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ABSTRACT
This paper considers the problem of estimating the information
leakage of a system in the black-box scenario. It is assumed that
the system’s internals are unknown to the learner, or anyway too
complicated to analyze, and the only available information are
pairs of input-output data samples, possibly obtained by submitting
queries to the system or provided by a third party. Previous research
has mainly focused on counting the frequencies to estimate the
input-output conditional probabilities (referred to as frequentist
approach), however this method is not accurate when the domain of
possible outputs is large. To overcome this di�culty, the estimation
of the Bayes error of the ideal classi�er was recently investigated
using Machine Learning (ML) models and it has been shown to be
more accurate thanks to the ability of those models to learn the
input-output correspondence. However, the Bayes vulnerability
is only suitable to describe one-try attacks. A more general and
�exible measure of leakage is the �-vulnerability, which encom-
passes several di�erent types of adversaries, with di�erent goals
and capabilities. In this paper, we propose a novel approach to
perform black-box estimation of the �-vulnerability using ML. A
feature of our approach is that it does not require to estimate the
conditional probabilities, and that it is suitable for a large class
of ML algorithms. First, we formally show the learnability for all
data distributions. Then, we evaluate the performance via various
experiments using k-Nearest Neighbors and Neural Networks. Our
results outperform the frequentist approach when the observables
domain is large.
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1 INTRODUCTION
The information leakage of a system is a fundamental concern of
computer security, and measuring the amount of sensitive infor-
mation that an adversary can obtain by observing the outputs of a
given system is of the utmost importance to understand whether
such leakage can be tolerated or must be considered a major se-
curity �aw. Much research e�ort has been dedicated to studying
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and proposing solutions to this problem, see for instance the works
[2, 4, 7, 10, 11, 19, 27, 33], just to mention a few. So far, this area
of research, known as quantitative information �ow (QIF), has
mainly focused on the so-called white-box scenario. Namely, all
those works assume that the channel of the system is known, or
can be computed by analyzing the system’s internals. This channel
consists of the conditional probabilities of the outputs (observables)
given the inputs (secrets).

However, the white-box assumption is not always realistic: some-
times the system is unknown, or anyway it is too complex, so that
an analytic computation becomes hard if not impossible to be per-
formed. Therefore, it is important to consider also a black-box
approach where we only assume the availability of a �nite set of
input-output pairs generated by the system, possibly obtained by
submitting queries or provided by a third party.

The estimation of the internal probabilities of a system’s channel
have been investigated in [16] and [18] via a frequentist paradigm,
i.e. relying on the computation of the frequencies of the outputs
given some inputs. However, this approach does not scale to appli-
cations for which the output space is very large since a prohibitively
large number of samples would be necessary to achieve good results
and fails on continuous alphabets unless some strong assumption
on the distributions are made. In order to overcome this limitation,
the authors of [14] exploited the fact that Machine Learning (ML)
algorithms provide a better scalability to black-box measurements.
Intuitively, the advantage of the ML approach over the frequen-
tist one is its generalization power: while the frequentist method
can only draw conclusions based on counts on the available sam-
ples, ML is able to extrapolate from the samples and provide better
prediction (generalization) for the rest of the universe.

In particular, [14] proposed to use k-Nearest Neighbors (k-NN) to
measure one of the basic QIF metrics, the Bayes vulnerability [33].
This is the expected probability of success of an adversary that has
exactly one attempt at his disposal (one-try), and tries to maximize
the chance of guessing the right value of the secret. The idea is that
the Bayes vulnerability corresponds to the converse of the error of
the ideal Bayes classi�er that, given any sample (observable), tries
to predict its corresponding class (secret). It is then su�cient to
build a model that approximates such classi�er, and measure its
expected error. The main takeaway is that any ML rule which is
universally consistent (i.e., approximates the ideal Bayes classi�er)
has a guarantee on the accuracy of the estimation, i.e., the gap
between the estimated leakage and the real leakage tends to vanish
as the number of training samples grows large.

The limitation of [14], however, is that it is only concerned with
the Bayes vulnerability case, which models only one particular kind
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of adversary. As argued in [4], there are many other realistic kinds
of adversaries. For instance, adversaries whose aim is to guess only
a part of the secret, or a property of the secret, or adversaries that
have multiple tries at their disposal. To represent a larger class
of attacks, [4] introduced the so-called �-vulnerability1, based on
the notion of gain function �. This metric is very general, and in
particular it encompasses the Bayes vulnerability.

In this paper, we propose an approach to the black-box estima-
tion of �-vulnerability via ML. The idea is to reduce the problem to
that of approximating the Bayes classi�er, so that any universally
consistent ML algorithm can be used for the purpose. This reduction
essentially takes into account the impact of the gain function in
the generation of the training data, and we propose two methods
to obtain this e�ect, which we call channel pre-processing and data
pre-processing, respectively. We evaluate our approach via experi-
ments on various channels and gain functions. In order to show the
generality of our approach, we use two di�erent ML algorithms,
namely k-NN and Arti�cial Neural Networks (ANN), and we com-
pare their performances. The experimental results show that our
approach provides accurate estimations, and that it outperforms by
far the frequentist approach when the observables domain is large.

1.1 Our contribution
The contributions of this paper are:

‚ We propose a novel approach to the black-box estimation of
�-vulnerability based on ML. To the best of our knowledge,
this is the �rst time that a method to estimate �-vulnerability
in a black-box fashion is introduced.

‚ We provide statistical guarantees showing the learnability
of the �-vulnerability for all distributions and we derive
distribution-free bounds on the accuracy of its estimation.

‚ We validate the performance of our method via several ex-
periments using k-NN and ANN models. To the best of our
knowledge, this is the �rst time that ANNs are used to esti-
mate information leakage. The code to run these experiments
is available at the URL https://github.com/LEAVESrepo/leaves.

1.2 Related work
One important aspect to keep in mind when measuring leakage is
the kind of attack that wewant to model. In their seminal paper [27],
Köpf and Basin identi�ed various kinds of adversaries and showed
that they can be captured by known entropy measures. For instance,
the Shannon entropy represents the expected number of binary
queries that the adversary must submit to the system in order to
fully determine the value of the secret.

In [33] Smith proposed another notion, the Rényi min-entropy,
to measure the system’s leakage when the attacker has only one try
at its disposal and attempts to make its best guess. The Rényi min-
entropy is the logarithm of the Bayes vulnerability, which is the
expected probability of the adversary to guess the secret correctly.
The Bayes vulnerability is the converse of the Bayes error, which
was already proposed as a measure of leakage in [12].

1The work [4] is perhaps more known for proposing the notion of �-leakage. The �-
vulnerability is the main component of this notion. Indeed, �-leakage is �-vulnerability
normalized w.r.t. the probability of success of the random guess.

Symbol Description
x P X a secret
w PW a guess
� P Y an observable output by the system
X random variable for secrets, it takes values x P X
W random variable for guesses, it takes values w PW
Y random variable for observables, it takes values y P Y

|S| size of a set S
PpSq Distribution over a set of symbols S
H class of learning functions f

� , PX prior distribution over the secret space
�̂ , pPX empirical prior distribution over the secret space
C Channel matrix

�õC joint distribution from prior � and channel C
PXY joint probability distribution
pPXY empirical joint probability distribution
PY |X conditional probability of Y given X
pPY |X empirical conditional probabilities
P probability measure
Er¨s expected value

�pw,xq gain function that takes a guessw and secret x as inputs
G gain matrix of size |W| ˆ |X| according to a speci�c �
V� �-vulnerability

V pf q �-vulnerability functional
pVnpf q empirical �-vulnerability functional evaluated on n samples

Table 1: Table of symbols.

Alvim et al. [4] generalized the notion of Bayes vulnerability to
that of �-vulnerability, by introducing a parameter (the gain func-
tion �) that describes the adversary’s payo�. The �-vulnerability is
the expected gain of the adversary in a one-try attack.

Our paper focuses on the estimation of the �-vulnerability in the
the black-box scenario using ML techniques. This approach is in-
spired by the seminal work [14], which introduces k-NN algorithms
to estimate the Bayes vulnerability, representing a paradigm shift
with respect to the previously proposed black-box approaches based
on the frequentist paradigm [9, 16, 18]. Notably, it showed that the
use of universally consistent learning rules allows to achieve much
more precise estimations than the frequentist approach when con-
sidering large or even continuous output domains which would
be intractable otherwise. However, [14] was limited to the estima-
tion of the Bayes error, i.e., it considered only the Bayes adversary.
By contrast, in our paper we consider any adversary that can be
modeled by a gain function �. Another novelty w.r.t. [14] is that
we consider also ANN algorithms, which in various experiments
appear to perform better than the k-NN ones.

Bordenabe and Smith [6] investigated the indirect leakage in-
duced by a channel (i.e., leakage on sensitive information not in
the domain of the channel), and proved a fundamental equivalence
between Dalenius min-entropy leakage under arbitrary correlations
and g-leakage under arbitrary gain functions. This result is similar
to our Theorem 4.2, and it opens the way to the possible extension
of our approach to this more general leakage scenario.
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2 PRELIMINARIES
In this section, we recall some useful notions from QIF and ML, in
particular the ANN and k-NN algorithm.

