of parameters increases and so the degree of freedom of D. As you can
see on figure 4, the size of the tail increases with the degrees of freedom. As
a consequence, even though the likelihood-ratio statistic always increases with
the number of breaks, the p-value of the associated test will decrease until a
minimum and re-increase after that.

14

Figure 4: Chi squared pdf for different degrees of freedom (source:
en.wikipedia.org/ wiki/Chi-squared_distribution)

Hence brute force, consisting in choosing a maximal number of breaks n and
testing all partitions with k breaks, for k up to n, allows us to infer for the
most likely break points. If the boundary functions for the empirical fluctuation
process are well-chosen, the delay between the break point and its detection
should be small, and so the number of break points in the interest period. In
the conversion model on which we applied this procedure, we usually found one
or two break points at this step.

The main limit of this approach is the complexity of this optimization prob-
lem. The number of operations if o((n+ 1)k) where n is the number of observa-
tions and k is the number of break points. Indeed the number of likelihood-ratio
to compute is equivalent to nk, and the number of operations for each likelihood-
ratio is equivalent to n.

To deal with this problem, the first idea is to reduce the number of break
points tested. Remember that all our observations are sorted by time and that
we test each one to see if it is likely to be a break points. Instead of test-
ing all observations, we can decide to test only N points evenly distributed in
the period. In that case the complexity is o(n ∗ Nk). Finally, in their article
Computation and analysis of multiple structural change models (2003), Jushan
BAI and Pierre PERRON propose to use dynamic programming to keep a com-
plexity as low as o(n2). The idea is to reuse previous results each time a new
likelihood-ratio statistic is computed. During this internship I didn’t imple-
ment this algorithm because we kept n = 104, k < 3, N = 30 which leads to

15

an approximated number of operations equal to 104
3∑
k=1

(
k
30

)
≈ 4 · 107, easily

computable by a computer.

2.4 Penalization to describe significant changes
Now that the precise date of the break point(s) is known, we would like to
understand the change that occurred. The next step is then to compute the es-
timates before and after the break point, excluding or not a small period around
it. The danger here is to observe insignificant moves of estimates which would
make difficult the understanding of the change. To avoid this, we introduce a
new penalization that links the estimates of the first and second period. Hence,
we minimize the following loss function

min
β1,β2

likelihood(X(1), Y (1), β(1)) + likelihood(X(2), Y (2), β(2)) + r
2 ||β

(2)−β(1)||2

where X(i), Y (i) and β(i) are variables, labels and estimates of the ith period.

More precisely, in a given period we suppose l−1 break points, such that P can
be divided in l sub-periods {Pp}p≤l with distinct coefficients β(1), ..., β(l) ∈ Rd.
The loss function becomes:

loss =

l∑
p=1

(
− 1

np

np∑
i=1

`(X
(p)
i , Y

(p)
i , β(p)) + α

2 ||β
(p)||2

)
+ r

2

l−1∑
p=1
||β(p+1) − β(p)||2

where `(X,Y, β) = −
{
Yiln(h(βXi)) + (1− Yi)ln(1− h(βXi))

}
, l is the number

of periods, np the number of observations at period p, α the penalization term
and r the rigidity term.

The rigidity term regularizes the model and prevent insignificant fluctuations
of estimates. This way, we insure that the changes in estimates are strong
enough to beat a given penalization. It is easy to see that setting r = 0 is like
computing two distinct estimates on the two periods, whereas setting r >> 0 is
like computing one single estimate on the whole period.

Hence, we are minimizing a function in Rd×l, convex and coercive. The mini-
mum can be found by descent gradient and the Python module scipy.optimize
provides two such algorithms: fmin_ncg and fmin_l_bfgs_b. In both cases the
loss function and the loss gradient function (callable Python functions) are given
as argument and the algorithm return the minimum. The function fmin_ncg
also takes the Hessian matrix of the loss function as argument.

