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Abstract—The precise estimation of the amount of information
leakage and the consequent vulnerability of a system is one of
the main issues in privacy and quantitative information flow.
Black-box methods are relatively new to these areas: the only
ones that have been explored extensively so far are based on
the frequentist principle, which tries to approximate the channel
matrix of the system by collecting a large number of input-output
examples and counting their relative frequencies. Unfortunately,
this approach does not scale very well: as the space of possibile
observables increases, the amount of examples needed to converge
becomes huge. Moreover, due to related considerations, it cannot
be applied to continuous problems (e.g, traffic analysis, time side
channels).

In this paper, we show that the leakage of a black-box system
can be estimated by using a particular class of machine learning
(ML) methods: the universally consistent rules. This consideration
provides a principled way to apply ML results and techniques
to the estimation of information leakage. We focus in particular
a particular class of estimators that satisfy this property: the
nearest neighbor classifiers, which are based on the principle
that nearby outputs are likely to come from the same inputs.
We investigate the conditions under which these techniques
perform well, and offer advantages with respect to the frequentist
approach. We then evaluate them on real-world systems, and
compare them with leakiEst, the main existing tool for black-
box leakage estimation.

I. INTRODUCTION

Measuring the information leakage of a system is one of the
founding pillars of security. From side-channels to biases in
random number generators, quantifying how much information
a system leaks about its secret inputs is crucial for preventing
adversaries from exploiting it, and it has been the focus
of intensive research efforts in the areas of privacy and of
quantitative information flow (QIF). Most approaches in the
literature are based on the white-box approach, which consists
in calculating analytically the channel matrix of the system,
constituted by the conditional probabilities of the outputs given
the secrets, and then computing the desired leakage measures
(for instance, Mutual Information [1], min-entropy leakage [2],
or g-leakage [3]). However, while one typically has white-
box access to the system they want to secure, determining
a system’s leakage analytically is often impractical, due to
the size or complexity of its internals, or to the presence of
unknown factors. These obstacles led to numerous studies on
measuring a system’s leakage in a black-box manner.

Historically, black-box leakage estimation methods have
been based on classical statistical techniques and they follow
what we refer to as the frequentist paradigm: the idea is to let

the system run repeatedly and count the relative frequencies
of the inputs (the secrets) and the respective outputs, with the
goal of estimating their joint probability distribution. From
this distribution, it is then possible to derive the conditional
probabilities, and then proceed as usual to compute the desired
leakage measures. LeakWatch [4] and leakiEst [5], two well-
known tools for black-box leakage estimation, are examples
of application of this principle.

Unfortunately, the frequentist approach does not always
scale to real-world problems: as the number of possible input
and output values of the channel matrix increases, the amount
of examples required for this method to converge becomes too
large to gather and handle. For example, LeakWatch requires
a number of examples that is much larger than the product
of the size of input and output space. This means that, if
their respective sizes are in the order of a thousands (i.e., a
10 bits input and a 10 bits output), the number of examples
needed is of the order of several millions. For the same reason,
these methods cannot tackle systems with continuous outputs,
at least in the cases of min-entropy leakage and g-leakage –
as a matter of fact, the frequentist approach cannot even be
constructed formally in such case.

Our contribution

In this paper, we show that machine learning (ML) methods
can provide the necessary scalability to black-box measure-
ments, yet maintaining formal guarantees on their estimates.
By pointing out a fundamental equivalence between ML and
the black-box measurement estimation, we show that any ML
rule from a certain class (the universally consistent rules) can
be used to estimate the leakage of a channel. In particular,
we consider nearest neighbor-based learning rules – namely,
Nearest Neighbor (NN) and kn-NN, which exploit a metric on
the output space to achieve a considerably faster convergence
than frequentist approaches. In Table I we summarize the
number of examples necessary for the methods to converge,
for the various systems considered in the paper. We focus
on nearest neighbor methods, among the existing universally
consistent rules, because: i) they are easy to understand,
which allows determining their strengths and weaknesses (i.e.,
systems for which they excel or perform badly), ii) we are
able to formulate them as an extension of the well-understood
frequentist approach; in particular, we define the NN rule so
that it is equivalent to frequentist when predicting the secret
of previously observed outputs, but which improves on it for
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TABLE I
NUMBER OF EXAMPLES REQUIRED FOR CONVERGENCE OF THE ESTIMATES. “X” MEANS AN ESTIMATE DID NOT CONVERGE.

System Dataset Frequentist NN kn-NN

Random 100 secrets, 100 obs. 66 300 66 300 66 300
Geometric (⌫ = 0.1) 100 secrets, 10K obs. 127 201 434 693
Geometric (⌫ = 0.5) 1K secrets, 100K obs. 403 135 4 083 7 018
Geometric (⌫ = 0.02) 100 secrets, 10K obs. 85 907 85 639 11 192
Spiky (contrived example) 2 secrets, 10K obs. 50 341 55 964 101 737

Planar Geometric ⌫ = 2 Gowalla checkins in San Francisco area X X 1 102
Laplacian ⌫ = 2 " N/A X 259
Blahut-Arimoto ⌫ = 2 " 37 37 37

The proposed tool, F-BLEAU, is the combination of Frequentist, NN, and kn-NN estimates, as an alternative to the frequentist paradigm.

unseen outputs (in which case the frequentist has to random
guess). Notably, our methods are also directly applicable for
measuring the leakage of systems with continuous output.

We dub this set of techniques F-BLEAU (Fast Black-
box Leakage Estimation AUtomated), which computes nearest
neighbor and frequentist estimates, and selects the one con-
verging faster; we will release the code as Open Source.

We evaluate our methods on synthetic data, where we
know the true distributions and we can determine exactly
when the estimates converge. Furthermore, we apply these
techniques for measuring the leakage in a real dataset of users’
checkins (Gowalla [6], [7]), defended under three state-of-
the-art mechanisms: two geo-indistinguishability mechanisms
(planar geometric and planar laplacian) [8] and a method
by Oya et al. [9], which is a refinement of the optimal
mechanism by Shokri et al. [10], which we refer to as the
Blahut-Arimoto mechanism. Crucially, the planar Laplacian
is real valued, which kn-NN methods can tackle out-of-the
box, but frequentist approaches cannot. Finally, we compare
F-BLEAU with leakiEst on the problem of estimating the
leakage of European passports [5], [11], and on the location
privacy mechanisms, showing that the same advantage in terms
of convergence rate that F-BLEAU provides with respect to
the frequentist approach also translate into an advantage with
respect to the real tool leakiEst.

As a further evidence of the practicality of F-BLEAU, in
Appendix C we give an example of application to measure the
leakage of a time side channel in a hardware implementation
of finite field exponentiation.

In summary, our paper demonstrates that ML methods can
be successfully applied to black-box leakage estimation, and
they generally either offer an an advantage over the frequentist
approach, or they are equivalent to it – except for particularly
malicious channel matrices (Table I). Furthermore, as a con-
sequence of the NFL theorem in ML, we point out that in
practice one should always evaluate more than one estimator,
and then choose the best performing one, as there exist no
optimal estimator across all systems. This paper provides the
basis for future research on leakage estimators, and suggests an
entire class of methods (universally consistent learning rules)
on which they can develop.