2.1 Quantitative information �ow
Let X be a set of secrets and Y a set of observations. The adver-
sary’s initial knowledge about the secrets is modeled by a prior
distribution PpXq (namely PX ). A system is modeled as a proba-
bilistic channel from X to Y , described by a stochastic matrix C ,
whose elements Cx� give the probability to observe � P Y when
the input is x P X (namely PY |X ). Running C with input � induces
a joint distribution on X ˆY denoted by �õC .

In the �-leakage framework [4] an adversary is described by a
setW of guesses (or actions) that it can make about the secret, and
by a gain function �pw,xq expressing the gain of selecting the guess
w when the real secret is x . The prior �-vulnerability is the expected
gain of an optimal guess, given a prior distribution on secrets:

Vgp�q def“ max
wPW

ÿ

xPX
�x ¨ gpw, xq . (1)

In the posterior case, the adversary observes the output of the
system which allows to improve its guess. Its expected gain is given
by the posterior �-vulnerability, according to

Vgp� ,Cq def“
ÿ

yPY
max
wPW

ÿ

xPX
�x ¨ Cxy ¨ gpw, xq . (2)

Finally, the multiplicative2 and additive �-leakage quantify how
much a speci�c channel C increases the vulnerability of the system:

LM
g p� ,Cq def“ Vgp� ,Cq

Vgp�q , L
A
g p� ,Cq def“ Vgp� ,Cq ´ Vgp�q . (3)

The choice of the gain function � allows to model a variety of
di�erent adversarial scenarios. The simplest case is the identity
gain function, given byW “ X, �idpw,xq “ 1 i� x “ w and 0
otherwise. This gain function models an adversary that tries to
guess the secret exactly in one try; V�id is the Bayes-vulnerability,
which corresponds to the complement of the Bayes error (cfr. [4]).

However, the interest in �-vulnerability lies in the fact that many
more adversarial scenarios can be captured by a proper choice of
�. For instance, takingW “ Xk with �pw,xq “ 1 i� x P w and 0
otherwise, models an adversary that tries to guess the secret cor-
rectly in k tries. Moreover, guessing the secret approximately can
be easily expressed by constructing � from a metric d on X; this is
a standard approach in the area of location privacy [31, 32] where
�pw,xq is taken to be inversely proportional to the Euclidean dis-
tance betweenw and x . Several other gain functions are discussed
in [4], while [3] shows that any vulnerability function satisfying
basic axioms can be expressed as V� for a properly constructed �.

Themain focus of this paper is estimating the posterior�-vulnera-
bility of the system from such samples. Note that, given V�p� ,Cq,
estimating LM

g p� ,Cq and LA
g p� ,Cq is straightforward, sinceV�p�q

only depends on the prior (not on the system) and it can be either
computed analytically or estimated from the samples.
2 In the original paper, the multiplicative version of �-leakage was de�ned as the log
of the de�nition given here. In recent literature, however, the log is not used anymore.
Anyway, the two de�nitions are equivalent from the point of view of comparing
systems, since log is a monotonic function.

2.2 Arti�cial Neural Networks
We provide a short review of the aspects of ANN that are relevant
for this work. For further details, we refer to [5, 25, 26]. Neural net-
works represent an attempt to reproduce the behavior of the brain’s
cells and are usually modeled as directed graphs with weights on the
connections and nodes that forward information through “activa-
tion functions”, often introducing non-linearity (such as sigmoids or
soft-max). In particular, we consider an instance of learning known
as supervised learning, where input samples are provided to the
network model together with target labels (supervision). From the
provided data and by means of iterative updates of the connection
weights, the network learns how the data and respective labels are
distributed. The training procedure, known as back-propagation, is
an optimization problem aimed at minimizing a loss function that
quanti�es the quality of the network’s prediction with respect to
the data.

Classi�cation problems are a typical example of tasks for which
supervised learning works well. Samples are provided together with
target labels which represent the classes they belong to. A model
can be trained using these samples and, later on, it can be used to
predict the class of new samples.

The No Free Lunch theorem (NFL) [34] holds for ANN as it does
for all the ML approaches. Therefore, in general, it cannot be said
that ANN are better than other ML methods. However, it is well
known that the NFL can be broken by additional information on the
data or the particular problemwewant to tackle, and, nowadays, for
most applications and available data, especially in multidimensional
domains, ANN models outperform other methods and therefore
they represent the state of the art.

2.3 k-Nearest Neighbors
The k-NN algorithm is one of the simplest algorithms used to clas-
sify a new sample given a training set of samples labelled as be-
longing to speci�c classes. This algorithm assumes that the space
of the features is equipped with a notion of distance. The basic idea
is the following: every time we need to classify a new sample, we
�nd the k samples whose features are closest to those of the new
one (nearest neighbors). Once the k nearest neighbors are selected,
a majority vote over their class labels is performed to decide which
class should be assigned to the new sample. For further details,
as well as for an extensive analysis of the topic, we refer to the
chapters about k-NN in [26, 30].

3 LEARNING �-VULNERABILITY:
STATISTICAL BOUNDS

This section introduces the mathematical problem of learning �-
vulnerability. More speci�cally, we address the problem of char-
acterizing universal learnability in the present framework, and to
this end, we derive distribution-free bounds on the accuracy of the
estimation, implying statistical consistence of our estimator.

3.1 Main de�nitions
We consider the problem of estimating the �-vulnerability from
samples via ML models, and we show that the analysis of this
estimation can be conducted in the general statistical framework
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of maximizing an expected functional using observed samples. The
idea can be described using three components:

‚ A generator of random secrets x P X with |X| † 8, drawn
independently from a �xed but unknown distribution PX pxq;

‚ a channel that returns an observable � P Y with |Y| † 8
for every input x , according to a conditional distribution
PY |X p�|xq, also �xed and unknown;

‚ a learning machine capable of implementing a set of rules
f P H , whereH denotes the class of functions f : Y ÑW
andW is the �nite set of guesses.

Moreover let us note that

� :W ˆ X Ñ ra,bs (4)

for some �nite real values a • 0 and b ° a, andX andW are �nite
sets. The problem of learning the �-vulnerability is that of choosing
the function f : Y ÑW which maximizes the functional V pf q,
representing the expected gain, de�ned as:

V pf q def“
ÿ

px,�qPXˆY
�

`
f p�q,x

˘
PXY px ,�q. (5)

Note that f p�q corresponds to the “guess”w , for the given �, in (2).
The maximum of V pf q is the �-vulnerability, namely:

V�
def“ max

f PH
V pf q. (6)

3.2 Principle of the empirical �-vulnerability
maximization

Since we are in the black box scenario, the joint probability distribu-
tion PXY ” �õC is unknown. We assume, however, the availability
ofm independent and identically distributed (i.i.d.) samples drawn
according to PXY that can be used as a training set Dm to solve
the maximization of f overH and additionally n i.i.d. samples are
available to be used as a validation3 set Tn to estimate the average
in (5). Let us denote these sets as: Dm

def“
 

px1,�1q, . . . , pxm ,�mq
(

and Tn def“
 

pxm`1,�m`1q, . . . , pxm`n ,�m`nq
(
, respectively.

In order to maximize the �-vulnerability functional (5) for an un-
known probability measure PXY , the following principle is usually
applied. The expected �-vulnerability functional V pf q is replaced
by the empirical �-vulnerability functional:

pVnpf q def“ 1
n

ÿ

px,�qPTn
�

`
f p�q,x

˘
, (7)

which is evaluated on Tn rather than PXY . This estimator is clearly
unbiased in the sense that

E
“pVnpf q

‰
“ V pf q.

Let f ‹
m denote the empirical optimal rule given by

f ‹
m

def“ argmax
f PH

pVmpf q, pVmpf q def“ 1
m

ÿ

px,�qPDm
�

`
f p�q,x

˘
, (8)

which is evaluated on Dm rather than PXY . The function f ‹
m is

the optimizer according to Dm , namely the best way among the
functions f : Y Ñ W to approximate V� by maximizing pVmpf q
3We prefer to call Tn validation set rather than test set, since we use it to estimate the
�-vulnerability with the learned f ‹

m , rather than to measure the error in estimating
the �-vulnerability.

over the class of functionsH . This principle is known in statistics
as the Empirical Risk Maximization (ERM).

Intuitively, we would like f ‹
m to give a good approximation of

the �-vulnerability, in the sense that its expected gain

V pf ‹
mq “

ÿ

px,�qPXˆY
�

`
f ‹
mp�q,x

˘
PXY px ,�q (9)

should be close to V� . Note that the di�erence

V� ´V pf ‹
mq “ max

f PH
V pf q ´V pf ‹

mq (10)

is always non negative and represents the gap by selecting a pos-
sible suboptimal function f ‹

m . Unfortunately, we are not able to
computeV pf ‹

mq either, since PXY is unknown and thus, (10) cannot
be measured in practice. In its place, we have to use its approxima-
tion pVnpf ‹

mq and (10) should be replaced by V� ´ pVnpf ‹
mq which is

not always non-negative.
By using basics principles from statistical learning theory, we

study two main questions:
‚ When does the estimator pVnpf ‹

mq work? What are the con-
ditions for its statistical consistency?

‚ Howwell does pVnpf ‹
mq approximateV�? In other words, how

fast does the sequence of largest empirical g-leakage values
converge to the largest g-leakage function? This is related
to the so called rate of generalization of a learning machine
that implements the ERM principle.