The computation of the gradient gives:

16

∇β = −

n1∑
i=1

∇β(1)`(X
(1)
i , Y

(1)
i , β(1))

...
nl∑
i=1

∇β(l)`(X
(l)
i , Y

(l)
i , β(l))

+ α

β
(1)

...
β(l)

+ r tA ·A

β
(1)

...
β(l)

where A = Id×l−numpy.eye(d × l, d), with numpy.eye(n, k) being the d × l
identity matrix with diagonal k indices upper (see figure 5).

Figure 5: part of numpy.eye() documentation

The hessian matrix becomes:

Hβ = −

n1∑
i=1

Hβ(1)`(X
(1)
i , Y

(1)
i , β(1)) 0

. . .

0
nl∑
i=1

Hβ(l)`(X
(l)
i , Y

(l)
i , β(l))

+ α · Id×l + r · tA ·A

Hence, once we have the gradient and the hessian matrix of the log-likelihood,
it is easy to compute the loss function of this new model. The main difference
here is the number of variables, the optimization is not in Rd but in Rd×l. In our
case, this dimension shouldn’t exceed 102, which is acceptable for the functions
fmin_ncg and fmin_l_bfgs_b (the main reason is that operations on matrix of
this size take a reasonable time).

17

3 Application to a logistic regression model
AXA Global Direct SA is a subsidiary of AXA Group, founded in 2008 and based
in Suresnes. It offers property and casualty insurance solutions. It primarily
offers motor and household insurance products online and through call centers
in France, Poland, Belgium, Italy, Portugal, Spain, South Korea, and Japan.

The theory described above has been applied to a real model for Direct Se-
guros, the Spanish entity of AXA for direct4 insurance. More precisely, the
model we studied was the Competitive Conversion model, which analyses how
prospects (potential client asking for a quote) convert to clients, regarding to
our price and the price of competitors.

3.1 Structural change in the Competitive Conversion model

Thanks to a rich database, we are able to model demand in the Spanish mo-
tor insurance market. Modeling demand has two goals. Firstly, using logistic
regression allows us to interpret coefficient as odd probabilities and understand
what determines demand. Secondly, monitoring the model helps understanding
the market an allows the company to adjust its pricing or its marketing strategy.

Theoretically, a perfect demand model would include an almost infinite num-
ber of variables into account. Of course personal information and prices (our
prices and competitors’ prices) are very important but it would also include
some subjective features such as brand value, reputation, reliability, popularity,
etc. (for Direct Seguros but also for all other competitors). Obviously we can’t
measure and integrate all these variables to one single model. Hence, and as
in every mathematical model, we create a simpler model with only available
and pertinent features. Thus, when one or several hidden variables change, the
conversion rate evolution is not explained by our model. In this new situation,
estimates changes which lead to what we call a "structural change" of our model.
Those structural changes should be detected as soon as possible.

Figure 6: Perfect model (left) and Competitive Conversion model (right)

4That is to say on internet only.

18

Watching conversion rate fluctuation and logistic model fluctuation are two
different approaches. Since conversion is strongly linked to profits, conversion
rate monitoring is frequent in every online business. Our approach here is to
monitor logistic model, in order to consider the underlying structure of demand.
For example, all other things being equal, a slight price decreasing of one com-
petitor will directly decrease our conversion rate but, if this move does not imply
any structural change of demand, our new estimator will not detect anything.
However, some changes in a competitor’s pricing policy may cause a structural
change which would be detected by our estimator. Such changes may also come
from, among other, massive advertising campaigns, re-branding, rumors, etc.
Indeed, in these cases, the features’ values (e.g. prices and ’biometric’ vari-
ables) do not change but conversion is modified, which hides structural change
of the model.