II. RELATED WORK

Chatzikokolakis et al. [12] introduced methods for mea-
suring the leakage of a deterministic program in a black-box
manner; these methods worked by collecting a large number
of inputs and respective outputs and estimating the underlying
probability distribution accordingly. This is what we here refer
to as the frequentist paradigm. A fundamental development of
their work by Boreale and Paolini [13] showed that, in absence
of significant a priori information about the output distribution,
no estimator does better than the exhaustive enumeration of
the input domain. In particular, Boreale and Paolini showed
that it is difficult to obtain tight upper bounds under relaxed
assumptions; on the other hand, when one has some control
over the input distribution, they constructed an estimator that
with high probability gives lower bounds irrespectively of the
underlying distribution, and tight upper bounds if the input
distribution induces a “close to uniform” output distribution.
In line with this work, subsection III-F will show that, as a
consequence of the No Free Lunch theorem in ML, no leakage
estimator can claim to converge faster than any other estimator
on all distributions.

One of the best known tools that have been developed on
the basis of the frequentist paradigm is LeakWatch [4], [5].
Subsequently, Chothia et al. proposed leakiEst [14], [15],
an extension able to cope also with continuous output. In
Section VII we will compare leakiEst with our proposal with
respect to their convergence rate.

Cherubin [16] used guarantees of nearest neighbor learning
rules for measuring in a black-box manner the smallest error
(Bayes risk) of a one-try adversary performing website finger-
printing attacks; however, this work was limited to a small set
of techniques, and to the specific traffic analysis problem. In
section IV we will make evident the connection between ML
and QIF, and we will apply similar techniques to the more
general problem of measuring the leakage of a system.

III. PRELIMINARIES

We define a system, and formulate its leakage in terms of
the Bayes risk. We further introduce ML notions, which we
will use in the next sections to estimate the Bayes risk.
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A. Notation

We consider a system (⇡, Cs,o), that associates to a secret
input s an observation (or object) o in a possibly randomized
way. The system is defined by a set of prior probabilities
⇡(s) := P (s), s 2 S, and a channel matrix C of size |S|⇥ |O|,
for which Cs,o := P (o|s) for s 2 S and o 2 O. We call S⇥O

the example space. We assume the system does not change
over time. In this paper, S is finite, and O is finite unless
otherwise stated.

B. Measuring Leakage

The state-of-the-art in QIF is represented by the leakage
measures based on g-vulnerability, a family whose most rep-
resentative member is min-vulnerability [2], the complement
of the Bayes risk. This paper will be concerned with finding
tight estimates of the Bayes risk, which can then be used to
compute the appropriate leakage measure.

a) Bayes risk: The Bayes risk, R⇤, is the error of the
optimal (idealized) classifier for the task of predicting a secret
s given an observation o output by a system. It is defined with
respect to a loss function ` : S ⇥ S 7! R�0, where `(s, s0) is
the risk for an adversary to predict s0 for an observation o,
when its actual secret is s. We focus on the 0-1 loss function,
`(s, s0) := I(s 6= s0), taking value 1 if s 6= s0, 0 otherwise.

Consider a system, (⇡, Cs,o). The conditional Bayes risk
r⇤(o) given observation o 2 O is the error minimizing the
risk on the prediction s for the 0-1 loss function:

r⇤(o) := 1�max
s2S

P (s|o) .

By taking the expectation of r⇤(o) over the distribution on O

we obtain the Bayes risk, R⇤ := E r⇤. If (⇡, Cs,o) are known,
the Bayes risk is computed as follows:

R⇤ := 1�
X

o2O

max
s2S

Cs,o⇡(s) .

b) Random guessing: A baseline for evaluating a system
is the error committed by an idealized adversary who knows
priors but has no access to the channel; the best strategy, in
this case, is to always output the secret with the highest prior.
We refer to this as the random guessing error, defined as:

R⇡ := 1�max
s2S

⇡(s) .

c) Leakage measures: From an estimate of Bayes risk
and random guessing error we can construct several leakage
measures. In this paper, we will use min-entropy leakage ME,
defined as:

ME := � log2(1�R⇡) + log2(1�R⇤) .

In section VII, we will compare F-BLEAU with leakiEst on
the basis of ME.

C. Black-box estimation of R⇤

This paper is concerned with estimating the Bayes risk given
n examples sampled from the joint distribution µ(S ⇥ O)
generated by (⇡, Cs,o). By running the system n times on
secrets s1, . . . , sn 2 S, chosen according to ⇡, we generate
a sequence of corresponding outputs o1, . . . , on, thus forming
a training set

1 of examples {(o1, s1), ..., (on, sn)}. From these
data, we aim to make an estimate close to the real Bayes risk.

D. Learning Rules

ML rules (or, simply, learning rules) are algorithms for
selecting a classifier given a set of training examples.

Let F := {f | f : O 7! S} be a set of classifiers. A learning
rule is a possibly randomized algorithm that, given a training
set {(o1, s1), ..., (on, sn)}, returns a classifier f 2 F , with the
goal of minimizing the expected loss E `(f(o), s) for a new
example (o, s) sampled from µ(S⇥O) [17]. In case of the 0-
1 loss function, the expected loss coincides with the expected

probability of error (expected error for short), and if µ(S⇥O)
is generated by a system (⇡, Cs,o), then the expected error of
a classifier f : O 7! S is:

Rf = 1�
X

o2O

Cf(o),o⇡(f(o)) (1)

where f(o) is the predicted secret for observation o. If O is
infinite (and µ is continuous) the summation is replaced by an
integral. In section IV we will show that a class of learning
rules can be used to estimate a system’s leakage.

E. Frequentist estimate of R⇤

The frequentist paradigm [12] for measuring the leakage of
a channel consists in estimating the probabilities Cs,o by count-
ing their frequency in the training data (o1, s1), ..., (on, sn):

P (o|s) ⇡ Ĉs,o :=
|i : oi = o, si = s|

|i : si = s| .

We can obtain the frequentist error from Equation 1:

RFreq = 1�
X

o

CfFreq(o),o ⇡(fFreq(o))

where fFreq is the frequentist classifier, namely:

fFreq(o) =

(
argmaxs(Ĉs,o ⇡̂(s)) if o in training data
argmaxs ⇡̂(s) otherwise ,

where ⇡̂ is estimated from the examples: ⇡̂(s) = |i:si=s|/n.
Consider a finite example space S ⇥ O. Provided with

enough examples, the frequentist approach always converges:
clearly, Ĉ ! C as n ! 1, because events’ frequencies
converge to their probabilities by the Law of Large Numbers.

However, there is a fundamental issue with this approach.
Given a training set {(o1, s1), ..., (on, sn)}, a frequentist clas-
sifier can tell something meaningful (i.e., better than random
guessing) for an object o 2 O, only as long as o appeared

1In line with the ML practice, we call training or test “set” what is
technically a multiset; also, we loosely use the set notation “{}” for both
sets and multisets, when the nature of the object is clear from the context.
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in the training set; but, for very large systems (e.g., large
object space), the probability of observing and example for
each object within the training set becomes small, and the
frequentist classifier approaches random guessing. We study
this matter further in subsection V-C and Appendix A.