3.3 Distribution-free bounds on the estimation
accuracy

We start with the following lemma which is a simple adaption of
the uniform deviations of relative frequencies from probabilities
theorems in [21] (see Appendix B.1 for the proof).

L���� 3.1. The following inequalities hold:

V� ´V pf ‹
mq § 2 max

f PH
ˇ̌pVmpf q ´V pf q

ˇ̌
, (11)

ˇ̌pVnpf ‹
mq ´V pf ‹

mq
ˇ̌

§ max
f PH

ˇ̌pVnpf q ´V pf q
ˇ̌
. (12)

The above lemma implies that maxf PH
ˇ̌pVmpf q ´ V pf q

ˇ̌
and

maxf PH
ˇ̌pVnpf q ´V pf q

ˇ̌
provide upper bounds for two deviations:

‚ the suboptimality of f ‹
m learned using the training set and

the classH , that is, how large V� ´V pf ‹
mq is;

‚ the estimation error
ˇ̌pVnpf ‹

mq ´V pf ‹
mq

ˇ̌
due to the use of a

validation set instead of the true expected gain V pf ‹
mq, for

the selected function f ‹
m .

Next let us remind the reader of the fact that � :WˆX Ñ ra,bs
for some �nite real values a • 0 and b ° a, andX andW are �nite
sets. This is important as it allows to probabilistically delimit the
bounds of (11) and (12) in terms of b ´ a, besides the size n of the
validation set Tn , as expressed by the following proposition (see
Appendix B.2 for the proof).

P���������� 3.2 (U������ ����������). Assume that |H | † 8
and � :W ˆ X ›Ñ ra,bs, for a,b real values such that a • 0 and
b ° a. Then, we have for all � ° 0,

sup
PXY
P

´ˇ̌pVnpf ‹
mq ´V pf ‹

mq
ˇ̌

° �
¯

§ 2 exp
ˆ

´ 2n�2

pb ´ aq2
˙

(13)
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and

sup
PXY
P

`
V� ´V pf ‹

mq ° �
˘

§ 2|H | exp
ˆ

´ m�2

2pb ´ aq2
˙
. (14)

Expression (13) shows that the estimation error due to the use of
a validation set in pVnpf ‹

mq instead of the true expected gain V pf ‹
mq

vanishes with the number of validation samples. On the other hand,
expression (14) implies ‘learnability’ of an optimal f , i.e., the subop-
timality of f ‹

m learned using the training set pVmpf ‹
mq vanishes with

the number of training samples. Both expressions toguether imply
that the �-vulnerability is learnable for all distributions (data sets)
via the ERM principle introduced in (7). In other words, whenever
the bounds indicate that we are close to the optimum f , we must
at the same time have a good estimate of the �-vulnerability, and
vice versa. Although the bound in (14) is in perfect agreement with
the long-standing results from statistical learning theory which
show that learnability is equivalent to uniform convergence of
the empirical risk (8) to the actual risk (5), this distribution-free
bound is rather pessimistic and cannot be expected to predict the
performance in practical scenarios.

We can now state the main result of this section, namely an
upper bound on the average estimation error of �-vulnerability (the
proof is relegated to Appendix B.3):

T������ 3.3. The averaged estimation error of the�-vulnerability
can be bounded as follows:

E
ˇ̌
V� ´ pVnpf ‹

mq
ˇ̌

§ V� ´ E
“
V pf ‹

mq
‰

` E
ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
,

where the expectations are understood over all possible training and
validation sets drawn according to PXY . Furthermore,

V� ´ E
“
V pf ‹

mq
‰

§
d

2pb ´ aq2
m

˜b
ln |H | ` 1a

ln |H |

¸

, (15)

E
ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
§

d
pb ´ aq2

n
, (16)

independently of the speci�c underlying distribution PXY .

Interestingly, the term corresponding to (15) is the error induced
when estimating the function f ‹

m usingm samples from the training
set while (16) indicates the error incurred when estimating the
�-vulnerability using n samples from the validation set. Clearly,
the scaling of these bounds with the number of samples are very
di�erent which can be made evident by using the order notation:

sup
PXY

 
V� ´ E

“
V pf ‹

mq
‰(

” O
˜c

|Y| ln |W|
m

¸

, (17)

sup
PXY
E

ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
” O

ˆ
1?
n

˙
. (18)

These distribution-free bounds indicate that the error in (18) van-
ishes much faster than the error in (17) and thus, the size of the
training set, in general, should be kept larger than the size of the
validation set, i.e., n † m. However, the bound in (17) is rather pes-
simistic since it su�ers from being independent of the underlying
distribution and the optimization method used to solve (7). Tighter
bounds can be derived but they would require statistical knowledge
of the data-generating distribution which is often not available in
real-world scenarios.

3.4 Sample complexity
We now study how large the validation set should be in order to get
a good estimation. For �,� ° 0, we de�ne the sample complexity
as the set of smallest integers Mp�,�q and N p�,�q su�cient to
guarantee that the gap between the true �-vulnerability and the
estimated pVnpf ‹

mq is at most � with at least 1 ´ � probability:

De�nition 3.4. For �,� ° 0, let all pairs
`
Mp�,�q,N p�,�q

˘
be the

set of smallest pm,nq sizes of training and validation sets such that:

sup
PXY
P

”
|V� ´ pVnpf ‹

mq| ° �
ı

§ � . (19)

Next result says that we can bound the sample complexity in
terms of �,� , and |b ´ a| (see Appendix B.4 for the proof).

C�������� 3.5. The sample complexity of the ERM algorithm
�-vulnerability is bounded from above by the set of values satisfying:

Mp�,�q § 2pb ´ aq2
�2

ln
ˆ

2|H |
� ´ �

˙
, (20)

N p�,�q § pb ´ aq2
2�2

ln
ˆ
2
�

˙
, (21)

for all 0 † � † � .

The theoretical results of this section are very general and do
not refer to any particular model or data distribution. In particular,
it is important to emphasize that the upper bounds in (11) and (12)
are independent of the learned function f ‹

m , and thus they are
independent of the speci�c algorithm and training sets in used
to solve the optimization in (8). Furthermore, the f maximizing
|V pf q ´ pVnpf q| in those in-equations is not necessarily what the
algorithm would choose. Hence the bounds given in Theorem 3.3
and Corollary 3.5 in general are not tight. However, these theoretical
bounds provide a worst-case measure from which learnability holds
for all data sets.

In the next section, we will propose an approach for selecting
f ‹
m and estimating V� . The experiments in Section 5 suggest that
our method usually estimates V� much more accurately than what
is indicated by Theorem 3.3.

4 FROM �-VULNERABILITY TO BAYES
VULNERABILITY VIA PRE-PROCESSING

This is the core section of the paper, which describes our approach
to select the f ‹

m to estimate V� .
In principle one could train a neural network to learn f ‹

m by
using ´pVmpf q as the loss function, and minimizing it over them
training samples (cfr. Equation 8). However, this would require
pVmpf q to be a di�erentiable function of the weights of the neural
network, so that its gradient can be computed during the back-
propagation. Now, the problem is that the � component of pVmpf q
is essentially a non-di�erentiable function, so it would need to be
approximated by a suitable di�erentiable (surrogate) function, (e.g.,
as it is the case of the Bayes error via the cross-entropy). Finding an
adequate di�erentiable function to replace each possible � may be a
challenging task in practice. If this surrogate does not preserve the
original dynamic of the gradient of � with respect to f , the learned
f will be far from being optimal.
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Algorithm 1: Algorithm for data pre-processing
Input: Dm ; Output: D1

m1 ;
1. D1

m1 :“ H;
2. For each x, � , let ux� be the number of copies of px, �q in Dm ;
3. For each x, �, w , add ux� ¨ �pw, xq copies of pw, �q to D1

m1 .

In order to circumvent this issue, we propose a di�erent approach,
which presents two main advantages:

(1) it reduces the problem of learning f ‹
m to a standard classi�-

cation problem, therefore it does not require a di�erent loss
function to be implemented for each adversarial scenario;

(2) it can be implemented by using any universally consistent
learning algorithm (i.e., any ML algorithm approximating
the ideal Bayes classi�er).

The reduction described in the above list (item 1) is based on
the idea that, in the �-leakage framework, the adversary’s goal is
not to directly infer the actual secret x , but rather to select the
optimal guessw about the secret. As a consequence, the training
of the ML classi�er to produce f ‹

m should not be done on pairs of
type px ,�q, but rather of type pw,�q, expressing the fact that the
best guess, in the particular run which produced �, isw . This shift
from px ,�q to pw,�q is via a pre-processing and we propose two
distinct and systematic ways to perform this transformation, called
data and channel pre-processing, respectively. The two methods are
illustrated in the following sections.

We remind that, according to section 3, we restrict, wlog, to non-
negative �’s. If � takes negative values, then it can be shifted by
adding ´minw,x �pw,xq, without consequences for the �-leakage
value (cfr. [2, 4]). Furthermore we assume that there exists at least
a pair px ,wq such that �x ¨ �pw,xq ° 0. Otherwise V� would be 0
and the problem of estimating it will be trivial.

4.1 Data pre-processing
The data pre-processing technique is completely black-box in the
sense that it does not need access to the channel. We only assume
the availability of a set of pairs of type px ,�q, sampled according to
�õC , the input-output distribution of the channel. This set could
be provided by a third party, for example. We divide the set in Dm
(training) and Tn (validation), containingm andn pairs, respectively.