3.2 Model presentation
There was more than 500 variables in the database but a large part was insignif-
icant, redundant or too sparse to be included in any model. After cleaning the
database, there remained about 50 features: 20 dealing with prospects’ profile
and 30 with competitors (log-ratios between Direct Seguros and each competi-
tor). The main goal of this model is to analyse demand in terms of competition,
so I was asked to keep only price variables. The model being a supervised classi-
fication model, I firstly tried several famous classification methods like Random
Forest, AdaBoost, SVM and logistic regression. The three last methods gave
similar results, with a ROC AUC between 70 and 85%, depending on variables
included in the model. Even though Random Forest gave slightly better results,
it provides very few understanding of the market. Logistic regression results are
readable, estimates shows which competitors have a big impact on the market,
and as a GLM the previous theory on structural changes can be applied.

The next step was feature engineering. I standardized price variables so that
estimates can be compared and interpreted as the impact of the competitor
on demand. I also created new variables such as the log-ratio with the min,
the 2nd and the 3rd min, the rank of Direct Seguros among all the prices, the
log-ratio with the mean, the standard deviation of prices, etc. Finally, "cross-
tabulation" was added: products of variables and squared variables, to observe
cross-effects of these features. This last step did not give good results so I did
not go on with it (note also that prices ratios we introduced are already sort of
cross-tabulation).

For feature selection, classic feature selection methods were used, like sklearn
functions RandomizedLogisticRegression, RFE and the L1-penalized Logistic
Regression. After a first selection, I computed a likelihood-ratio test on each
variable independently. The principle is the same as described in the first part
but it tests the null hypothesis: H0 : βi = 0, where βi is the coefficient of the

19

variable we want to test. The alternative model, which includes the variable of
interest and the null model, which does not, are nested since the null model is
a special case of the alternative one. In that case, under H0, the statistic

D = −2ln

(
likelihood without the variable
likelihood with the variable

)
Follows a Chi squared distribution with 1 degree of freedom.

The final model includes five log-ratios with competitors and the log-ratio
between Direct Seguros and the average of the three minimum prices (figure 7):

Figure 7: Final feature selection, anonymized competitors

The performance of the model is evaluated via several metrics on cross-
validation (75%-25%), here are the results (figure 8):

Figure 8: ROC AUC, accuracy (threshold=0.5) and recall (threshold=0.5)

ROC AUC : Area under the Receiver Operating Characteristic. The ROC plots
true positive rates against false positive rates, the closer AUC comes to 1, the
better the model is.
Accuracy : Proportion of good predictions.
Recall : positive predicted value: ratio between true positives and all predicted
positives.

20

4 Empirical studies

4.1 Implementation for logistic regression
In this section I will quickly present how the theoretical part described in the
first before has been applied to the logistic regression used here.

4.1.1 Empirical fluctuation process

The empirical fluctuation process as described above applies for all generalized
linear models computed via maximum likelihood estimation. In our case the
logistic loss is:

loss = − 1
n

n∑
i=1

Yiln(h(Xiβ)) + (1− Yi)ln(1− h(Xiβ)) + α
2 ||β||

2

where h(z) = exp(z)
1+exp(z) . The deriving of h is h′(z) = exp(z)

(1+exp(z))2 which leads to:

ψi = xh′(xβ)

{
h(yβ)−yi

(1−h(xβ))h(xβ)

}
+ αβ = xi · (h(x′iβ̂)− yi) + αβ.

Python implementation is given in Annexe.

4.1.2 Partitioning

The likelihood-ratio test, note that the formula:

D = −2ln

(
likelihood for the null model

likelihood for the alternative model

)
is not computable because for large number of observations, the likelihood is
too close to zero which leads to a round-off error and indeterminate form 0/0.
The following equation for D solves this problem:

D = −2ln(lkhd null) + 2ln(lkhd alternative)

with ln(likelihood) =
n∑
i=1

Yiln(h(Xiβ)) + (1− Yi)ln(1− h(Xiβ))

4.1.3 Twisted logistic regression

Computation of the twisted logistic regression derives from sklearn.linear_
model.LogisticRegression. Object TwistedLogisticRegression is initial-
ized with, as attributes, the type of solver to be used, the penalization term α
and a rigidity term r. LetX = [X(1), ..., X(l)] and Y = [Y (1), ..., Y (l)] be the lists
of variables and labels for each periods (hence X(p) ∈ Rnp×d and Y (p) ∈ Rnp

where np is the number of observations at the pth period). When fit(X, Y) is
called, the following callable functions are computed:

