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Plan of the talk

• Information Flow in a probabilistic setting. Examples

• Possibilistic approaches

• Probabilistic approaches

• Information-theoretic approaches

• Approach based on statistical inference and Bayesian risk

• Some relations between the various approaches

• Problems in extending the framework to the interactive case

• Verification
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Information hiding
• Information flow (originally): leak of information from high variables to low variables

• Information flow is an aspect of a general problems called information-hiding:  
Prevent an observer from inferring secret information from the 
information made available to him (observables).

• Other problems that can be seen as Information-hiding problems:  Anonymity, 
Privacy, Untreaceability, Confidentiality, Secrecy ... 

• In particular, the communities of Information Flow and of (Theory of) 
Anonymity are converging on the formal approaches

• This talk will be about the common foundations, with particular focus on the 
probabilistic aspects

• Two examples from Anonymity: DC Nets and Crowds
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Example: DC Nets (Chaum 88)

• A set of nodes with some 
communication channels (edges).

• One of the nodes (source) wants to 
broadcast one bit b of information

• The source must remain anonymous
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A possible solution

• Associate to each edge a fair coin

• Toss the coins

• Each node computes the binary sum of 
the incident edges.  The source adds b. 
They all broadcast their results
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A possible solution

• Associate to each edge a fair coin

• Toss the coins

• Each node computes the binary sum of 
the incident edges.  The source adds b. 
They all broadcast their results
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Correctness

• Associate to each edge a fair coin

• Toss the coins

• Each node computes the binary sum of 
the incident edges.  The source adds b. 
They all broadcast their results

• The total binary sum is computed

• Correctness:  The total binary sum 
equals b

9

0

11

1

0

0
0

9Friday, May 7, 2010



Anonymity

• How should anonymity be 
formulated ?
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Strong anonymity

• Strong anonymity:                 
If the graph is connected and the 
coins are fair,  then for an external 
observer,  the a posteriori probability 
that a certain node is the source is 
equal to its a priori probability

• Question: what about the internal 
nodes? 
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Example: Crowds

• Problem:  A user (initiator) wants to send a 
message anonymously to a server. 

• Crowds:   A group of n users who agree to 
participate in the protocol. 

• The initiator selects randomly anotehr user 
(forwarder) and forwards the request to it

• A forwarder: 

• With prob. pf selects randomly another 
forwarder and
forwards the request to him

• With prob. 1-pf  sends the request to the 
server

server

12

Probable innocence: under certain 
conditions, the attacker who intercepts 
the message from x cannot attribute 
more than 0.5 probability to x to be the 
initiator 
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Common features in information hiding

• There is information that we want to keep secret
- the source in DC Nets

- the initiator in Crowds

• There is information that is revealed (observables)
- agree/disagree in DC Nets

- the users who forward messages to a corrupted user in Crowds

• The value of the secret information may be chosen 
probabilistically.  Furthermore, protocols may use 
randomization to hide the link between hidden and 
observable information

- coin tossing in DC Nets

- random forwarding to another user in Crowds
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Assumptions

• For the moment we consider the non-interactive case:  Each 
activation of the system receives exactly one input and 
produces exactly one output

• Inputs: elements of a random variable  A

• Outputs: elements of a random variable O

• For each input a, the probability that we obtain an observable 
o is given by p(o | a) 
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Observables

General framework: 

Protocols as Information-Theoretic channels

......

a1

am

o1

on

Protocol

Secret Information

Input Output
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Protocols are noisy channels. Each run has 1 input and 1 output, but:
- an input can generate different outputs (according to a prob. distr.)
- an output can be generated by different inputs

......

a1

am

o1

on

...
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Example: DC Nets with 3 nodes, when b=1

s1

s3

001

s2

010

100

111
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The conditional probabilities 

......

a1

am

o1

on

...p(on|a1)

p(o1|a1)
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A channel is characterized by its matrix: 
the array of conditional probabilities 

......

a1

am

o1 on

p(on|a1)p(o1|a1)

p(o1|am) p(on|am)

...