F. No Free Lunch In Learning

To measure the leakage of a black-box with large O⇥S, we
need a classifier that makes good predictions also for objects
o 2 O that are not contained in the training set. This intuition
motivates the techniques used in the next section, where we
will suggest Bayes risk estimates based on nearest neighbor
rules; these rules predict, for an unseen object o, the secret of
its closest observation in the training set.1

However, we will first state a fundamental impossibility
result on the existence of an “optimal” learning rule. One may
wonder whether there is a learning rule that outperforms all the
others at classifying objects (including, of course, those that
were not observed in the training set). More precisely, a rule
that, trained on a finite number n of examples coming from
a distribution µ(S⇥O), produces a classifier whose expected
error is the smallest, for all distributions µ over S ⇥ O. Un-
fortunately, the answer is negative, as shown by the following
simplified and weak version of the NFL theorem [18].

Theorem 1 (No Free Lunch [18]). Let A and B be

two learning rules that, given a training set of examples

{(o1, s1), ..., (on, sn)} sampled from a joint distribution µ on

S⇥O, produce classifiers fA
n , fB

n : O 7! S respectively. Then,

there is always a distribution µ such that Eµ RfA
n < Eµ RfB

n ,

and vice versa, there is always a distribution µ0
such that

Eµ0 RfB
n < Eµ0 RfA

n .

Remarkably, this holds for any strategy, even if the learning
rule is random guessing. This tells us that, under the relaxed
assumption that µ can be any distribution, the very best we can
do to select between A and B is to evaluate them empirically.

IV. MACHINE LEARNING ESTIMATES OF R⇤

In this section, we define the notion of universally consistent

learning rule, and show that a classifier selected according
to such kind of rule can be used for estimating R⇤. Then,
we introduce various universally consistent rules based on the
“nearest neighbor” principle.

Throughout the section, we use interchangeably a system
(⇡, Cs,o) or its corresponding joint distribution µ on S ⇥ O.
Note that there is a one-to-one correspondence between them.

A. Universally Consistent Rules

Consider a distribution µ(S ⇥ O) and a learning rule A
selecting a classifier fn 2 F using n training examples
sampled from µ. Intuitively, we would like the expected error
of fn with respect to a new example (o, s) sampled from µ
to approximate the Bayes risk of the corresponding system
as the training set increases in size. The following definition
captures this intuition.

TABLE II
ESTIMATES’S GUARANTEES AS n ! 1

Method Guarantee Space O

Frequentist ! R
⇤ finite

NN ! R
⇤ finite

kn-NN ! R
⇤ infinite, (d,O) separable

NN Bound  R
⇤ infinite, (d,O) separable

Definition 1 (Consistent Learning Rule). Let µ be a distribu-

tion on S⇥O and let A be a learning rule. Let fn 2 F be

a classifier selected by A using n training examples sampled

from µ. Let (⇡, Cs,o) be the system corresponding to µ, and

let Rfn be the expected error of fn, as defined by (1). We say

that A is consistent if Rfn ! R⇤
as n!1.

The next definition captures the property for a learning rule
of being intrinsically consistent, i.e., not thanks to a particular
distribution, but for all of them:

Definition 2 (Universal Consistent Learning Rule). A learn-

ing rule is universally consistent if it is consistent for any

distribution µ on S⇥O.

By this definition, the error of a classifier selected according
to a universally consistent rule is an estimate of the Bayes risk,
which converges to R⇤ as n!1.

In the rest of this section we introduce Bayes risk estimates
based on universally consistent nearest neighbor rules; they
are summarized in Table II together with their guarantees.

B. NN estimate

Nearest Neighbor (NN) is one of the simplest ML classi-
fiers: given a training set and a new object o, it predicts the
secret of its closest training observation (nearest neighbor).
However, it is generally defined for infinite object spaces O,
where it does not guarantee universal consistency.

We introduce a formulation of NN, which can be seen as an
extension of the frequentist approach, that takes into account
ties (i.e., neighbors that are equally close to the new object o),
and which guarantees consistency when O is finite.

Consider a training set {(o1, s1), ..., (on, sn)}, an object o,
and a distance metric d : O ⇥ O 7! R�0. The NN classifier
predicts a secret for o by taking a majority vote over the set of
secrets whose objects have the smallest distance to o. Formally,
let Imin(o) = {i | d(o, oi) = minj=1...n d(o, oj)} and define:

NN (o) = sh(o) where h(o) = argmax
i2Imin(o)

|{j 2 Imin(o) | sj = si}| .

We show that NN is universally consistent for finite S⇥O.

Theorem 2 (Universal consistency of NN). Consider a dis-

tribution on O⇥S, where O and S are finite. Let RNN
n be the

expected error of the NN classifier for a new observation o.

As the number of training examples n!1:

RNN
n ! R⇤.
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Proof. Sketch proof. For an observation o that appears in the
training set, the NN classifier is equivalent to the frequentist
approach. For a finite space S⇥O, as n!1, the probability
that the training set contains all o 2 O approaches 1. Thus, the
NN rule is asymptotically (in n) equivalent to the frequentist
approach, which means its error also converges to R⇤.

C. kn-NN estimate

Whilst NN guarantees universal consistency in finite exam-
ple spaces, this does not hold for infinite O. In this case, we
can achieve universal consistency with the k-NN classifier, an
extension of NN, for appropriate choices of the parameter k.

The k-NN classifier takes a majority vote among the secrets
of its neighbors. Breaking ties in the k-NN definition requires
more care than with NN. In literature, this is generally done via
strategies that add randomness or arbitrariness to the choice
(e.g., if two neighbors have the same distance, select the
one with the smallest index in the training data) [19]. We
use a novel tie breaking strategy, which takes into account
ties, but gives more importance to the closest neighbors. In
early experiments, we observed this strategy had a faster
convergence than standard approaches.

Consider a training set {(o1, s1), ..., (on, sn)}, an object to
predict o, and some metric d : O⇥O 7! R�0. Let o(i) denote
the i-th closest object to o, and s(i) its respective secret. If
ties do not occur after the k-th neighbor (i.e., if d(o, o(k)) 6=
d(o, o(k+1))), then k-NN outputs the most frequent among the
secrets of the first k neighbors:

k-NN(o) = sh(o)

where

h(o) = argmax
i=1,...,k

|{j 2 Imin(o) | s(j) = s(i)}| .

If ties exist after the k-th neighbor, that is, for k0  k < k00:

d(o, o(k0)) = ... = d(o, o(k)) = ... = d(o, o(k00)) ,

we proceed as follows. Let ŝ be the most frequent secret
among

�
s(k0), ..., s(k00)

 
; k-NN predicts the most frequent

secret in the following multiset, truncated at the tail to have
size k:

s(1), s(2), ..., s(k0�1), ŝ, ŝ..., ŝ .

We now define kn-NN, a universally consistent learning rule
that selects a k-NN classifier for a training set of n examples
by choosing k as a function of n.

Definition 3 (kn-NN rule). Given a training set of n examples,

the kn-NN rule selects a k-NN classifier, where k is chosen

such that kn !1 and kn/n! 0 as n!1.

Stone proved that the kn-NN rule is universally consistent:

Theorem 3 (Universal consistency of the kn-NN rule [20]).
Consider an example space S⇥O and a probability distribu-

tion µ(S⇥O), where µ has a density. Select a distance metric

d such that (d,O) is separable
2
. Then the expected error of

the kn-NN rule converges to R⇤
as n!1.