21

Loss function:

loss(β) =

l∑
p=1

(
− 1
np

np∑
i=1

`(X
(p)
i , Y

(p)
i , β(p)) + α

2 ||β
(p)||2

)
+ r

2

l−1∑
p=1
||β(p+1)−β(p)||2

Gradient function:

∇β(β) = −

n1∑
i=1

∇β(1)`(X
(1)
i , Y

(1)
i , β(1))

...
nl∑
i=1

∇β(l)`(X
(l)
i , Y

(l)
i , β(l))

+ α

β
(1)

...
β(l)

+ r tA ·A

β
(1)

...
β(l)

Hessian matrix function:

Hβ(β) = −

n1∑
i=1

Hβ(1)`(X
(1)
i , Y

(1)
i , β(1)) 0

. . .

0
nl∑
i=1

Hβ(l)`(X
(l)
i , Y

(l)
i , β(l))

+ α · Id×l + r · tA ·A

The computation of
np∑
i=1

∇β(p)`(X
(p)
i , Y

(p)
i , β(p)) and

np∑
i=1

Hβ(p)`(X
(p)
i , Y

(p)
i , β(p))

can be easily derived from the open source of sklearn and I just had to rebuild
the three functions with it, α · Id×l and r · tA ·A.

Python implementation is too long to be included in the annexe but can be
provided on request.

4.2 Case studies
In this section, two case studies will be presented. For confidentiality purpose,
competitors names are replaced by "COMPET1", ..., "COMPET5". These
competitors are more or less the five most important competitors in the direct
motor insurance market in Spain.

4.2.1 Control case

Before studying special cases, I tested the procedure an artificial stable period.
To do so, I fit a logistic regression model on a two month period. Given estimate
β, true labels {Yi}i<n are replaced by:

Ỹi = h(Xiβ + εi)

where h(z) = exp(z)
1+exp(z) and εi ∼ N (0, σ). The variance σ is chosen such that the

area under the ROC with Y and Ỹ are equal.

22

Empirical fluctuation process At the time when I made this control test,
there was only 4 variables in the model, so in the following ψi ∈ R4. The figure
9 draws the empirical fluctuation process

Figure 9: Example of fluctuation process on a stable model

As expected, the null hypothesis of no change is not rejected here. As usual
for statistical test, this would not prove that there is no change. Also, we to
test the partitioning step on this control dataset.

Partitioning The next step of our procedure consists in partitioning the pe-
riod of interest. Here twelve likelihood-ratio test are computed, for twelve dif-
ferent dates evenly distributed. Results are in figure 10:

23

Figure 10: Partitioning the period of interest - stable model

On this example, all the likelihood-ratio statistic are below 4.1. In this case
where it follows a Chi squared distribution with 4 degrees of freedom, the p-
value associated to 4.1 is about 0.39, which confirms that we can not reject the
null hypothesis.

Now that we have an idea of what does the procedure on a unchanged model,
we are going to apply it on two case studies.

24

4.2.2 Case study I: December 2013

In December 2013, Direct Seguros opered a rebranding along with a tariff
change. We would like to apply the procedure to see if we can detect these
events from the dataset. We fit the model on November 2013 and plot the
empirical fluctuation process until february 2014 (figure 11):

Figure 11: Empirical fluctuation process - late 2013

We can see that at the date 2014-01-01, the fluctuation test rejects the null
hypothesis of no change. Hence we know at 95% that there has been a structural
change between the end of the fitting (start of December) and the 2014-01-01.
We compute several tests on December to infer for the most likely break points.

25

Figure 12: Partioning - December 2013

The maximum is reached on 2013-12-16, which must be linked to the rebrand-
ing of the 17th. Note that our algorithm detects a break on the 16th because
the split we use does not include the 17th of Decembre (chosen dates are evenly
distributed in all observations sorted by date).