For the sake of simplicity, to describe this technique we assume
that � takes only integer values, in addition to being non-negative.
The construction for the general case is discussed in Appendix C.3.

The idea behind the data pre-processing technique is that the
e�ect of the gain function can be represented in the transformed
dataset by amplifying the impact of the guesses in proportion to
their reward. For example, consider a pair px ,�q inDm , and assume
that the reward for the guess w is �pw,xq “ 5, while for another
guess w 1 is �pw 1,xq “ 1. Then in the transformed dataset D1

m1
this pair will contribute with 5 copies of pw,�q and only 1 copy of
pw 1,�q. The transformation is described in Algorithm 1. Note that
in general it causes an expansion of the original dataset.

Estimation of V� . Given Dm , we construct the set D1
m1 of pairs

pw,�q according to Algorithm 1. Then, we use D1
m1 to train a clas-

si�er f ‹
m1 , using an algorithm that approximates the ideal Bayes

classi�er. As proved below, f ‹
m1 gives the same mapping Y ÑW

as the optimal empirical rule f ‹
m onDm (cfr. subsection 3.2). Finally,

we use f ‹
m and Tn to compute the estimation of V�p� ,Cq as in (7),

with f replaced by f ‹
m .

Correctness. Let us �rst introduce some notation. For each pw,�q,
de�ne:

U pw,�q def“
ÿ

x
�x ¨Cx� ¨ �pw,xq , (22)

which represents the “ideal” proportion of copies of pw,�q thatD1
m1

should contain (of course, such proportion is only approximated
in D1

m1 since it is generated from Dm rather than according to the
true distribution �õC). FromU pw,�q we can now derive the ideal
joint distribution onW ˆY and the marginal onW :

PWY pw,�q def“ U pw,�q
�

, where �
def“

ÿ

�,w
U pw,�q , (23)

(note that � ° 0 because of the assumption on � and �),

�w
def“

ÿ

�
PWY pw,�q. (24)

The channel of the conditional probabilities of � givenw is:

Ew�
def“ PWY pw,�q

�w
. (25)

Note that PWY “ �õE. By construction, it is clear that the D1
m1

generated by Algorithm 1 could have been generated, with the same
probability, by sampling �õE. The following theorem, whose proof
is in Appendix C.1, establishes that the �-vulnerability of �õC is
equivalent to the Bayes vulnerability of �õE, and therefore that it is
correct to estimate f ‹

m as an empirical Bayes classi�er f ‹
m1 trained

using D1
m1 .

T������ 4.1 (C���������� �� ���� ��������������). Given a
prior � , a channel C , and a gain function �, we have

V�p� ,Cq “ � ¨V�idp� ,Eq ,
where � ,� and E are those de�ned in (23), (24) and (25), respectively,
and �id is the identity function (cfr. section 2), i.e., the gain function
corresponding to the Bayesian adversary.

The � in the above theorem is only a scale factor, hence it does
not in�uence the selection of f ‹

m . Note that an alternative way
to estimate V�p� ,Cq would be by computing the empirical Bayes
error of f ‹

m1 (using V�idp� ,Eq) on a validation set T 1
n1 of type pw,�q

generated from Tn by the same transformation as fromDm toD1
m1 .

In this case the � would be necessary for converting the estimation
of V�idp� ,Eq into the estimation of V�p� ,Cq.

4.2 Channel pre-processing
For this technique we assume black-box access to the system, mean-
ing that, although its channel matrixC is unknown, we can execute
the system while controlling each input, and collect the correspond-
ing output.
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The core idea behind this technique is to transform the input of
C into entries of typew , and to ensure that the distribution on the
w’s re�ects the corresponding rewards expressed by �.

More formally, let us de�ne a distribution � onW as follows:

�w
def“

∞
x �x ¨ �pw,xq

�
where �

def“
ÿ

x,w
�x ¨ �pw,xq , (26)

(note that � is strictly positive because of the assumptions on � and
� ), and let us de�ne the following matrix R fromW to X:

Rwx
def“ 1

�
¨ 1
�w

¨ �x ¨ �pw,xq . (27)

It is easy to check that R is a stochastic matrix, hence the composi-
tion RC is a channel. It is important to emphasize the following:

R����� In the above de�nitions, �,� and R depend solely on �
and � , and not on C .

The above property is crucial to our goals, because in the black-
box approach we are not supposed to rely on the knowledge of
C’s internals. We now illustrate how we can estimate V� using the
pre-processed channel RC .

Estimation of V� . Given RC and � , we build a set D2
m2 consisting

of pairs of type pw,�q sampled from �õRC . We also construct a set
Tn of pairs of type px ,�q sampled from �õC . Then, we use D2

m2
to train a classi�er f ‹

m , using an algorithm that approximates the
ideal Bayes classi�er. Finally, we use f ‹

m and Tn to compute the
estimation of V�p� ,Cq as in (7), with f replaced by f ‹

m .
Alternatively, we could estimate V�p� ,Cq by computing the em-

pirical Bayes error of f ‹
m on a validation set Tn of type pw,�q sam-

pled from �õRC , but the estimation would be less precise. Intuitively,
this is because RC is more “noisy” than C .

Correctness. The correctness of the channel pre-processing method
is given by the following theorem, which shows that we can learn
f ‹
m by training a Bayesian classi�er on a set sampled from �õRC .

T������ 4.2 (C���������� �� ������� ��������������). Given
a prior � and a gain function �, we have that, for any channel C :

V�p� ,Cq “ � ¨V�idp� ,RCq for all channels C .

where � , � and R are those de�ned in (26) and (27).

Interestingly, a result similar to Theorem 4.2 is also given in [6],
although the context is completely di�erent from ours: the focus
of [6], indeed, is to study how the leakage of C on X may induce
also a leakage of other sensitive information Z that has nothing to
do with C (in the sense that is not information manipulated by C).
We intend to explore this connection in the context of a possible
extension of our approach to this more general scenario.

4.3 Pros and cons of the two methods
The fundamental advantage of data pre-processing is that it allows
to estimateV� from just samples of the system, without even black-
box access. In contrast to channel pre-processing, however, this
method is particularly sensitive to the values of the gain function �.
Large gain values will increase the size ofD1

m1 , with consequent in-
crease of the computational cost for estimating the �-vulnerability.
Moreover, if � takes real values then we need to apply the technique

described in Appendix C.3, which can lead to a large increase of the
dataset as well. In contrast, the channel pre-processing method has
the advantage of controlling the size of the training set, but it can be
applied only when it is possible to interact with the channel by pro-
viding input and collecting output. Finally, from the precision point
of view, we expect the estimation based on data pre-processing to
be more accurate when � consists of small integers, because the
channel pre-processing introduces some extra noise in the channel.

5 EVALUATION
In this section we evaluate our approach to the estimation of �-
vulnerability. We consider four di�erent scenarios:

(1) X is a set of (synthetic) numeric data, the channelC consists
of geometric noise, and � is themultiple guesses gain function,
representing an adversary that is allowed to make several
attempts to discover the secret.

(2) X is a set of locations from the Gowalla dataset [1], C is
the optimal noise of Shokri et al. [32], and � is one of the
functions used to evaluate the privacy loss in [32], namely a
function anti-monotonic on the distance, representing the
idea that the more the adversary’s guess is close to the target
(i.e., the real location), the more he gains.

(3) X is the Cleveland heart disease dataset [22], C is a di�er-
entially private mechanism [23, 24], and � is a function that
assigns higher values to worse heart conditions, modeling an
adversary that aims at discovering whether a patient is at risk
(for instance, to deny his application for health insurance).

(4) X is a set of passwords of 128 bits andC is a password checker
that leaks the time before the check fails, but mitigates the
timing attacks by applying some random delay and the buck-
eting technique (see, for example, [28]). The function � rep-
resents the part of the password under attack.

For each scenario, we proceed in the following way:

‚ We consider 3 di�erent samples sizes for the training sets
that are used to train the ML models and learn the Y Ñ
W remapping. This is to evaluate how the precision of the
estimate depends on the amount of data available, and on its
relation with the size of |Y|.

‚ In order to evaluate the variance of the precision, for each
size we create 5 di�erent training sets, and

‚ for each trained model we estimate the �-vulnerability using
50 di�erent validation sets.

5.1 Representation of the results and metrics
We graphically represent the results of the experiment as box plots,
using one box for each size. More precisely, given a speci�c size,
let pV i j

n be the �-vulnerability estimation on the j-th validation set
computed with a model trained over the i-th training set (where
i P t1, . . . , 5u and j P t1, . . . , 50u). LetV� be the real �-vulnerability
of the system. We de�ne the normalized estimation error �i j and
the mean value � of the �i j ’s as follows:

�i j
def“ |pV i j

n ´V� |
V�

, with �
def“ 1

250

5ÿ

i“1

50ÿ

j“1
�i j . (28)
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In the graphs, the �i j ’s are the values reported in the box corre-
sponding to the given size, and � is the black horizontal line inside
the box.