This holds for any distance metric. In our experiments, we
will use the Euclidean distance, and we will evaluate two kn-
NN rules, kn = log n (log is the natural log) and kn = log10 n.

D. NN lower bound estimate

From the NN classifier, one may also obtain a very con-
servative lower bound estimate of R⇤, as introduced in [16],
which holds even for infinite O.

Theorem 4 (NN Bound [16]). Let RNN
n be the expected error

of the NN classifier given n training examples. As n ! 1,

the following inequality holds:

|S|� 1

|S|

 
1�

s

1� |S|
|S|� 1

RNN
n

!
 R⇤ .

Finally, it is possible to obtain optimistically biased Bayes
risk estimates (i.e., which in expectation converges to R⇤

from

below) from a universally consistent rule, by computing its
error on its training set [16], [19].

V. EVALUATION ON SYNTHETIC DATA

We evaluate the estimates on discrete synthetic systems
defined for various distributions on the channel matrix. We
sample n examples from a system’s distribution, and then com-
pute the estimate on the whole object space as in Equation 1;
this is possible because O is finite. Since for synthetic data we
know the real Bayes risk, we can measure how many examples
are required for the convergence of each estimate. We do this
as follows: let Rf

n be an estimate of R⇤, trained on a dataset
of n examples. We say the estimate �-converged to R⇤ after
n examples if its relative change from R⇤ is smaller than �:

��Rf
n �R⇤

��
R⇤ < � .

While relative change has the advantage of taking into account
the magnitude of the compared values, it is not defined when
the denominator is 0; therefore, when R⇤ ⇡ 0 (Table III), we
verify convergence with the absolute change:

��Rf
n �R⇤�� < � .

Table III summarizes the systems we evaluate in our exper-
iments; the rest of this section describes each into details. In
this section, we assume uniform priors for all the systems.

A. Geometric systems

We first consider systems generated by Geometric noise
functions, which are one of the typical mechanisms used
to implement differential privacy [21]. We consider different
parameters, to illustrate the effect of their variation on the
convergence of the k-NN methods and the frequentist one.

2A separable space is a space containing a countable dense subset; finite
spaces are separable, and so is the space of q-dimensional vectors, Rq , with
Euclidean metric.
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TABLE III
SYNTHETIC SYSTEMS.

Name |S| |O| R
⇤

Random 100-100 100 100 0.979
Geometric 1.0 100x10K 100 10K ⇠ 0
Geometric 0.1 100x10K 100 10K 0.007
Geometric 0.01 100x10K 100 10K 0.600
Geometric 0.5 100x10K 100 10K ⇠ 0
Geometric 0.5 1Kx100K 1K 100K ⇠ 0
Geometric 0.5 10Kx1M 10K 1M ⇠ 0
Geometric 0.2 100x1K 100 1K 0.364
Geometric 0.02 100x10K 100 10K 0.364
Geometric 0.002 100x100K 100 100K 0.364

1) System description: Let S and O be sets of consecutive
natural numbers, with the standard notion of distance. Two
numbers s, s0 2 S are called adjacent if s = s0+1 or s0 = s+1.

Let ⌫ be a real non-negative number and consider a function
g : S 7! O. The channel matrix of the Geometric system is:

Cs,o = P (o | s) = � exp (�⌫| g(s)� o |) ,

where � is a normalizing factor. Note that the privacy level is
defined by ⌫/�g, where �g is the sensitivity of g:

�g = max
s1⇠s22S

(g(s1)� g(s2)) ,

where s1 ⇠ s2 means s1 and s2 are adjacent. Now let S =
{1, . . . , w}, O = {1, ..., w0}, g(s) = s · w0/w. We define

� =

(
e⌫/(e⌫ + 1) if o = 1 or o = w0

(e⌫ � 1)/(e⌫ + 1) otherwise ,

so to truncate the distribution at its boundaries.
We will now consider the following three parameters:

• the privacy level ⌫/�g, which here is equal to ⌫|S|/|O|,
• the size of the secret space |S|, and
• the ratio |O|/|S|.

We vary each of these parameters one at the time, to isolate
their effect on the convergence rate.

2) Variation of the privacy level: We fix |S| = 100,
|O| = 10K, and we consider three cases ⌫ = 1.0, ⌫ = 0.1
and ⌫ = 0.01. The results for the estimation of the Bayes
risk and the convergence rate are illustrated in Figure 1
and Table IV respectively. In the tables, results are reported
for � convergence levels {0.1, 0.01, 0.001}; an “X” means a
particular estimate did not converge within 500K examples, a
missing row for a certain � means no estimate converged.

The results indicate that the nearest neighbor methods
have a much faster convergence than the standard frequentist
approach, particularly when dealing with large systems. The
reason is that Geometric systems have a regular behavior with
respect to the Euclidean metric, which can be exploited by
NN and kn-NN to make good predictions for unseen objects.

3) Variation of the input size: Here we fix ⌫ = 0.5,
|O|/|S| = 100, and we consider three cases |S| = 100, |S| = 1K,
and |S| = 10K. The results are in Figure 2 and Table V.
They confirm what was logical to expect, namely that if we
scale the number of inputs of a factor c and all the other

TABLE IV
CONVERGENCE OF THE ESTIMATES WHEN VARYING ⌫ .

kn-NN
System � Freq. NN log10 log

Geometric
100x10K
⌫ = 1.0

0.1 1 989 262 391 674
0.01 19 823 420 628 894

0.001 198 057 434 693 899

Geometric
100x10K
⌫ = 0.1

0.1 18 105 264 391 668
0.01 127 201 434 628 894

0.001 X X 10 727 900

Geometric
100x10K
⌫ = 0.01

0.1 105 448 103 352 99 847 34 238

parameters remain the same, then the results (the number of
examples necessary to get the same estimation) are scaled by
the same factor c, for all the methods. Although not surprising,
it reassures us on the correctness of our procedures.

TABLE V
CONVERGENCE OF THE ESTIMATES WHEN VARYING |S|.

kn-NN
System � Freq. NN log10 log

Geometric
100x10K
⌫ = 0.5

0.1 3 926 264 391 678
0.01 38 181 434 628 894

0.001 371 823 434 693 899

Geometric
1Kx100K
⌫ = 0.5

0.1 39 461 2 191 4 570 7 287
0.01 403 135 4 083 7 018 11 337

0.001 X 5 329 8 427 14 133

Geometric
10Kx1M
⌫ = 0.5

0.1 X 22 929 51 705 92 740
0.01 X 46 712 82 211 X

0.001 X 66 610 X X

4) Variation of the ratio |O|/|S|: Now we fix |S| = 100,
⌫|O|/|S| = 2, and we consider three cases |O|/|S| = 10,
|O|/|S| = 100, and |O|/|S| = 1K. (Note that as a consequence
also ⌫ has to vary: we have to set ⌫ to 0.2, 0.02, and 0.002,
respectively.) Results in Figure 3 and Table VI show how
the nearest neighbor methods become much better than the
frequentist approach as |O|/|S| increases. This is because the
larger is the object space, the larger is the number of unseen
objects at the moment of classification, and the more the
frequentist approach has to rely on random guessing. The
nearest neighbor methods are not that much affected because
they can rely on the proximity to outputs already classified.

