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I. Concepts of Quantitative Information Flow (QIF)

! We wish to quantify the leakage of a secret input X 
to an observable output Y caused by a probabilistic 
channel C. 
! Example: Y = X & 0x1ff leaks 9 bits of X, intuitively. 

! The possible values of X and Y are given by finite 
sets X and Y. 

! There is a prior distribution π on X. 

! Both π and C are assumed known by the adversary A. 
! Then the (information-theoretic) essence of C is a 

mapping from priors π to hyper-distributions [π,C].
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Example

π

3/8

3/8

1/4

Prior

C y1 y2

x1 2/3 1/3

x2 2/3 1/3

x3 1/4 3/4

Channel matrix

J y1 y2

x1 1/4 1/8
x2 1/4 1/8

x3 1/16 3/16

Joint matrix

pX|y1 pX|y2

x1 4/9 2/7

x2 4/9 2/7

x3 1/9 3/7

Posterior distributions

pY 9/16 7/16

Distribution on Y

Hyper-distribution on X

9/16 7/16

x1 4/9 2/7

x2 4/9 2/7

x3 1/9 3/7
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Multiply each row 
by prior probability.

Add up each column.

Normalize 
columns of 
joint matrix.

Forget about 
column labels.

Abstractly, channel C 
is a mapping from priors 
to hyper-distributions.



 Vulnerability and min-entropy leakage

! [Smith09] proposed to measure leakage based on X’s 
vulnerability to be guessed by A in one try. 

! Prior vulnerability: 
V[π] = maxx πx 

! Posterior vulnerability: 
V[π,C] = ∑y p(y) V[pX|y] 
! V[π,C] is the average vulnerability in the hyper-

distribution. 
! V[π,C] is the complement of the Bayes risk. 

! Min-entropy leakage: 
L(π,C) = lg (V[π,C] / V[π])

4



! V[π] is an optimal adversary A’s probability of winning 
the following game: 
    x ← π 
    w ← A(π) 
    if w = x then win else lose 

! V[π,C] is an optimal adversary A’s probability of 
winning the following game: 
    x ← π 
    y ←  Cx,- 
    w ← A(π, C, y) 
    if w = x then win else lose

Operational significance of vulnerability
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Generalizing to g-vulnerability [ACPS12]

! Finite set W of guesses about X (or “actions”). 

! Gain (or “scoring”) function g : W × X → [0, 1] 
! g(w,x) gives the value of w if the secret is x. 
! Can model scenarios where the adversary benefits by 

guessing X partially, approximately, in k tries, … 
! Note: (Ordinary) vulnerability implicitly uses 

gid(w,x) =  

! Prior g-vulnerability: Vg[π] = maxw ∑x πx g(w,x) 
! Posterior g-vulnerability: Vg[π,C] = ∑y p(y) Vg[pX|y]
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1, if w = x 
0, otherwise{



g-leakage

! g-leakage is defined based on the prior and posterior 
g-vulnerability. 

! But there are a number of plausible definitions: 
! “logged” multiplicative: lg (Vg[π,C] / Vg[π]) 
! additive: Vg[π,C] - Vg[π] 
! multiplicative: Vg[π,C] / Vg[π] 

! Fortunately, if we just want to compare the leakage 
of two channels, these all give the same result! 

! We always get  
     Lg(π,A) ≤ Lg(π,B)   iff   Vg[π,A] ≤ Vg[π,B] .
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II. “Dalenius’s Desideratum”

! [Dwork11]: “In 1977…Tore Dalenius articulated an  
‘ad omnia’ (as opposed to ad hoc) privacy goal for 
statistical databases: Anything that can be learned 
about a respondent from the statistical database 
should be learnable without access to the database.” 

! “…The last hopes for Dalenius’s goal evaporate in 
light of the following parable…” 

! “Given the auxiliary information ‘Turing is two inches 
taller than the average Lithuanian woman’, access to 
the statistical database teaches Turing’s height.” 

! (Actually, Dwork’s account appears to be completely 
unfair to Dalenius…)
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A “Dalenius” QIF scenario

! Imagine a secret X with prior π. 
! Suppose adversary A is interested in learning X, 

measuring knowledge with a gain function g. 
! Now imagine a channel C from Y to Z, apparently 

having nothing to do with X. 
! But suppose there is an interesting joint matrix J on 

(X,Y), expressing a correlation between X and Y. 
! (J must give marginal distribution π to X.) 

! Can we see C as leaking information about X?
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The Dalenius scenario with g-leakage

! Given channel C from X to Y, we can construct C* 
from (X,Y) to Z: 
! C*(x,y),z = Cy,z 
! C* ignores X. 

! Given gain function g from W to X, we can construct 
g* from W to (X,Y): 
! g*(w,(x,y)) = g(w,x) 
! g* ignores Y. 