We also consider the following quantities, which are typical
measures of precision:

dispersion def“

gffe 1
250

5ÿ

i“1

50ÿ

j“1
p�i j ´ �q2 , (29)

total error def“

gffe 1
250

5ÿ

i“1

50ÿ

j“1
�2i j . (30)

The dispersion is an average measure of how far the normalized
estimation errors are from their mean value when using same-size
training and validation sets. On the other hand, the total error is an
average measure of the normalized estimation error, when using
same-size training and validation sets. In our experiments we will
see that, as expected, the dispersion and the total error tend to
decrease when the amount of training samples increases.

In order to make a fair comparison between the two presented
pre-processing methods, intuitively we need to train them on train-
ing sets of the same size, and evaluate them on validation sets of
the same size. For the validation part, since the best f function
has been already found and therefore we do not need any data
pre-processing, this is easy to guarantee. But what does “same size”
mean, in the case of training sets built with di�erent pre-processing
methods? Consider the following situation: assume that we have a
set of data Dm coming from a third party collector (we recall that
the indexm represents the size of the set), and letD1

m1 be the result
of the data pre-processing on Dm . Now, let D2

m2 be the dataset
obtained drawing samples according to the channel pre-processing
method. Should we imposem2 “ m orm2 “ m1?We argue that the
right choice is the �rst one, because the main limiting constraint
in our method is the amount of “real” data that we can collect, one
way or another. In case we cannot interact with the channel, the
number of available samples is controlled by the data provider. In-
deed, D1

m1 is generated synthetically from Dm and cannot contain
more information about C than Dm , despite its larger size.

The nice feature of the normalized estimation error is that, thanks
to the normalization, it allows to compare the results among di�er-
ent scenario and di�erent levels of (real) �-vulnerability. Also, the
percentage of the error is more meaningful than the absolute value.
However, the interested reader can �nd in Appendix F also the plots
that show the values of the estimations of the �-vulnerability and
their distance from the corresponding real �-vulnerability.

5.2 Learning algorithms
We consider two ML algorithms in the experiments: the k-Nearest
Neighbors (k-NN) and the Arti�cial Neural Networks (ANN). We
have made however a slight modi�cation of k-NN algorithm, due
to the following reason: recall that, depending on the particular
gain function, the data pre-processing method might create many
instances where a certain observable � is repeated multiple times
in pair with di�erentw ’s. For the k-NN algorithm, a very common
choice is to consider a number of neighbors which is equivalent
to natural logarithm of the total number of training samples. In

particular, when the data pre-processing is applied, this means
that k “ logpm1q nearest neighbors will be considered for the
classi�cation decision. Since logpm1q grows slowly with respect to
m1, it might happen that k-NN fails to �nd the subset of neighbors
from which the best remapping can be learned. To amend this
problem, we modify the k-NN algorithm in the following way:
instead of looking for neighbors among all the m1 samples, we
only consider a subset of l § m1 samples, where each value � only
appears once. After the logplq neighbors have been detected among
the l samples, we selectw according to a majority vote over them1
tuples pw,�q created through the remapping.

The distance on which the notion of neighbor is based depends
on the experiments. We have considered the standard distance
among numbers in the �rst and fourth experiments, the Euclidean
distance in the second one, and the Manhattan distance between
tuples of numbers in the third one (where the distance between the
components is the standard numerical distance).

Concerning the ANN models, their speci�cs are in Appendix D.
Note that, for the sake of fairness, we use the same architecture for
both pre-processing methods, although we adapt number of epochs
and batch size to the particular dataset we are dealing with.

Further details relative to the speci�c experiments are provided
the following sections, each of them discussing one of the above
mentioned scenarios.

5.3 Frequentist approach
In the experiments, we will compare our method with the frequen-
tist one. This approach has been proposed originally in [9] for
estimating mutual information, and extended successively also to
min-entropy leakage [17]. Although not considered in the litera-
ture, the extension to the case of �-vulnerability is straightforward.
The method consists in estimating the probabilities that consti-
tute the channel matrix C , and then calculating analytically the
�-vulnerability on C . The precise de�nition is in Appendix E.

In [14] it was observed that, at least in the case of the Bayes
vulnerability4, the frequentist approach performs poorly when
the size of the observable domain |Y| is large with respect to the
available data. We want to examine whether this is the case also
for other vulnerabilities.

For the experiment on the multiple guesses the comparison is
illustrated in the next section. For the other experiments, because
of lack of space, we have reported it in the Appendix F.

5.4 Experiment 1: multiple guesses
We consider a system in which the secrets X are the integers be-
tween 0 and 9, and the observables Y are the integers between 0
and 15999. Hence |X| “ 10 and |Y| “ 16K. The channel C adds
noise to the elements of X according to the following geometric
distribution:

Cx� “ PY |X p�|xq “ � expp´� |rpxq ´ �|q , (31)

where:
‚ � is a parameter that determines how concentrated around
� “ x the distribution is. In this experiment we set� “ 0.002;

4Strictly speaking, [14] considered the estimation of the Bayes error, but the essence
does not change since Bayes vulnerability and Bayes error are complementary w.r.t. 1.
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Figure 1: The channel of Experiment 1. The two curves represent the
distributions PY |X p¨|xq for two adjacent secrets: x “ 5 and x “ 6.

‚ r is just an auxiliary function that reportsX to the same scale
of Y , and centers X on Y . Here we have rpxq “ 1000x `
3499.5;

‚ � “ e� ´1{pe� `1q is a normalization factor tuned so that Equa-
tion 31 is indeed a distribution.

Figure 1 illustrates the shape of Cx� . More precisely, it shows the
distributions PY |X p¨|xq for two adjacent secrets x “ 5 and x “ 6.
We consider an adversary that can make two attempts to discover
the secret (two-tries adversary), and we de�ne the corresponding
gain function as follows. A guessw PW is one of all the possible
combinations of 2 di�erent secrets from X, i.e.,w “ tx0,x1u with
x0,x1 P X and x0 ‰ x1. Therefore |W| “

`10
2

˘
“ 45. The gain

function � is then

�pw,xq “
#
1 if x P w

0 otherwise .
(32)

For this experiment we consider a uniform prior distribution � on
X. The true �-vulnerability for these particular � and � , results to
be V� “ 0.892. For all the following experiments in the multiple
guesses scenario, the reported results are obtained evaluating the
normalized estimation error on 50 di�erent validation sets of 50K
samples of type px ,�q drawn according to � and to the channel
distribution in Equation 31. The sample sizes for the training sets
(of the same type as Dm ) that we consider are 10K, 30K and 50K
respectively. As explained before, for each size we use 5 di�erent
training sets where the samples are couples p�,xq.
5.4.1 Data pre-processing. In this part of the experimentwe trasform
the training data according to the data pre-processing described
in Section 4.1. The result are sets of samples of type pw,�q of the
same type as D1

m1 . Then, we use the latter to learn the Y ÑW
remapping, and we do so by using k-NN and ANN classi�ers. The
plot in Figure 3 shows the performances of the k-NN and ANN
models on the validation sets used to estimate the �-vulnerability
in terms of normalized estimation error, while Figure 2 shows the
same performances compared to those of the frequentist approach.
As we can see, the precision of the frequentist is much lower, thus
con�rming that the trend observed by [14] for the Bayes vulnerabil-
ity holds also for other gain functions. Intuitively, this gap occurs
especially when |Y| is high with respect to the number of training
samples, and it is due to the fact that with the frequentist approach
there is no real learning, so we cannot make a good guess with
the observables never seen before. In ML on the contrary we can

Figure 2: Multiple guesses scenario, comparison between the fre-
quentist and the ML estimations with data pre-processing.

Figure 3: Multiple guesses scenario, magni�cation of the part of Fig-
ure 2 on the k-NN and ANN estimations.

still make an informed guess, especially when the channel has a
rather regular behavior, i.e., the noise expressed by the channel is
“smooth” (cfr. [14]). It is worth noting that, in this experiment, the
pre-processing of each sample px ,�q creates 9 samples (matching
� with each possible w P W such that w “ tx ,x 1u with x 1 ‰ x).
This means that the sample size of the pre-processed sets is 9 times
the size of the original ones. For functions � representing more
than 2 tries this pre-processing method may create training sets too
large. In the next section we consider the alternative pre-processing
method, showing that it can be a good compromise.

5.4.2 Channel pre-processing. Let us now suppose it is possible
to interact with the channel modi�ed according to the channel
pre-processing method (cfr. Section 4.2) so that we are able to
sample data of the type pw,�q from it. With these samples we
form training sets (of the same type as D2

m2 ) of size 10K, 30K, and
50K. Then we proceed with the learning and the �-vulnerability
estimation as before. The results are showed in Figure 4. As we
can see, the results are worse than in the data pre-processing case,
especially for the k-NN algorithm. This was to be expected, since
the random sampling to match the e�ect of � introduces a further
level of confusion, as explained in Section 4.2. Nevertheless, these
results are still much better than the frequentist case, so it is a good
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Figure 4: Multiple guesses scenario, k-NN and ANN estimation with
channel pre-processing

Figure 5: Heat-map representing theGowalla check-ins distribution
in the area of interest; the density of check-ins in each cell is re-
ported in the color bar on the side

alternative method to apply when the use of data pre-processing
would generate validation sets that are too large, which could be
the case when the matrix representing � contains large numbers
with a small common divider. Additional plots can be found in
Appendix F.