B. Spiky system: When kn-NN rules fail

kNN rules can take advantage of the metric on the object
space to improve their convergence considerably. However,
there are systems for which the Frequentist outperforms kNN.
While this does not come as a surprise, given the NFL
theorem (Theorem 1), investigating the form of such systems
is important to understand when these methods fail.

a) System description: We construct an example of such
systems, which we call the Spiky system. Consider an ob-
servation space constituted of q consecutive integer numbers
O = {0, ..., q � 1}, for some even positive integer q, and
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Fig. 1. Estimates’ convergence for Geometric systems when varying their noise parameter. The respective distributions are shown in the top figure for two
adjacent secrets s1 ⇠ s2.

Fig. 2. Estimates’ convergence for Geometric systems when varying the number of secrets. The respective distributions are shown in the top figure for two
adjacent secrets s1 ⇠ s2.

secrets space |S| = 2. Assume that O is a ring with the
operations + and � defined as the sum and the difference
modulo q, respectively, and consider the distance on O defined
as: d(i, j) = |i� j|. (Note that (O, d) is a “circular” structure,

i.e., d(q�1, 0) = 1.) The Spiky system has uniform prior, and

Cs,o =


2/q 0 2/q . . . 0
0 2/q 0 . . . 2/q

�

This system is crafted so that most neighbors of an observ-

7



Fig. 3. Estimates’ convergence for Geometric systems when varying the ratio |O|/|S|. The respective distributions are shown in the top figure for two adjacent
secrets s1 ⇠ s2.

TABLE VI
CONVERGENCE OF THE ESTIMATES WHEN VARYING |O|/|S|.

kn-NN
System � Freq. NN log10 log

Geometric
100x1K
⌫ = 0.2

0.1 8 674 8 702 7 103 2 500
0.01 51 689 60 791 60 791 60 791
0.001 180 659 180 659 180 659 180 659

Geometric
100x10K
⌫ = 0.02

0.1 85 907 85 639 70 998 11 192

Geometric
100x100K
⌫ = 0.002

0.1 X X 413 969 2 962

able are more likely to be associated with the wrong secret.
This means that NN and kn-NN rules will tend to predict the
wrong secret, until enough examples are available.

b) Discussion: We conducted experiments for a Spiky
system of size |O| = 10K. Results in Figure 4 confirm the
hypothesis: nearest neighbor rules are misled for this system.

Interestingly, while the NN estimate keeps decreasing as the
number of examples n increases, there is a certain range of
n’s where the kn-NN estimates become worse than random
guessing. Intuitively, this is because when n becomes larger
than |O|, all elements in O tend to be covered by the examples.
For every i 2 O there are two neighbors, i� 1 and i+1, that
belong to the class opposite to the one of i, so if k is not too
small with respect to n, it is likely that in the multiset of the k
closest neighbors of i, the number of i�1’s and i+1’s exceeds
the number of i’s, which means that i will be misclassified.

Fig. 4. Estimates’ convergence for a Spiky system (2x10K).

As n increases, however, the ratio between k and the number
of i’s in the examples tends to decrease (because k/n! 0 as
n!1), hence at some point we will have enough i’s to win
the majority vote in the k neighbors (i’s are considered before
than i � 1’s and i + 1’s, by nearest neighbor definition) so i
will not be misclassified anymore.

Concerning the comparison between the NN and frequentist
estimates, we can do it analytically. We start by computing the
expected error of the NN method on the spiky system in terms
of the number of training examples n. Let Tn be a training set
of examples of size n. Given a new object i, let us consider
the NN estimate rn(i) of r⇤ for i, i.e., the expected probability
of error in the classification of i. This is the probability that
the element o closest to i that appears in the training set is at
odd distance from i (i.e., d(i, o) = 2` + 1, for some natural
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number `). Namely it is the probability that:
• i is not in training data but either i+ 1 or i� 1 are, or
• i, i± 1, i± 2 are not in training data but either i+ 3 or

i� 3 are, or
• . . . etc.

Hence we have:

r(i) = P (d(i, o) = 2l + 1) =

=P (i /2 Tn, i+ 1 2 Tn) + P (i /2 Tn, i� 1 2 Tn) + . . .

=2 ·
q/4�1X

`=0

a4`+1(1� a),

where a = (1 � 1/q)n is the probability that an element e 2
O does not occur in any of the n examples of the training
set. (Thus a4`+1 represents the probability that none of the
elements i, i±1, i±2, i±2s, with ` = 2s, appear in the training
set, and 1�a represents the probability that the element 2s+1
(resp. 2s� 1 ) appears in the training set.) By using the result
of the geometric series

mX

t=0

at =
1� am+1

1� a
,

we obtain:
rn(i) = 2a

1� aq

(1 + a2)(1 + a)
.

Since we assume that the distribution on O is uniform, we
have RNN

n = rn(i).
We want to study how the error estimate depends on the

relative size of the training set with respect to the size of O.
Hence, let x = n/q. Then we have a = (1� 1/q)qx, which, for
large q, becomes a ⇡ e�x. Therefore:

RNN
x ⇡ 2e�x 1� e�qx

(1 + e�2x)(1 + e�x)
.

It is easy to see that RNN
x ! 1/2 for x ! 0, and RNN

x ! 0
for x!1, as expected.

Consider now the frequentist estimate RFreq
x . In this case,

given an element i 2 O, the classification is done correctly
if i appears in the training set. Otherwise, we do random
guessing, which gives a correct or wrong classification with
equal probability. Only the latter case contributes to the prob-
ability of error, hence the error estimate is half the probability
expectation that i does not belong to the training set:

RFreq
x =

1

2
(1� 1

q
)n ⇡ 1

2
e�x

Therefore, RNN
x is always above RFreq

x .

C. Random System

In the previous sections, we have seen cases when our
methods greatly outperform the frequentist approach, and
a contrived system example for which they fail. We now
consider a system generated randomly to evaluate their per-
formances for an “average” system.

Fig. 5. Estimates’ convergence for a Random system (100⇥ 100).

a) System description: The channel matrix of a Random
system is produced by drawing its elements from the uniform
distribution, Cs,o  $ Uni(0, 1), and normalizing its rows
appropriately so that

P
o2O

P (o|s) = 1 8s 2 S.
b) Evaluation: We consider a Random system with |S| =

|O| = 100 and count the number of examples required for �-
convergence, for many �’s. Table VII reports the results.

TABLE VII
RANDOM: EXAMPLES REQUIRED FOR �-CONVERGENCE.

kn-NN
� Freq. NN log10 log

0.01 77 134 197 495
0.001 668 124 668 124 668 124 668 124

The frequentist estimate is slightly better than kNN for
� = 0.01. However, for stricter convergence requirements
(� = 0.001), all the methods require the same (large) number
of examples. Figure 5 show that indeed the methods begin to
converge similarly already after 1K examples.

c) Discussion: Results showed that nearest neighbor esti-
mates require significantly fewer examples than the frequentist
approach when dealing with medium or large systems; how-
ever, they are generally equivalent to the frequentist approach
in the case of small systems.

To better understand why this is the case, we derive a crude
approximation of the frequentist Bayes risk estimate.

RFreq
n ⇡ R⇤

✓
1�

✓
1� 1

|O|

◆n◆
+R⇡

✓
1� 1

|O|

◆n

.