Finally, to understand the change we compute the twist logistic regression on
this period (figure 13)

26

Figure 13: Coefficients’ evolution - late 2013

We can see that almost all coefficients of our log-ratios with competitors
increase in absolute value. In our model, variables are standardized and hence we
consider that a coefficient reflects the impact of a competitor price in comparison
with Direct Seguros. For example, if a coefficient is very low, the conversion
depends mostly on the intercept, and prices have low impact on conversion. On
the other hand, in our case, we can say that price sensitivity to other competitors
is dramatically increased after the change (until January 2014 at least).

27

4.2.3 Case study II: June 2015

In June 2015, COMPET4 and COMPET4bis, which is an important competitor
of Direct Seguros but not in our model because of its high correlation with
COMPET45, change their pricing. Instead of giving two prices to prospect, a
"standard" price and "vip" price, they started giving only one price. To assess
whether this impacted the conversion in our brand, we monitor the empirical
fluctuation process derived from this model.

We fit the model on May 2015 and plot the empirical fluctuation process
(figure 14):

Figure 14: Empirical fluctuation process - late 2013

We can see that at the date 2015-06-24, the fluctuation test rejects the null
hypothesis. Hence we know at 95% that there has been a structural change
between the start of June and the 2015-06-24. We compute several tests on this
period to infer for the most likely break points.

5correlation coefficient is ≈ 0.98

28

Figure 15: Partioning - June 2015

The break is confirmed on the 2015-06-20, which is exactly the date when
COMPET4 and COMPET4bis opered their change.

Finally, to understand the change we compute the twist logistic regression on
this period (figure 16)

Figure 16: Coefficients’ evolution - June 2015

29

All competitors’ coefficients decrease in absolute value, except COMPET4’s
one which increases. Hence, after the change, our ratio with COMPET4 has
more impact on conversion which would mean that we are more compared to
COMPET4 after its move.

5 Conclusion

We have seen in the first part that repeating likelihood-ratio test as new obser-
vations arrive is not time consistent and would lead to an increase the risk of
type-I error. The empirical fluctuation process allows one to monitor a model
while keeping this risk constant. The partitioning step returns the precise date
of the break. To construct the Competitive Conversion model we have also dealt
with high dimensionality and correlation problems.

The experiments show that the procedure described above gives meaningful
results when trying to detect structural changes in the Competitive Conversion
model. It also provides precious information on the change in itself, even though
a good understand of it would require a good overview of the market and busi-
ness related experience. The approach presented in this document is expected to
be applied in an industrialized manner to pricing demand models, that usually
require a thorough model validation and model monitoring process.

From a personal point of view, this internship allowed me to discover research
in company. I had the chance to have all my time dedicated to this research, and
had a free hand to explore new ideas. I have learnt a lot through this internship
and am sure this experience will be of great help for my future professional life.

30

References
[1] Juchan Bai and Pierre Perron. Computation and Analysis of Multiple Struc-

tural Change Models. Journal of Applied Econometrics, 2003.

[2] Hjort and Koning. Tests for Constancy of Model Parameters Over Time.
Nonparametric Statistics, 2002.

[3] Achim Zeileis Friedrich Leisch Christian Kleiber Kurt Hornik. Monitoring
Structural Change in Dynamic Econometric Models. 2005.

[4] Achim Zeileis; Kurt Hornik. Generalized M-Fluctuation Tests for Parameter
Instability. 2007.

[5] Lerche. Boundary Crossing of Brownian Motion. 1984.

[6] Herbet Robbins. Statistical Methods Related to the Law of Iterated Loga-
rithm. The Annals of Mathematical Statistics, 1970.

[7] Leonard A Stefanski and Dennis D Boos. The Calculus of M-Estimation.
2001.