5.5 Experiment 2: location privacy
In this section we estimate the �-vulnerability of a typical system
for location privacy protection. We use data from the open Gowalla
dataset [1], which contains the coordinates of users’ check-ins.
In particular, we consider a square region in San Francisco, USA,
centered in (latitude, longitude) = (37.755, ´122.440), and with 5Km
long sides. In this area Gowalla contains 35162 check-ins.

We discretize the region in 400 cells of 250m long side, and we
assume that the adversary’s goal is to discover the cell in which a
check-in is located. The frequency of the Gowalla check-ins per cell
is represented by the heat-map in Figure 5. From these frequencies
we can directly derive the distribution representing the prior of the
secrets.

The channel C that we consider here is the optimal obfuscation
mechanism proposed in [32] to protect location privacy under a
utility constraint. We recall that the framework of [32] assumes
two loss functions, one for utility and one for privacy. The utility
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Figure 6: The “diamond” shape created by the gain function around
the real secret; the values represent the gains assigned to each
guessed cell w when x is the central cell.

loss of a mechanism, for a certain prior, is de�ned as the expected
utility loss of the noisy data generated according to the prior and
the mechanism. The privacy loss is de�ned in a similar way, except
that we allow the attacker to “remap” the noisy data so to maximize
the privacy loss. For our experiment, we use the Euclidean distance
as loss function for the utility, and the � function de�ned in the
next paragraph as loss function for the privacy. For further details
on the construction of the optimal mechanism we refer to [32].

We de�ne X,Y andW to be the set of the cells. Hence |X| “
|Y| “ |W| “ 400. We consider a gain function that represents the
precision of the guess in terms of euclidean distance: the idea is that
the smaller is the distance between the real cell x and the guessed
cell w , the higher is the gain. Speci�cally, our � is illustrated in
Figure 6, where the central cell represents the real location x . For a
generic “guess” cellw , the number written inw represent �pw,xq.
Thus for example we have �px ,xq “ 4, and �pw,xq “ 2 ifw is an
immediate neighbor of x .5

In this experiment we consider training set sizes of 100, 1k and
10K samples respectively. After applying the data pre-processing
transformation, the size of the resulting datasets is approximately
18 times that of the original one. This was to be expected, since the
sum of the values of � in Figure 6 is 20. Note that this sum and the
increase factor in the dataset do not necessarily coincide, because
the latter is also in�uenced by the prior and by the mechanism.

Figure 7 and Figure 8 show the performance of k-NN and the
ANN for the application of both data pre-processing and the chan-
nel pre-processing methods. As expected, the data pre-processing
method is more precise than the channel pre-processing one, al-
though only slightly. The ANN model is also slightly better than
the k-NN in most of the cases. For this experiment, as one can
see in the plots in Appendix F, the frequentist approach outper-
forms the ML methods. Indeed this can be explained as follows:
the observable space is not very large, which is a scenario where
the frequentist approach can be successful because the available
data is enough to estimate the real distribution. Indeed the ANN
method performs quite well too, but the model we used is quite
complex for this problem and therefore, we obtain a slightly worse
performance than the frequentist approach. This is indeed an ex-
ample which shows that the frequentist approach can still work
well in certain scenarios. Although, as experimentally veri�ed in
all the other experiments, ML techniques, and in particular ANN,

5Formally, � is de�ned as �pw, xq “ tp� expp´�dpw, xq{lqqs, where � “ 4 is the
maximal gain, � “ 0.95 is a normalization coe�cient to control the skewness of the
exponential, d is the euclidean distance and l “ 250 is the length of the cells’ side.
The symbol t¨s in this context represents the rounding to the closest integer operation.
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Figure 7: Location privacy scenario, k-NN and ANN estimation with
data pre-processing

Figure 8: Location privacy scenario, k-NN and ANN estimation with
channel pre-processing

easily outperforms the frequentist approach when large observable
spaces are involved.

5.6 Experiment 3: di�erential privacy
In this section we consider a popular application of DP: individual
data protection in medical datasets from which we wish to extract
some statistics via counting queries.

It is well known that the release of exact information from the
database, even if it is only the result of statistical computation on
the aggregated data, can leak sensitive information about the indi-
viduals. The solution proposed by DP is to obfuscate the released
information with carefully crafted noise that obeys certain prop-
erties. The goal is to make it di�cult to detect whether a certain
individual is in the database or not. In other words, two adjacent
datasets (i.e., datasets that di�er only for the presence of one indi-
vidual) should have almost the same likelihood to produce a certain
observable result.

In our experiment, we consider the Cleveland heart disease
dataset [22] which consist of 303 records of patients with a medical
heart condition. Each condition is labeled by an integer number
(label) that indicates how serious the disease is: from 0, which rep-
resents a healthy patient, to 4, which represents a patient whose
life is at risk.

Figure 9: Di�erential privacy scenario, k-NN and ANN estimation
with data pre-processing

We assume that, to help medical research, the hospital releases
the histogram of these labels, i.e., the counts of their occurrences in
the database. We also assume that, for the sake of protecting their
patients’ privacy, the hospital sanitizes the histogram by adding
geometric noise, which is a typical DP mechanism, to each label’s
count. More precisely, if the count of a label is z1, the probability
that the corresponding published number is z2 is de�ned by the
distribution in Eq. 31, where x and � are replaced by z1 and z2
respectively, and r is 1. Note that z1 is the real count, so it is an
integer between 0 and 303, while its noisy version z2 ranges on all
integers. Concerning the value of � , in this experiment it is set to 1.

The secrets space X is set to be a set of two elements: the full
dataset, and the dataset with one record less. These are adjacent in
the sense of DP, and, as customary in DP, we assume that the record
on which the two databases di�er is the target of the adversary.
The observables space Y is the set of the 5-tuples produces by the
noisy counts of the 5 labels.W is set to be the same as X.

We assume that the adversary is interested especially in �nding
out whether the patient has a serious condition. The function �
re�ects this preference by assigning higher value to higher labels.
Speci�cally, we set:

�pw,xq “

$
’&

’%

0, ifw ‰ x

1, ifw “ x ^ x P t0, 1, 2u
2, ifw “ x ^ x P t3, 4u,

(33)

andW “ X.
For the estimation, we consider 50 di�erent validation sets of 50K

samples each drawing them from the channel. The results reported
below represent the estimation performance of each model on these
validation sets. As training set sizes, we consider 10K, 30K and 50K
samples, that we use to learn the remapping from the obfuscated
counts, Y , to the guesses about the diseasesW . For each of these
sizes we consider 5 training sets. Again, as ML algorithms we use
ANN and k-NN. For the latter we have to decide what kind of dis-
tance we use for evaluating the proximity of the elements ofY . We
choose the Manhattan distance, which seems the most natural in
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Figure 10: Di�erential privacy scenario, k-NN and ANN estimation
with channel pre-processing

this case6 In the case of data pre-processing the size of the trans-
formed training sets (of the same type as D1

m1 ) is about 1.2 times
the size of the original training sets (of the same type as Dm ). The
performance is shown in Figure 9. For the channel pre-processing
approach, the performance is shown in Figure 10. Surprisingly, in
this case the data pre-processing method outperforms the chan-
nel pre-processing one, although only slightly. Additional plots,
including the results for the frequentist approach, can be found in
Appendix F.

5.7 Experiment 4: password checker
In this experiment we consider a password checker, namely a pro-
gram that tests whether a given string corresponds to the password
stored in the system. We assume that string and password are se-
quences of 128 bits, an that the program is “leaky”, in the sense
that it checks the two sequences bit by bit and it stops checking
as soon as it �nds a mismatch, reporting failure. It is well known
that this opens the way to a timing attack (a kind of side-channel
attack), so we assume that the system tries to mitigate the threat
by adding some random delay, sampled from a Laplace distribution
and then bucketing the reported time in 128 bins corresponding
to the positions in the sequence (or equivalently, by sampling the
delay from a Geometric distribution, cfr. Equation 31). Hence the
channel C is a 2128 ˆ 128 stochastic matrix.

The typical attacker is an interactive one, which �gures out
larger and larger pre�xes of the password by testing each bit at
a time. We assume that the attacker has already �gured out the
�rst 6 bits of the sequence and it is trying to �gure out the 7-th.
Thus the prior � is distributed (uniformly, we assume) only on the
sequences formed by the known 6-bits pre�x and all the possible
remaining 122 bits, while the � function assigns 1 to the sequences
whose 7-th bit agrees with the stored password, and 0 otherwise.
Thus � is a partition gain function [4], and its particularity is that
for such kind of functions data pre-processing and channel pre-
processing coincide. This is because �pw,xq is either 0 or 1, so in
both cases we generate exactly one pair pw,�q for each pair px ,�q
for which�pw,xq “ 1. Note that in this case the data pre-processing

6The Manhattan distance on histograms corresponds to the total variation distance on
the distributions resulting from the normalization of these histograms.

Figure 11: Password checker scenario, k-NN and ANN estimation
with data and channel pre-processing

transformation does not increase the training set, and the channel
pre-processing transformation does not introduce any additional
noise. The RC matrix (cfr. Section 4.1) is a 2ˆ 128 stochastic matrix.
The experiments are done with training sets of 10K, 30K and 50K
samples. The results are reported in Figure 11. We note that the
estimation error is quite small, especially in the ANN case. This
is because the learning problem is particularly simple since, by
considering the �-leakage and the preprocessing, we have managed
to reduce the problem to learning a function of type Y Ñ W ,
rather than Y Ñ X, and there is a huge di�erence in size between
W and X (the �rst is 2 and the latter is 2128). Also the frequentist
approach does quite well (cfr. Appendix F) , and this is because Y
is small. With a �ner bucketing (on top of the Laplace delay), or no
bucketing at all, we expect that the di�erence between the accuracy
of the frequentist and of the ML estimation would be much larger.