This approximation, derived and studied in Appendix A,
makes the very strong assumption that all objects are equally
likely to be sampled from µ(s, o), i.e.: P (o) = 1

|O| . However, it
is enough to give us an insight on the performance of frequen-
tist approach:

⇣
1� 1

|O|

⌘n
is the probability that some object

does not appear within a training set of size n. This probability
weighs the value of the frequentist estimate between the
optimal R⇤, used when the object appears in the training data,
and random guessing R⇡ . This estimate converges to the Bayes
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risk asymptotically. However, the probability of observing an
object, and thus the size of the object space, is the principal
factor influencing its convergence rate.

VI. APPLICATION TO LOCATION PRIVACY

We show that F-BLEAU can be successfully applied to
estimate the degree of protection provided by mechanisms
such as those used in location privacy. Since the purpose
of this paper is to evaluate the precision of F-BLEAU, we
consider basic mechanisms for which the Bayes risk can also
be computed directly, so that we can use it for comparison. Of
course, the intended applications of F-BLEAU are mechanisms
or situations where the Bayes risk cannot be computed di-
rectly, either because this is too complicated, or because of the
presence of unknown factors. Examples abound; for instance,
the availability of additional information, like the presence
of points of interest (e.g., shops, churches), or geographical
characteristics of the area (e.g., roads, lakes) can affect the
Bayes risk in ways that are impossible to evaluate formally.

We will consider the planar Laplacian and the planar
Geometric, that are the typical mechanisms used to obtain geo-
indistinguishability [8], and one of the optimal mechanisms
proposed by Oya et al. [9] as a refinement of the optimal
mechanism by Shokri et al. [10]. In particular, we will use the
mechanism that achieves an optimal trade-off between privacy
(measured as residual entropy) and utility loss (measured as
expected distance between the true location and the obfuscated
one). The construction of such a mechanism relies on an
algorithm that was independently proposed by Blahut and by
Arimoto to solve a problem in information theory, namely that
of achieving an optimal trade-off between the minimization
of the distortion rate and the minimization of the mutual
information [22]. From now on, we shall refer to this as
the Blahut-Arimoto mechanism. Note that the Laplacian is a
continuous mechanism, i.e., it outputs obfuscated locations on
the continuous plane. The other two are discrete.

In these experiments we also deploy the method that F-
BLEAU uses in practice to compute the estimate of the Bayes
risk: we first split the data into a training set and a hold-out
set; then, for an increasing number of examples n = 1, 2, ...
we train the classifier on the first n examples on the training
set, and then estimate its error on the hold-out set.

A. The Gowalla dataset

We will consider real location data from the Gowalla

dataset [6], [7], which contains users’ checkins and their
location in terms of latitude and longitude. We use data from
a squared area in San Francisco centered in the point of latlon
coordinates (37.755, -122.440), and extending for 1.5 Km
in each direction. This input area corresponds to the inner
(purple) square in Figure 6. We discretize the input using a
grid of 20 ⇥ 20 cells of size 150 ⇥ 150 Sq m; the secret
space S of the system consists thus of 400 locations. The prior
distribution on the secrets (input distribution) is derived from
the Gowalla checkins, and it is represented in Figure 6 by
the different color intensities on the cells of the input grid.

Fig. 6. Area of San Francisco considered for the experiments. The input
locations corresponds to the inner square, the output locations to the outer
one. The colored cells represent the distribution of the Gowalla checkins.

The output area is represented in Figure 6 by the outer
(blue) square. It spawns 1050 m (7 cells) more than the input
square on every side. The reason we consider a larger area for
the output is that the planar Laplace and the planar Geometric
naturally expand outside the input square.3 Since the planar
laplacian is continuous, its output domain O is constituted by
all the points of the outer square. As for the planar Geometric
and the Blahut-Arimoto mechanisms, which are discrete, we
divide the output square in a grid of 350 ⇥ 340 cells of size
15⇥15 Sq m. The size of O for these mechanisms is therefore
340⇥ 340 = 115, 600 cells.

B. Defenses

The planar Geometric mechanism is characterized by a
channel matrix Cs,o, representing the conditional probability
to report the location o when the true location is s:

Cs,o = � exp

✓
� ln ⌫

100
d(s, o)

◆
,

where ⌫ is a parameter controlling the level of noise, � is
a normalization factor, and d(s, o) is the Euclidean distance
between s and o.

The conditional probability of the planar Laplacian is
defined by the same equation, except that o belongs to a
continuous domain, and the equation defines a probability
density function.

As for the Blahut-Arimoto, it is obtained as the result of an
iterative algorithm, whose definition can be found in [22].

C. Results

We have evaluated the estimation’s convergence to the
Bayes risk as a function of the number of training examples
n and for different values of the level of noise: ⌫ = {2, 4, 8}.

For the geometric noise the results are shown in Figure 7.
As we can see convergence is faster when ⌫ is higher (which
means less noise and lower Bayes risk), in line with the results
for the syntetic systems of previous section. In all cases, the
k-NN methods outperform the frequentist one, as we expected

3In fact these functions distribute the probability on the infinite plane, but
on locations very distant from the origin the probability becomes negligible.
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TABLE VIII
CONVERGENCE FOR THE PLANAR GEOMETRIC FOR VARIOUS ⌫ .

kn-NN
⌫ � Freq. NN log 10 log

2 0.1 X X 26 809 1 102
0.05 X X X 54 914

4 0.1 X X 35 942 2 820
0.05 X X X 45 032

8 0.1 X X 13 236 5 249
0.05 X X X 19 948

TABLE IX
CONVERGENCE FOR THE PLANAR LAPLACIAN FOR VARIOUS ⌫ .

kn-NN
⌫ � Freq. NN log 10 log

2 0.1 N/A X X 259
4 0.1 N/A X X 4 008
8 0.1 N/A X X 6 135

0.05 N/A X X 19 961

given the presence of a large number of outputs. Table VIII
shows the number of examples required to achieve distance
� from the Bayes risk. The presence of the symbol X means
that we did not achieve the required level of approximation
with 80K examples.

The corresponding results for the Laplacian noise are shown
in Figure 7 and in Table IX. In this case we have not shown
the frequentist approach, since it does not make sense in the
continuous case (the estimate remains on value 1).

The case of the Blahut-Arimoto mechanism is quite dif-
ferent: surprisingly, the output probability concentrates on a
small number of locations. For instance, in the case ⌫ = 2,
with 100K sampled pairs we obtained only 19 different output
locations (which reduced to 14 after we mapped them on the
20⇥ 20 grid). Thanks to the small number of actual outputs,
all the methods converge very fast. The results are shown in
Figure 9 and in Table X.

VII. COMPARISON WITH LEAKIEST

LeakWatch [4] and leakiEst [5] are the major existing black-
box leakage measurement tools. Both are based on the fre-
quentist approach. In this section we compare F-BLEAU with
leakiEst, which is an evolution of LeakWatch, and it is more
complete: they both compute Shannon mutual information
(MI) and min-entropy leakage (ME) on the finite-output case;
leakiEst computes also MI in the infinite-output case under
some continuity conditions. We perform this comparison for
a time side channel on the RFID on European passports, and
on the Gowalla examples of the previous section.

LeakiEst gives two results: i) evidence / no evidence of
leakage, and ii) leakage estimation. They are accompanied by
confidence indications, and it is possible that leakiEst reports
no evidence of leakage, and still a non-zero leakage estimation.