...
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Possibilistic approaches
• Schneider and Sidiropoulus,  and many others ...

• Key idea: Replace the random choices by nondeterministic 
choices

• Common principle:            A system P has no leakage iff:                                    
For every pair of secret values a, a′, P[a]  “is equivalent” to P[a′]

• Criticisms: 

• Too weak:  it collapses uniform distrib and non-zero distrib

• It assumes that the scheduler “helps”
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Problem of the scheduler:    Consider the following system

• Intuitively, the system is not secure. However S[a/sec] and S[b/sec] are 
bisimilar

• The problem is that nondeterminism in concurrency is meant as 
underspecification 

• Standard implementation refiniment preserves properties expressed 
on individual paths, but no-leakage is expressed as a global property. 
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S[a/sec] S[b/sec]

22Friday, May 7, 2010



Probabilistic approaches
(1) [Halpern and O’Neill - like]     for all a, a’:    p(a|o) = p(a′|o)

(2) [Chaum]:                                for all a, o:    p(a|o) = p(a)

(3) [Bhargava and Palamidessi]:      for all a, a′, o:   p(o|a) = p(o|a′) 

• From standard probability theory we can easily derive that (2) and (3) 
are equivalent. 

• (3) has the following advantages: 

• It does not require to know the a priori distribution p(a)

• It is independent from the priori distribution and even from its 
existence
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Probabilistic approaches
(1) [Halpern and O’Neill - like]     for all a, a’:    p(a|o) = p(a′|o)

(2) [Chaum]:                                for all a, o:    p(a|o) = p(a)

(3) [Bhargava and Palamidessi]:      for all a, a′, o:   p(o|a) = p(o|a′) 

• (1)   is equivalent to   (2)   +   the condition   p(a) = p(a′) for all a, a′

• Uniform probability on the secrets is too strong

24
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Probabilistic approaches
(1) [Halpern and O’Neill - like]     for all a, a’:    p(a|o) = p(a′|o)

(2) [Chaum]:                                for all a, o:    p(a|o) = p(a)

(3) [Bhargava and Palamidessi]:      for all a, a′, o:   p(o|a) = p(o|a′) 

• (1)   is equivalent to   (2)   +   the condition   p(a) = p(a′) for all a, a′

• Uniform probability on the secrets is too strong

• But actually all these notions are too strong in practice.   We would 
like a notion that quantifies the degree of protection
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Information-theoretic approachesEntropy and Mutual Information

The entropy H(A) measures the uncertainty about the
anonymous events:

H(A) = −
∑

a∈A

p(a) log p(a)

The conditional entropy H(A|O) measures the uncertainty about
A after we know the value of O (after the execution of the

protocol).

The mutual information I(A;O) measures how much uncertainty
about A we lose by observing O:

I(A;O) = H(A) − H(A|O)

Chatzikokolakis, Palamidessi, Panangaden Anonymity Protocols as Noisy Channels
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Information-theoretic approaches

Various definitions of protection / information leakage

1. Entropy on the hidden information   H(A)   [Diaz et al.]

2. Mutual information   I(A;O)     [Malacaria et al.] [Zhu et al.]

3. Capacity                                      [Moscowitz et al.] [CPP]

• Note that C = 0 iff    for all a, a’, o,  p(o|a) = p(o|a’)

• (1) has noting to do with the protocol.                                                            
(2) and (3) are the most commonly accepted ones

27

Fig. 1. An anonymity channel

probability of user a being the sender. In some cases all users might have the
same probability of being the sender, in other cases a particular user might send
messages more often than the others. Since the design of the protocol should
be independent from the particular users who will use it, the analysis of the
protocol should make no assumptions about the distribution on A. On the other
hand p(o|a) gives the probability of o when a is the sender, so it depends only on
the internal mechanisms of the protocol, not on of how often a sends messages.