Note that with a non-leaky password checker the observables
are only fail or success. In this case the size of Y would be 2, but
since success would have an extremely small probability (1{2128), the
vulnerability would be negligible, and it would not be detected
neither by our approach nor by the frequentist one, because a
pair p¨, successq would never be generated in practice. Hence both
approaches would report vulnerability 0.

6 CONCLUSION AND FUTUREWORK
In this paper we have proposed an approach to estimate the �-
vulnerability of a system under the black-box assumption, using
machine learning. The basic idea is that the problem can be reduced
to learn the Bayes classi�er on a set of pre-processed training data,
and we have proposed two techniques for this transformation, with
di�erent advantages and disadvantages. We have then evaluated
our approach on four di�erent privacy scenarios, showing favorable
results. We have considered the frequentist approach and compared
it with ours experimentally, showing that the results are comparable
when the observable domain is small, while our approach does
much better on large Y domains. This is in line with what already
observed in [14] for the estimation of the Bayes error.

As future work, we plan to test our framework on more real-life
scenarios such as the web �ngerprinting attacks [13, 15] and the
AES cryptographic algorithm [20]. We also would like to consider
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the more general case, often considered in Information-�ow secu-
rity, of channels that have both “high” and “low” inputs, where
the �rst are the secrets and the latter are data visible to, or even
controlled by, the adversary. Finally, a more ambitious goal is to use
our approach to minimize the �-vulnerability of complex systems,
using a GAN based approach, along the lines of [29].
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A AUXILIARY RESULTS
P���������� A.1 (H��������’� ��������� [8]). Let Z1, . . . ,Zn

be independent bounded random variables such that Zi P rai ,bi s
almost surely and let Sn “ ∞n

i“1 Zi . Then, for any t ° 0, we have
the following inequalities:

P
`
Sn ´ ErSns • t

˘
§ exp

ˆ
´ 2t2∞n

i“1pbi ´ ai q2
˙
, (34)

P
`
Sn ´ ErSns • ´t

˘
§ exp

ˆ
´ 2t2∞n

i“1pbi ´ ai q2
˙
. (35)

L���� A.2. Let r ° 0 and let Z be a real-valued random variable
such that for all t • 0,

PpZ • tq § 2q exp
ˆ

´ t2

r2

˙
. (36)

Then, for q ° 1,

ErZ s § r

˜
a
lnq ` 1a

lnq

¸

(37)

and for q “ 1,
ErZ s §

?
2r . (38)
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P����.
ErZ s “

ª 8

0
PpZ • tqdt

“
ª r

?
lnq

0
PpZ • tqdt `

ª 8

r
?

lnq
2q exp

ˆ
´ t2

r2

˙
dt

§ r
a
lnq `

ª 8

r
?

lnq
2q exp

ˆ
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r2

˙
dt
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a
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?
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a
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dt
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a
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r2

2
exp

˜

´ pr
a
lnqq2
r2

¸

“ r

˜
a
lnq ` 1a

lnq

¸

.

Similarly, the second statement fallowing by taking q “ 1 and
splitting the integral between t P r0, r s and t P rr ,8q. ⇤

B PROOFS FOR THE STATISTICAL BOUNDS
B.1 Proof of Lemma 3.1

L���� 3.1. The following inequalities hold:

V� ´V pf ‹
mq § 2 max

f PH
ˇ̌pVmpf q ´V pf q

ˇ̌
, (11)

ˇ̌pVnpf ‹
mq ´V pf ‹

mq
ˇ̌

§ max
f PH

ˇ̌pVnpf q ´V pf q
ˇ̌
. (12)

P����. Recall the de�nition of f ‹
m in (8) and let f ‹ “

argmaxf PH V pf q. We �rst observe that
ˇ̌pVnpf 1q ´V pf 1q

ˇ̌
§ max

f PH
ˇ̌pVnpf q ´V pf q

ˇ̌

for all f 1 P H . Inequality (12) follows by letting f 1 “ f ‹
m . We now

prove expression (11):

V� ´V pf ‹
mq “ V pf ‹q ´ pVmpf ‹

mq ` pVmpf ‹
mq ´V pf ‹

mq
§ V pf ‹q ´ pVmpf ‹

mq `
ˇ̌pVmpf ‹

mq ´V pf ‹
mq

ˇ̌
(39)

§ V pf ‹q ´ pVmpf ‹q `
ˇ̌pVmpf ‹

mq ´V pf ‹
mq

ˇ̌
(40)

§
ˇ̌
V pf ‹q ´ pVmpf ‹q

ˇ̌
`

ˇ̌pVmpf ‹
mq ´V pf ‹

mq
ˇ̌

(41)

§ max
f PH

ˇ̌pVmpf q ´V pf q
ˇ̌

` max
f PH

ˇ̌pVmpf q ´V pf q
ˇ̌

(42)

§ 2 max
f PH

ˇ̌pVmpf q ´V pf q
ˇ̌
. (43)

⇤

B.2 Proof of Proposition 3.2
P���������� 3.2 (U������ ����������). Assume that |H | † 8

and � :W ˆ X ›Ñ ra,bs, for a,b real values such that a • 0 and
b ° a. Then, we have for all � ° 0,

sup
PXY
P

´ˇ̌pVnpf ‹
mq ´V pf ‹

mq
ˇ̌

° �
¯

§ 2 exp
ˆ

´ 2n�2

pb ´ aq2
˙

(13)

and

sup
PXY
P

`
V� ´V pf ‹

mq ° �
˘

§ 2|H | exp
ˆ

´ m�2

2pb ´ aq2
˙
. (14)

P����. We �rst prove expression (13). Notice that

P
´ˇ̌pVnpf ‹

mq ´V pf ‹
mq

ˇ̌
° �

¯

“ EDm„PmXY P
´ˇ̌pVnpf ‹

mq ´V pf ‹
mq

ˇ̌
° � |Dm

¯
(44)

§ 2 exp
ˆ

´ 2n�2

pb ´ aq2
˙
, (45)

where (44) follows by conditioning on the training samples and then
taking the probability on the validation samples, and (45) follows
by noticing that given the training samples the function f ‹

m is �xed
by applying Proposition A.1 the inequality follows. The second
inequality in (14) is a consequence of the following steps:

P
`
V� ´V pf ‹

mq ° �
˘

§ P
ˆ
max
f PH

ˇ̌pVmpf q ´V pf q
ˇ̌

° �{2
˙

(46)

“ P
¨

˝
§

f PH

 ˇ̌pVmpf q ´V pf q
ˇ̌

° �{2
(

˛

‚

(47)

§
ÿ

f PH
P

´ˇ̌pVmpf q ´V pf q
ˇ̌

° �{2
¯

(48)

§ 2|H | exp
ˆ

´ 2m�2

4pb ´ aq2
˙
, (49)

where (46) follows by applying the �rst inequality in Lemma 3.1 and
(49) follows from Proposition A.1 with an appropriate rede�nition
to �{2. ⇤

B.3 Proof of Theorem 3.3
T������ 3.3. The averaged estimation error of the�-vulnerability

can be bounded as follows:

E
ˇ̌
V� ´ pVnpf ‹

mq
ˇ̌

§ V� ´ E
“
V pf ‹

mq
‰

` E
ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
,

where the expectations are understood over all possible training and
validation sets drawn according to PXY . Furthermore,

V� ´ E
“
V pf ‹

mq
‰

§
d

2pb ´ aq2
m

˜b
ln |H | ` 1a

ln |H |

¸

, (15)

E
ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
§

d
pb ´ aq2

n
, (16)

independently of the speci�c underlying distribution PXY .

P����. Observe that

E
ˇ̌
V� ´ pVnpf ‹

mq
ˇ̌

“ E
ˇ̌
V� ´V pf ‹

mq `V pf ‹
mq ´ pVnpf ‹

mq
ˇ̌

§ V� ´ E
“
V pf ‹

mq
‰ˇ̌

` E
ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
,

which follows from the triangular inequality. We �rst bound the
second term in the previous inequality as follows:

E
ˇ̌
V pf ‹

mq ´ pVnpf ‹
mq

ˇ̌
§

d
pb ´ aq2

n
, (50)
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where the claim in (50) follows by applying Proposition 3.2 and
using expression (13) combined with Lemma A.2 choosing q “ 1
and r2 “ pb´aq2

2n .
We now bound the �rst term. Notice that

P
`
V� ´V pf ‹

mq ° �
˘

§ 2|H | exp
ˆ

´ m�2

2pb ´ aq2
˙
, (51)

where (51) follows from inequality (13) in Proposition 3.2. By using
again Lemma A.2 with q “ |H | and r2 “ 2pb´aq2

m , we obtain

V� ´ E
“
V pf ‹

mq
‰

§
d

2pb ´ aq2
m

˜b
log |H | ` 1a

log |H |

¸

,

(52)

which concludes the proof of the Theorem. ⇤

B.4 Proof of Corollary 3.5
C�������� 3.5. The sample complexity of the ERM algorithm

�-vulnerability is bounded from above by the set of values satisfying:

Mp�,�q § 2pb ´ aq2
�2

ln
ˆ

2|H |
� ´ �

˙
, (20)

N p�,�q § pb ´ aq2
2�2

ln
ˆ
2
�

˙
, (21)

for all 0 † � † � .