TABLE X
CONVERGENCE FOR THE BLAHUT-ARIMOTO FOR VARIOUS ⌫ .

kn-NN
⌫ � Freq. NN log 10 log

2 0.1 37 37 37 37
0.05 135 135 135 135
0.01 1 671 1 664 1 408 1 408

0.005 6 179 5 724 1 671 1 671
4 0.1 220 220 220 257

0.05 503 502 509 703
0.01 2 029 2 029 2 055 2 404

0.005 2 197 2 055 2 280 2 658
0.001 X 2 404 2 830 3 481

8 0.1 345 398 553 1 285
0.05 1 285 1 211 1 343 1 679
0.01 2 104 2 017 2 495 4 190

0.005 2 231 2 231 3 433 6 121
0.001 3 881 3 881 6 079 7 724

TABLE XI
ESTIMATED LEAKAGE OF EUROPEAN PASSPORTS

Passport leakiEst: Evidence of leak? (MI) F-BLEAU: R⇤

British yes (0.053) 0.757
German no (0.152) 0.978
Greek no (0.034) 0.938
Irish yes (0.421) 0.698

A. Time side channel on e-Passports’ RFID

Chothia et al. [11] discovered a side-channel attack in the
way the protocols of various European countries exchanged
message some years ago (the protocols have been corrected
since then). The problem was that, upon receiving a message,
the e-passport would first check the Message Authentication
Code (MAC), and only afterwards verify the nonce (so to
assert the message was not replayed). Therefore an attacker
who previously intercepted a valid message from a legitimate
session could replay the message and detect a difference
between the response time of the victim’s passport and any
other passport, that could be used to track the victim. To avoid
such attack, Chothia et al. [5] proposed to add padding to the
response time and they used LeakiEst to show that after such
defense there was no evidence of leakage anymore.

We compared F-BLEAU and leakiEst on the data with time
padding applied [23], available on the leakiEst web page. The
secret space S contains answers to the binary question: “is this
the same passport?”; the dataset is balanced, hence R⇡ = 0.5.

On continuous data leakiEst only deals with MI, which is
not directly comparable to leakage measures derivable from
R⇤. However, we can base our comparison on leakiEst’s no-
leak test: indeed, MI is 0 if and only if R⇤ = R⇡ .

For F-BLEAU, we randomly splitted the data into training
(75%) and hold-out set, and then estimated R⇤ on the latter;
we repeated this for 10 different random initialization seeds,
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Fig. 7. Estimates’ convergence speed for the planar Geometric defense applied to the Gowalla dataset, for ⌫ = 2, ⌫ = 4 and ⌫ = 8, respectively. On top
of each graph it is represented the distribution of the geometric noise for two adjacent input cells.

TABLE XII
ESTIMATED LEAKAGE OF PRIVACY MECHANISMS ON GOWALLA DATA

Mechanism ⌫ leakiEst: Conf? (ME) F-BLEAU: ME True ME

B.-Arimoto 2 no* (1.481) 1.479 1.501
4 no* (2.305) 2.310 2.304
8 no* (2.738) 2.746 2.738

Geometric 2 no (2.585) 1.862 1.988
4 no (2.859) 2.591 2.638
8 no (3.105) 2.983 2.996

Mechanism ⌫ leakiEst: Conf? (MI) F-BLEAU: ME True ME

Laplacian 2 no (1.150) 1.802 1.987
4 no (1.911) 2.550 2.631
8 no (2.401) 2.970 3.003

and averaged the estimates. Table XI reports the results: there
are two cases where leakiEst did not find enough evidence of
leakage, while F-BLEAU shows the leakage is non-negligible:
In the case of the German passport, a Bayes error of 0.48
corresponds to a probability of 0.52 to detect the victim’s
passport, and for the Greek passport, a Bayes error of 0.47
corresponds to a probability of 0.53.

B. Gowalla dataset

We compare F-BLEAU with leakiEst on the location privacy
mechanisms examined in section VI: Blahut-Arimoto, planar
Geometric, and planar Laplacian. The main interest if to
verify whether the advantage of F-BLEAU w.r.t. the frequentist
approach observed in case of large output sets translates into
an advantage also w.r.t. leakiEst. For the first two mechanisms
we also compare the estimated values of ME. For the latter

this is not possible because the Laplacian is continuous, hence
leakiEst can only estimate MI.

We run F-BLEAU and leakiEst on the defended datasets,
comprising of n = 100K examples. The results are reported in
Table XII, where “Conf?” indicate whether leakiEst considers
having achieved the intended level of confidence, or not. The
values between parentheses indicate the leakage estimate that
leakiEst reports anyway. On the planar Geometric leakiEst
reports “Too small sample size”, and indeed its estimate of ME
is quite distant from the true ME. F-BLEAU, on the contrary,
provides a quite tight bound (recall that F-BLEAU provides a
lower bound of the true ME). The situation is similar for the
planar Laplacian.

On the Blahut-Arimoto the situation is more interesting:
because of the small number of actual outputs, F-BLEAU and
the frequentist approach perform equally well (cfr. section VI),
hence we were expecting a similar outcome from leakiEst.
This was not the case: on the Blahut-Arimoto leakiEst still
reports “Too small sample size”. However, we think this is
because leakiEst takes into account the number of outputs
declared, instead of the actual number generated with the
examples. Indeed, its ME estimate is close to ours. Hence this
problem should be easy to fix simply by inferring the output
size from the examples (this is the meaning of the “*” in the
leakiEst column in Table XII).

VIII. CONCLUSION AND FUTURE WORK

We showed that the black-box leakage of a system, mea-
sured until now with classical statistics and information theory
paradigms, can be effectively estimated via ML techniques.
We proposed a set of such techniques based on the nearest
neighbor principle (i.e., close observations should be assigned
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Fig. 8. Estimates’ convergence speed for the planar Laplacian defense applied to the Gowalla dataset, for ⌫ = 2, ⌫ = 4 and ⌫ = 8, respectively. On top
of each graph it is represented the distribution of the geometric noise for two adjacent input cells.

the same secret), and evaluated them thoroughly on synthetic
systems and real-world data. This allows to tackle problems
that were impossible until now, and it sets a paradigm change
in the QIF literature: thanks to the natural equivalence we
discovered between ML and black-box leakage estimation,
many results from the ML theory can be now imported into
QIF (and vice versa).

Empirical evidence shows that, in general, our nearest
neighbor techniques either are equivalent or they (often sub-
stantially) outperform the standard frequentist approach in
terms of the number of examples required for convergence.
In particular, they excel whenever there is a notion of metric
in the output space: when the frequentist approach needs to
make a prediction for an unseen observation, it has to guess
the secret according to priors; nearest neighbor methods can
exploit the information of neighboring observations.

We also indicated that, as a consequence of the No Free
Lunch (NFL) theorem in ML, no estimate can guarantee
optimal convergence. We therefore proposed F-BLEAU, a
combination of frequentist and nearest neighbor rules, which
runs all these techniques on a system, and selects the estimate
corresponding to the largest leakage.

We expect this work will inspire researchers to explore new
leakage estimators from the ML literature; in particular, we
showed that any “universally consistent” ML rule can be used
to estimate the leakage of a system. Future work may focus on
other rules from which one can obtain universal consistency
(e.g., Support Vector Machine).