! Hence Lg*(J,C*) can be seen as the leakage about X 
caused by C, given the correlations in J.
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A neater formulation

! The joint matrix J can of course be converted into 
the prior π on X and a channel matrix B from X to Y. 

! We can cascade B and C to get a channel BC from X 
to Z. 

! And it turns out (a bit mysteriously, to me) that 
Lg(π,BC) = Lg*(J,C*). 

! One nice consequence (thanks to theorems about 
cascading) is that this “Dalenius” leakage of X cannot 
exceed the capacity of C, no matter what 
correlations J may ever be discovered to exist!
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III. Another application of Dalenius scenarios

! Given channels A and B on input X, the question of 
which leaks more will ordinarily depend on π and g. 

! Is there a robust ordering? 
! Yes! 
! Coriaceous Theorem: 

A never leaks more than B, regardless of π and g 
iff  
A can be factored into BR, for some channel R. 

! Proved in [MMSEM14], but proved in the early 1950s by 
statistician David Blackwell.
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Example
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! A cannot be factored into BR, for any R. 
! Yet under ordinary vulnerability (min-entropy 

leakage), A never leaks more than B, regardless of π. 
! But suppose that x1 and x2 are male and x3 is female, 

and the adversary uses a gain function that cares 
only about the gender of the secret. 

! In that case A leaks more than B.

z1 z2

x1 2/3 1/3
x2 2/3 1/3

x3 1/4 3/4

y1 y2 y3

x1 1/2 1/2 0
x2 1/2 0 1/2

x3 0 1/2 1/2

A = B =



A less convincing example
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! Here’s a gain function that makes A leak more than B: 

! Why should we care about such weird gain functions?

z1 z2 z3

x1 0.2 0.22 0.58

x2 0.2 0.4 0.4

x3 0.35 0.4 0.25

y1 y2 y3 y4

x1 0.1 0.4 0.1 0.4

x2 0.2 0.2 0.3 0.3

x3 0.5 0.1 0.1 0.3

A = B =

g x1 x2 x3

w1 153/296 0 1/2
w2 0 289/296 63/296

w3 21/148 1 0

! Again, A cannot be factored into BR, for any R.



The trace formulation of g-vulnerability

! Recall that we can express g-vulnerability as a trace. 
! The trace of a square matrix is the sum of its 

diagonal entries. 
! Vg[π,C] = maxS tr(DπCSG) 

! Dπ (indexed by X,X) is a diagonal matrix of the prior 
! C (indexed by X,Y) is the channel matrix 
! S (indexed by Y,W) is the strategy for choosing guess 

w from output y 
! G (indexed by W,X) is the gain function
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Gain functions as Dalenius scenarios

! Amazingly, trace satisfies a cyclic property: 
tr(ABC) = tr(BCA) = tr(CAB) 

! Hence we have 
Vg[π,C] = maxS tr(DπCSG)  
            = maxS tr(GDπCS)  
            = maxS tr((GDπ)CSI) 

! I (identity matrix) gives ordinary vulnerability. 
! And note that GDπ can always be normalized to a 

joint matrix J between W and X! 
! Hence we can see the g-leakage of X caused by C as 

the min-entropy leakage of W caused by C when W 
and X are correlated according to GDπ. 16



Example, revisited
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! With a uniform prior, A’s g-leakage of X exceeds B’s. 
! And if W is regarded as a secret, and it is correlated 

with X according to g, then A’s min-entropy leakage 
of W exceeds B’s. 

! So if we care about min-entropy leakage under 
arbitrary correlations then we also need to care 
about g-leakage for all g, no matter how weird!

g x1 x2 x3

w1 153/296 0 1/2
w2 0 289/296 63/296

w3 21/148 1 0

A z1 z2 z3

x1 0.2 0.22 0.58

x2 0.2 0.4 0.4

x3 0.35 0.4 0.25

B y1 y2 y3 y4

x1 0.1 0.4 0.1 0.4

x2 0.2 0.2 0.3 0.3

x3 0.5 0.1 0.1 0.3



IV. [Dalenius77]
! The apparent source of Dwork’s characterization of the “Dalenius 

Desideratum”: 
“If the release of statistics S makes it possible to determine the value 
DK more accurately than is possible without access to S, a disclosure 
has taken place.” 

! But Dalenius does not make this a desideratum! 
! On the contrary:  

“A reasonable starting point is to discard the notion of elimination of 
disclosure.” 
“It may be argued that elimination of disclosure is possible only by 
elimination of statistics.” 
“[This] is the reason for our use of the term ‘statistical disclosure 
control’ rather than ‘prevention’ or ‘avoidance’.” 
“More specifically, we need two measures: M = the amount of 
disclosure associated with the release of some statistics; and B = the 
benefit associated with the statistics.”
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Questions?
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