[8] Chia-Shang James Chu; Maxwell Stinchcombe; Halbert White. Monitoring
Structural Change. 1996.

biblio

31

List of Figures
1 Structural change example: Old Faithful’s eruptions. In red the

null model, in blue the alternative model (source: https://thetarzan.
wordpress.com/2011/06/16/the-chow-test-in-r-a-case-study-of-yellowstones-
old-faithful-geyser/ . 5

2 Chi squared distribution for df=10 (source: www.di-mgt.com.au/
chisquare-calculator.html) . 7

3 Example of use of empirical fluctuation process, d=4 13
4 Chi squared pdf for different degrees of freedom (source: en.wikipedia.org/

wiki/Chi-squared_distribution) 15
5 part of numpy.eye() documentation 17
6 Perfect model (left) and Competitive Conversion model (right) . 18
7 Final feature selection, anonymized competitors 20
8 ROC AUC, accuracy (threshold=0.5) and recall (threshold=0.5) 20
9 Example of fluctuation process on a stable model 23
10 Partitioning the period of interest - stable model 24
11 Empirical fluctuation process - late 2013 25
12 Partioning - December 2013 . 26
13 Coefficients’ evolution - late 2013 27
14 Empirical fluctuation process - late 2013 28
15 Partioning - June 2015 . 29
16 Coefficients’ evolution - June 2015 29

32

6 Annexe
Python implementation of empirical fluctuation process for logistic regression:

c l a s s Efp :
"""Computes emp i r i c a l f l u c t u a t i o n proce s s f o r a g iven model

Parameters
−−−−−−−−−−

model : Object o f c l a s s Model
The model on which the Efp i s computed

t_0 : int , date , s t r i n g (date− l i k e) or f l o a t (in i n t e r v a l [0 , 1])
Time o f the beg inn ing o f f i t t i n g per iod

t_m: int , date , s t r i n g (date− l i k e) or f l o a t (in i n t e r v a l [0 , 1])
Time o f the end o f f i t t i n g per iod , and the beg inning o f monitor ing

t_k : int , date , s t r i n g (date− l i k e) o f f l o a t (in i n t e r v a l [0 , 1])
Last time f o r monitor ing

l : int , f l o a t (d e f au l t =3)
parameter f o r the boundary func t i on s

C: int , f l o a t (d e f au l t : r e s u l t o f CV opt imiza t i on)
parameter f o r r e g u l a r i z a t i o n (1/ alpha)

At t r ibute s
−−−−−−−−−−

model

i_0 , i_m, i_k : i n t
I nd i c e s cor re spond ing to t_0 , t_m, t_k in model .X. index

C: f l o a t
"""
de f _b(s e l f , i , m, l) :

i f (i<=m) :
re turn 0

e l s e :
r e turn np . s q r t (i ∗(i−m)∗ (l ∗ l+np . l og (i / f l o a t (i−m)))) /m

de f _dh(s e l f , XBI) :
r e turn np . d i v id e (np . exp (XBI) , np . power(1+np . exp (XBI) , 2))

de f _carre (s e l f , x) :
x_=np . matrix (x)
re turn np . array (x_.T∗x_)

de f _var (s e l f , X, XBI) :
dh_=np . array (s e l f ._dh(XBI))
sum=0
n=len (X)
f o r i in range (n) :

sum=sum+dh_[i]∗ s e l f . _carre (X[i , :])

33

r e turn np . matrix (sum/n)

de f _cusum_mosum(s e l f , Y, X, XBI , beta , m) :
var_= s e l f . _var (X, XBI)
sqrt_var = sc ipy . l i n a l g . sqrtm (var_)
inv_sqrt_var = np . l i n a l g . inv (sqrt_var)

cumsum_phi = np . matrix (np . cumsum(s e l f . pen_phi , ax i s =0))

s e l f . mosum_ticks = np . array (map(int ,
np . l i n s p a c e (0 ,

l en (s e l f . pen_phi) ,
s e l f . n_win+1)))

s p l i t = np . s p l i t (s e l f . pen_phi , s e l f . mosum_ticks [1 : −1])
mosum_phi = [np . sum(s , ax i s=0) f o r s in s p l i t]
mosum_phi = np . matrix (np . squeeze (mosum_phi))