A fundamental advantage of the ML formulation, as op-
posed to the standard approach, is that it gives immediate
guarantees for systems with continuous output space. Future
work may extend this to systems with continuous secret space,

which in ML terms would be formalized as regression (as
opposed to the classification setting we considered here).

A current limitation of our methods is that they do not
provide confidence intervals. We leave this as an open ques-
tion. We remark, however, that for continuous systems it will
not be possible to define confidence intervals (or to prove
convergence rates) under our weak assumptions [19]; this
constraint applies to any leakage estimation method.

We reiterate, although, the great advantage of ML methods:
they allow tackling systems for which until now we could not
measure security, with a strongly reduced number of examples.
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Fig. 9. Estimates’ convergence speed for the planar Laplacian defense applied to the Gowalla dataset, for ⌫ = 2, ⌫ = 4 and ⌫ = 8, respectively. On top
of each graph it is represented the distribution of the output probability as produced by the mechanism. All the outputs with non-null probability turn out to
be inside the input square. The Blahut-Arimoto noise for two adjacent input cells distributes in on the outputs with non-null probability in a way similar to
the laplacians. The outputs are originally points on the 340⇥ 340 output grid, but here are mapped on the coarser 20⇥ 20 grid for the sake of visual clarity.
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APPENDIX A
APPROXIMATION OF THE FREQUENTIST ESTIMATE

To better understand the behavior of the frequentist ap-
proach for observations that were not in the training data, we
derive a crude approximation of this estimate in terms of the
size of training data n. The approximation makes the following
assumptions:

1) each observation o 2 O is equally likely to appear in
training data (i.e., P (o) = 1� 1

|O| );
2) if an observation appears in the training data, the

frequentist approach outputs the secret minimizing the
Bayes risk;

3) the frequentist estimate knows the real priors ⇡.
4) if an observation does not appears in the training data,

then the frequentist approach outputs the secret with the
maximum prior probability;

The first two assumptions are very strong, and thus this is just
an approximation of the real trend of such estimate. However,
in practice it approximates well the real trend Figure 10.

Let An(o) denote the event “observation o appears in
a training set of n examples”; because of assumption 1),
P (An(o)) = 1 �

⇣
1� 1

|O|

⌘n
. The conditional Bayes risk

estimated with a frequentist approach given n examples is:

rn(o) =rn(o|An(o))P (An(o)) + rn(o|¬An(o))P (¬An(o)) =

=
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Assumptions 2) and 3) were used in the last step. From this
expression, we derive the frequentist estimate of R⇤ t step n:
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Note that in the second step we used P (An(o)) as a constant,
which is allowed by assumption 1).

The expression of Rn indicates that P (An(o)) weights
between random guessing according to priors-based random
guessing and the Bayes risk; when P (An(o)) � P (¬An(o)),
which happens for n � � log 2

log(1� 1
|O| )

the frequentist approach
starts approximating using the actual Bayes risk (Fig. 10).

APPENDIX B
GOWALLA DETAILS

We report in Table XIII the real Bayes risk estimated
analytically for the Gowalla dataset defended under the
various mechanisms, and their respective utility.

APPENDIX C
APPLICATION TO TIME SIDE CHANNEL

We use F-BLEAU to measure the leakage in the running
time of the square-and-multiply exponentiation algorithm in
the finite field F2w ; exponentiation in F2w is relevant, for
example, for the implementation of the ElGamal cryptosystem.

We consider a hardware-equivalent implementation of the
algorithm computing ms in F2w . We focus our analysis on
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TABLE XIII
TRUE BAYES RISK AND UTILITY FOR GOWALLA DATASET DEFENDED

UNDER VARIOUS LOCATION PRIVACY MECHANISMS.

Mechanism ⌫ R
⇤ Utility

Blahut-Arimoto 2 0.760 334.611
4 0.571 160.839
8 0.428 96.2724

Geometric 2 0.657 288.372
4 0.456 144.233
8 0.308 96.0195

Laplacian 2 0.657 288.66
4 0.456 144.232
8 0.308 96.212

TABLE XIV
NUMBER OF UNIQUE SECRETS AND OBSERVATIONS FOR THE TIME SIDE

CHANNEL TO FINITE FIELD EXPONENTIATION.

System (dataset) |S| |O|

Time side channel 4 bits 24 34
6 bits 26 123
8 bits 28 233
10 bits 210 371
12 bits 212 541

the simplified scenario of a “one-observation” adversary, who
makes exactly one measurement of the algorithm’s execution
time o, and aims to predict the corresponding secret key s.

A similar analysis was done by Backes and Köpf [24] by
using a leakage estimation method based on the frequentist ap-
proach. Their analysis also extended to a “many-observations
adversary”; that is, an adversary who can make m observations
(o1, ..., om), all generated from the same secret s, and has to
predict s accordingly.

A. Side channel description

Square-and-multiply is a fast algorithm for computing ms

in the finite field F2w , where w here represents the bit size
of the operands m and s. It works by performing a series
of multiplications according to the binary representation of
the exponent s, and its running time is proportional to the
number of 1’s in s. This fact was noticed by Kocher [25],
who suggested side channel attacks to the RSA cryptosystem
based on time measurements.

B. Message blinding

We assume the system implements message blinding, a
technique which hides to an adversary the value m for which
ms is computed. Blinding was suggested as a method for
thwarting time side channels [25], which works as follows.
Consider, for instance, decryption for the RSA cryptosystem:
md(modN), for some decryption key d; the system first
computes m · re, where e is the encryption key and r is
some random value; then it computes (mre)d, and returns the
decrypted message after dividing the result by r.

Message blinding has the advantage of hiding information
to an adversary; however, it was shown that it is not enough
for preventing time side channels (e.g., [24]).

C. Implementation and results

We consider a Gezel implementation of finite field expo-
nentiation. Gezel is a description language for clocked hard-
ware, equipped with a simulation environment whose execu-
tions preserve the corresponding circuit’s timing information.
This means that the time measurements (i.e., clock cycles) we
make reflect the corresponding circuit implementation [26].

We compare the performances of the frequentist and nearest
neighbor approaches in terms of the number of black-box
examples required for convergence. For each bit size w 2
{4, 6, .., 12}, and for all the values (mi, si) 2 {0, ..., 2w�1}2,
we run the exponentiation algorithm to compute ms, and
measure its execution time oi. As with our application to
location privacy (section VI), we estimate the Bayes risk by
training a classifier on a set of increasing examples n and by
computing its error on a hold-out set. We set the size of the
hold-out set to min(0.2 · 22w, 250 000).

Results in Figure 11 show that, while for small bit sizes the
frequentist approach outperforms nearest neighbor rules, as
w increases, the frequentist approach requires a much larger
number of examples. Nevertheless, in these experiments we
did not notice a substantial advantage in nearest neighbor
rules, even though the output space is equipped with a notion
of metric. Table XIV helps interpreting this result: for larger
bit sizes w of the exponentiation operands, the possible
output values (i.e., clock cycles) only increase minimally; this
confirms that, as noticed in our previous experiments, nearest
neighbor and frequentist estimates tend to perform similarly
for systems with small output space.
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Fig. 11. Convergence of the estimates for the time side channel attack to the
exponentiation algorithm as the bit size of the operands increases.
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