To abstract from the probabilities of the anonymous events, we view an
anonymity protocol as a channel 〈A,O, p(·|·)〉 where the sets of anonymous
events A and observable events O are the input and output alphabets respec-
tively, and the matrix p(o|a) gives the probability of observing o when a is the
input. An anonymity channel is shown in Figure 1. Different distributions of the
input will give different values of I(A; O). We are interested in the worst possi-
ble case, so we define the loss of anonymity as the maximum value of I(A; O)
over all possible input distributions, that is the capacity of the corresponding
channel.

Definition 1. Let 〈A,O, p(·|·)〉 be an anonymity protocol. The loss of anonymity
C of the protocol is defined as

C = max
p(a)

I(A; O)

where the maximum is taken over all possible input distributions.

The loss of anonymity measures the amount of information about A that
can be learned by observing O in the worst possible distribution of anonymous
events. If it is 0 then, no matter what is the distribution of A, the attacker can
learn nothing more by observing the protocol. In fact, as we will see in section
5.1, this corresponds exactly to notions of perfect anonymity in literature [3, 11,
1]. However, as we discuss in section 5.3, our framework also captures weaker
notions of anonymity.

As with entropy, channel capacity is measured in bits. Roughly speaking,
1 bit of capacity means that after the observation A will have one bit less of
entropy, in another words the attacker will have reduced the set of possible users
by a factor 2, assuming a uniform distribution.

3.1 Relative Anonymity

So far, we have assumed that ideally no information about the anonymous events
should be leaked. However, there are cases where some information about the

6
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• A natural definition of vulnerability:  the “probability of guessing 
the right value” in one try

• Leakage  =   A priori vulnerability  -  A posteriori vulnerability

• A priori vulnerability:     max p(a)

• A posteriori vulnerability:   weighted average of the max p(a|o) 
(converse of Bayes risk)

Statistical Inference approach

28

28Friday, May 7, 2010



Statistical vs Information Theoretic approach

• Good news:        
Capacity  =  0 

iff  
 A Priori Vulnerability   =   A Posteriori Vulnerability 

 iff                            
p(o|a) = p(o|a’)  for all a, a’,o      

                        

• Bad news (Smith’09):  in general there is not a good match between the  IT  
approach (based on Shannon entropy) and the approach based on the probability 
of error (difference between a priori and a posteriori vulnerability)
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Mismatch btw IT and probability of error

• Example due to Smith’09.   Consider  A = random number in [0, 232-1] with 
uniform a priori

1. O   =     if  (A mod 8) == 0 then  A  else  0

2. O   =     A && 37

• These two programs have almost the same Muntual Information. (The one for (2) 
is  slightly higher.)

• However, the a posteriori vulnerability of (1) is much higher than the one of (2):  

• For (1)  the a posteriori vulnerability is about 1/8.     

• For (2)  the a posteriori vulnerability is   1/227
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Statistical vs Information Theoretic approach

• Good news:        
Capacity  =  0 

iff  
 A Priori Vulnerability   =   A Posteriori Vulnerability 

 iff                            
p(o|a) = p(o|a’)  for all a, a’,o                              

• Bad news (Smith’09):  in general there is not a good match between the  IT  
approach (based on Shannon entropy) and the approach based on the probability 
of error (difference between a priori and a posteriori vulnerability)

• For geometrical distributions Shannon entropy is closely related to the “guessing 
entropy”, defined as the average number of tries necessary to guess the right 
value. (However, the guessing entropy can be misleading from the security p.o.v.)

• Smith’09:   Mutual Information in terms of Rényi’s min entropy corresponds 
to the  difference between the a posteriori and the a priori vulnerability (in log)
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Interactive case

• Secrets and observables may alternate 
during the execution

• Example: Ebay-like system

• Problems in defining the channel matrix
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Interactive case

• Channels with memory and feedback

• Directed mutual information 

• Directed capacity

• Open problem: generalize the approach 
based on the Bayes risk 
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Interactive case
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Thank you !
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