re turn (m∗∗−0.5)∗ inv_sqrt_var∗cumsum_phi .T, inv_sqrt_var∗mosum_phi .T

de f __init__(s e l f ,
model ,
t_0=None ,
t_m=None ,
t_k=None ,
l =6,
C = None ,
n_win=50):

s e l f . model = model

i f t_0 i s None :
t_0 = 0

t_0 = s t r (t_0)
t ry :

d = datet ime . datet ime . s t rpt ime (t_0 , ’%Y−%m−%d ’)
t_0 = sum(model . dates<d)

except ValueError :
pass

s e l f . i_0 = in t (t_0)

i f t_k i s None :
t_k = len (s e l f . model .Y)

t_k = s t r (t_k)
t ry :

d = datet ime . datet ime . s t rpt ime (t_k , ’%Y−%m−%d ’)
t_k = sum(model . dates<d)

except ValueError :
pass

s e l f . i_k = in t (t_k)

i f t_m i s None :
t_m = s e l f . i_k

t_m = s t r (t_m)
try :

d = datet ime . datet ime . s t rpt ime (t_m, ’%Y−%m−%d ’)
t_m = sum(model . dates<d)

except ValueError :

34

pass
t ry :

i f ((f l o a t (t_m)>0) & (f l o a t (t_m) <1)) :
t_m = f l o a t (t_m)∗ s e l f . i_k + (1− f l o a t (t_m))∗ s e l f . i_0

except ValueError :
pass

s e l f . i_m = in t (t_m)

s e l f . l = l
gauss = sc ipy . s t a t s . norm ()
s e l f . p_value = 4∗(1− gauss . cd f (s e l f . l)+ s e l f . l ∗ gauss . pdf (s e l f . l))

i f (s e l f . i_k > s e l f . i_0) :
s e l f . x_axis = range (s e l f . i_0 , s e l f . i_k)
s e l f . b = np . array ([s e l f ._b(i , s e l f . i_m, l)\

f o r i in s e l f . x_axis])
e l s e :

p r i n t " ERROR: i_k <= i_0"
r a i s e NameError (" Chronology ")

ind_0_to_k = range (s e l f . i_0 , s e l f . i_k)
Y = np . matrix (s e l f . model .Y. i l o c [ind_0_to_k])
X = np . matrix (s e l f . model .X. i l o c [ind_0_to_k])

ind_0_to_m = range (s e l f . i_0 , s e l f . i_m)

s e l f . model . c l a s s i f i e r . c lass_weight = False

i f C i s None :
s e l f .C = model .C

e l s e :
s e l f .C = C

s e l f . model . c l a s s i f i e r .C = f l o a t (s e l f .C)/ l en (ind_0_to_m)
s e l f . model . c l a s s i f i e r . f i t (s e l f . model .X. i l o c [ind_0_to_m] ,

np . r av e l (s e l f . model .Y. i l o c [ind_0_to_m]))
beta = np . t ranspose (np . matrix (s e l f . model . c l a s s i f i e r . coef_ [0]))
i f ha sa t t r (s e l f . model . c l a s s i f i e r , ’ intercept_ ’) :

i n t e r c e p t = model . c l a s s i f i e r . intercept_ [0]
e l s e :

i n t e r c e p t = 0
pred = np . matrix (s e l f . model . c l a s s i f i e r . predict_proba (X)) [: , 1]
s e l f . raw_phi = np . array (X)∗np . array (pred−Y)
m = s e l f . i_m − s e l f . i_0 + 1
C = s e l f . model . c l a s s i f i e r . get_params () ["C"]
s e l f . pen_phi = s e l f . raw_phi+0∗(beta / f l o a t (m∗C)) .T
XBI = X∗beta+in t e r c e p t

s e l f . n_win = n_win
s e l f . cusum , s e l f .mosum = s e l f ._cusum_mosum(Y, X, XBI , beta , m)

35

