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Information Overload 

 IBM claims that “90% of the data in the world today has been created 

in the last two years alone” (2012) [1] 
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Personalized Information Systems 

 A personalized information system is an information system that tailors 

the information-exchange functionality to meet the specific interests of 

their users 

 Examples of personalization include recommendation systems, tagging 

systems, personalized Web search and personalized news 
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Examples of Personalized Information Systems 
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Privacy Risk 

 Profiling is therefore what enables those systems to determine what 

information is relevant to users, but at the same time, it is the source 

of serious privacy concerns 
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Adversary Model 

 We justify and interpret Kullback-Leibler (KL) divergence and Shannon’s 

entropy as privacy and anonymity metrics in the application of personalized 

information systems 

 The level of privacy provided by a PET is measured with respect to an 

adversary model 

 What scenario is assumed? 

 Who can be the privacy attacker? 

 How does the attacker model user interests? 

 What is the attacker after when profiling users? 
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 In traditional approaches to privacy, users or designers decide whether 

certain sensitive information is to be made available or not. The availability 

of this data enables certain functionality. Its unavailability produces the 

highest level of privacy 

 but when intended yet untrusted recipients… 

Privacy via Perturbation 

 In personalized information systems, the intended recipient of sensitive 

information may not be fully trusted 
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 Data perturbation is a completely 

different approach to more conventional 

privacy and security strategies  

 contemplates the possibility of exposing 

only portions of the data, or somewhat 

distorted versions of it,  

 to gain privacy at the cost of data utility 



    

Actual and Apparent Profiles 
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user’s actual profile q user’s apparent profile t 

 Users counter the adversary by distorting their 

private data locally 

 Next, the KL divergence and Shannon’s 

entropy are interpreted as measures of privacy 

and anonymity 
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Anonymity Criteria against Individuation (I) 

 The probability of a profile (distribution) may be a measure of its anonymity 

 But this PMF of distributions is usually unknown… 

 The maximum-entropy method is a general-purpose method for making inferences or 

predictions based on incomplete information 

 Its origins lie in statistical mechanics but it is present in diverse areas such as statistical 

physics, signal processing and spectral estimation 

 Jaynes’ rationale behind entropy maximization [2] 

                      is a sequence of i.i.d. drawings of a uniform r.v. on  

 Let       be the number of times symbol i appears in a sequence  

 The type t of a sequence is 
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Anonymity Criteria against Individuation (II) 

 Jaynes somehow justifies the principle of insufficient reason. But his argument is 

restricted to uniformly distributed drawings 

 Extension of Jaynes’ argument to KL divergence 

 A prior knowledge of an arbitrary PMF p of the samples  

 The type T of an i.i.d. drawing is an r.v. We may define its PMF  

 The expected type is  

 

 

 

 

 Under this argument 

 KL divergence                may be interpreted as a measure of privacy, more precisely 

anonymity 

 roughly speaking,                                                # users with this profile t 

 KL divergence regarded as a measure of anonymity, not in the sense of identifiability 
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Data Perturbation in Recommendation Systems 

 We focus on recommendation systems, possibly the most popular 

personalized information systems, and propose a mechanism that allows 

users to simultaneously 

 submit ratings of items that do not reflect their interests – forgery of ratings 

 skip rating certain genuine items – suppression of ratings 
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some items aligned with your interests 

apply suppression to 
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Optimal Privacy-Utility Trade-Off (I) 
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 We seek a mathematically optimal mechanism in the sense that utility is maximized for 

a given privacy constraint, and vice versa 

 Assume that the attacker wishes to individuate users (i.e., find uncommon users), and 

that p is known to users 

 Denote by q the user’s actual profile and define  

 rating-forgery rate                  , as the ratio of forged ratings to total genuine ratings 

that a user consents to submit 

 rating-suppression rate                            ,   as the ratio of genuine ratings agreed to eliminate 

 User’s apparent item distribution 
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Optimal Privacy-Utility Trade-Off (II) 
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 Privacy risk, or more precisely anonymity loss, is measured as the KL divergence 

between t and p 

 Loss in utility measured as the rates of forgery and suppression 

 mathematically tractable measures of utility 

 Assuming that the population of users is large enough, the privacy-forgery-

suppression function is defined as 

 

 

 

 

 

 which characterizes the optimal trade-off among privacy, forgery rate and 

suppression rate 
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Theoretical Results (I) 

 Explicit-form solution to the optimization problem and characterization of the 

optimal trade-off surface among privacy, forgery rate and suppression rate 

 In the closure of the noncritical-privacy region 

 Assume w.o.l.o.g.  

 Define                     ,                     and      ,      analogously, and 

 Based on resource allocation argument 

 The optimal forgery and suppression strategies yield 

 

 

 

 

 

 

 Optimal trade-off 
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Theoretical Results (II) 

 The critical-privacy region is convex. Its boundary is a convex, piecewise linear 

function of     , determined by some forgery and suppression thresholds 

 For                     define the forgery thresholds 

 

 

 For                     define the suppression thresholds 

 

 First-order Taylor approximation at the origin in the nontrivial case when  
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Theoretical Results (III) 

 Forgery and suppression as pure strategies, i.e., operate alone 

 Which is the pure strategy causing the minimum distortion to attain the critical-

privacy region? 

 Choose forgery if, and only if,  

 Which is the pure strategy providing better privacy protection at low rates? 

 Choose forgery if, and only if,   
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Movielens Recommendation System 

 Empirical assessment of our data-perturbative approach 

 Apply the forgery and the suppression of ratings to the popular movie recommendation 

system Movielens 

 Data set with 4 099 users, and profiles modeled across 19 movie genres 

36 

Example of user profile 



    

Detailed Experimental Results (I) 

 Optimal trade-off between privacy and utility for a particular user 

 The mixed strategy may provide stronger privacy protection for the same total 

rate than the pure strategies, i.e., 
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Detailed Experimental Results (II) 

 Assume all 4099 users apply a common forgery rate and a common 

suppression rate 

 For relatively small values of     and      (lower than 15%), a vast majority of users 

lowered privacy risk significantly 

 Slight asymmetry between the rates of forgery and suppression for pure strategies 
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Detailed Experimental Results (III) 

 Pure strategies  –  in 95.3% of cases, suppression reached the critical-privacy region 

with a lower distortion than forgery did 

 Critical forgery rate  

 Critical suppression rate 
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Conclusions  

 Data-perturbative mechanism for the privacy enhancement in personalized 

recommendation systems 

 Our mechanism has several features that make it particularly interesting to 

recommendation systems, but poses a trade-off between privacy and utility 

 The proposed mechanism has been engineered to attain the optimal privacy-

utility trade-off 

 Propose KL divergence as user-profile privacy criterion, and interpret it 

quantities from fundamental concepts of information theory and statistics 

 Privacy-utility trade-off modeled as optimization problems 

 Closed-form solution, by using convex-optimization techniques 

 Theoretical analysis of said trade-off 

 Experimental analysis carried out in Movielens 
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