P����. We �rst notice that

P
´

|V� ´ pVnpf ‹
mq| ° �

¯
§ P

`
V� ´V pf ‹

mq ° �
˘

` P
´

|V pf ‹
mq ´ pVnpf ‹

mq| ° �
¯
, (53)

and thus from (13) and (14) in Proposition 3.2, we have

P
´

|V� ´ pVnpf ‹
mq| ° �

¯
§ 2 exp

ˆ
´ 2n�2

pb ´ aq2
˙

` 2|H | exp
ˆ

´ m�2

2pb ´ aq2
˙
. (54)

Let us require:

2|H | exp
ˆ

´ m�2

2pb ´ aq2
˙

§ p� ´ �q, (55)

2 exp
ˆ

´ 2n�2

pb ´ aq2
˙

§ �, (56)

which satis�es the desired condition:

P
´

|V� ´ pVnpf ‹
mq| ° �

¯
§ � , (57)

for any 0 † � † � . Finally, from the previous inequality we can
derive lower bounds on n andm:

m • 2pb ´ aq2
�2

ln
ˆ

2|H |
� ´ �

˙
, (58)

n • pb ´ aq2
2�2

ln
ˆ
2
�

˙
, (59)

which by de�nition of sample complexity shows the corollary. ⇤

C PRE-PROCESSING
C.1 Data pre-processing

T������ 4.1 (C���������� �� ���� ��������������). Given a
prior � , a channel C , and a gain function �, we have

V�p� ,Cq “ � ¨V�idp� ,Eq ,
where � ,� and E are those de�ned in (23), (24) and (25), respectively,
and �id is the identity function (cfr. section 2), i.e., the gain function
corresponding to the Bayesian adversary.

P����.

V�idp� ,Eq “ ∞
�
max
w

∞
w 1

�w 1 ¨ Ew 1� ¨ �idpw,w 1q

“ ∞
�
max
w

p�wEw�q

“ ∞
�
max
w

PWY pw,�q

“ ∞
�
max
w

U pw,�q
�

“ 1
� ¨ ∞

�
max
w

∞
x �x ¨Cx� ¨ �pw,xq

“ 1
� ¨V�p� ,Cq

⇤

C.2 Channel pre-processing
T������ 4.2 (C���������� �� ������� ��������������). Given

a prior � and a gain function �, we have that, for any channel C :

V�p� ,Cq “ � ¨V�idp� ,RCq for all channels C .

where � , � and R are those de�ned in (26) and (27).

P����. In this proof we use a notation that highlights the struc-
ture of the preprocessing. We will denote by G be the matrix form
of �, i.e., Gwx “ �pw,xq, and by �� the square matrix with �
in its diagonal and 0 elsewhere. We have that � “ }G�� }1 “∞
w,x Gwx�x , which is strictly positive because of the assumptions

on � and � . Furthermore, we have

�T “ �´1G�� 1 , R “ �´1p�� q´1G�� ,

where 1 is the vector of 1s and �T represents the transposition of
vector � . Note that p�� q´1 is a diagonal matrix with entries �´1

w
in its diagonal. If �w “ 0 then the row Rw, ¨ is not properly de�ned;
but its choice does not a�ect V�idp� ,RCq since the corresponding
prior is 0; so we can choose Rw, ¨ arbitrarily (or equivalently remove
the actionw , it can never be optimal since it gives 0 gain). It is easy
to check that � is a proper distribution and R is a proper channel:

∞
w �w “ ∞

w �´1∞
x Gwx�x “ �´1� “ 1 ,

∞
x Rw,x “ ∞

x
1
�w �´1Gwx�x “ �w

�w
“ 1 .

Moreover, it holds that:

��� R “ ��� �´1�� ´1G�� “ G�� .

15



The main result follows from the trace-based formulation of poste-
rior �-vulnerability [4], since for any channel C and strategy S , the
above equation directly yields

V�p� ,Cq “ max
S

trpG��CSq
“ � ¨ max

S
trp�� RCSq

“ � ¨V�idp� ,RCq ,
where trp¨q is the matrix trace. ⇤

C.3 Data pre-processing when � is not integer
Approximating � so that it only takes values P Q•0 allows us to
represent each gain as a quotient of two integers, namely

NumeratorpGw,x q{Denominator pGw,x q.

Let us also de�ne

K
def“ lcmwx pDenominatorpGw,x qq, (60)

where lcmp¨q is the least common multiple. Multiplying G by K
gives the integer version of the gain matrix that can replace the
original one. It is clear that the calculation of the least common
multiplier, as well as the increase in the amount of data produced
during the dataset building using a gain matrix forced to be integer,
might constitute a relevant computational burden.

D ANN MODELS
We list here the speci�cs for the ANNs models used in the exper-
iments. All the models are simple feed-forward networks whose
layers are fully connected. The activation functions for the hidden
neurons are recti�er linear functions, while the output layer has
softmax activation function.

The loss function minimized during the training is the cross
entropy, a popular choice in classi�cation problems. The remapping
Y ÑW can be in fact considered as a classi�cation problem such
that, given an observable, a model learns to make the best guess.

For each experiments, the models have been tuned by cross-
validating them using one randomly chosen training sets among
the available ones choosing among the largest in terms of samples.
The specs are listed experiment by experiment:

‚ Multiple guesses scenario
– Data pre-processing:

˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r100, 100, 100s
˚ batch size: 1K samples
˚ epochs: 700

– Channel preprocessing:
˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r100, 100, 100s
˚ batch size: 1K samples
˚ epochs: 500

‚ Location privacy scenario
– Data pre-processing:

˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r500, 500, 500s
˚ batch size (on for each training set size in increasing
order of size): r200, 500, 1Ks samples

˚ epochs: 1k
– Channel preprocessing:

˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r500, 500, 500s
˚ batch size (on for each training set size in increasing
order of size): r20, 200, 500s samples

˚ epochs: 200, 500, 1K

‚ Di�erential privacy scenario
– Data pre-processing:

˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r100, 100, 100s
˚ batch size: 200 samples
˚ epochs: 500

– Channel preprocessing:
˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r100, 100, 100s
˚ batch size: 200 samples
˚ epochs: 500

‚ Side channel on passwords attack scenario
– Data and channel pre-processing

˚ learning rate: 10´3

˚ hidden layers: 3
˚ hidden units per layers: r100, 100, 100s
˚ batch size: 1K samples
˚ epochs: 700

E FREQUENTIST APPROACH DESCRIPTION
In the frequentist approach the elements of the channel, namely the
conditional probabilities PY |X p�|xq, are estimated directly in the
following way: the empirical prior probability of x , p�x , is computed
by counting the number of occurrences of x in the training set and
dividing the result by the total number of elements. Analogously,
the empirical joint probability pPXY px ,�q is computed by counting
the number of occurrences of the pair px ,�q and dividing the result
by the total number of elements in the set. The estimation pCx� of
Cx� is then de�ned as

pCx� “
pPXY px ,�q

p�pxq . (61)

In order to have a fair comparison with our approach, which
takes advantage of the fact that we have several training sets and
validation sets at our disposal, while preserving at the same time the
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spirit of the frequentist approach, we proceed as follows: Let us con-
sider a training setDm , that we will use to learn the best remapping
Y ÑW , and a validation set Tn which is then used to actually esti-
mate the �-vulnerability. We �rst compute p� using Dm . For each �
inY and for each x P X, the empirical probability pPX |Y is computed
usingDm as well. In particular, pPX |Y px |�q is given by the number of
times x appears in pair with� divided by the number of occurrences
of �. In case a certain � is in Tn but not in Dm , it is assigned the
secret x 1 “ argmaxxPX p� so that pPX |Y px 1|�q “ 1 and pPX |Y pxq “
0,@x ‰ x 1. It is now possible to �nd the best mapping for each
� de�ned as wp�q “ argmaxwPW

∞
xPX pPX |Y px |�q�pw,xq. Now

we compute the empirical joint distribution for each px ,�q in Tn ,
namely pQXY , as the number of occurrences of px ,�q divided by the
total number of samples in Tn . We now estimate the �-vulnerability

on the validation samples according to:
pVn “

ÿ

�PY

ÿ

xPX
pQXY px ,�q�pwp�q,xq. (62)

F SUPPLEMENTARY PLOTS
In the next pages, we show supplementary plots for each experiment
presented in section 5. In particular, we have included the plots
representing the comparison between the estimated vulnerability
and the real one, and the plots showing the comparison between
the frequentist approach and ours.

Figure 12 is related to the multiple guesses scenario, Figure 13
is related to the location privacy one, Figure 14 is related to the
di�erential privacy experiment, and Figure 15 to the password
checker one.
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(a) Vulnerability estimation for ANN and k-NNwith data
pre-processing.

(b) Vulnerability estimation for ANN and k-NN with
channel pre-processing.

(c) Vulnerability estimation for the frequentist approach. (d) Normalized estimation error for the frequentist ap-
proach.

(e) Vulnerability estimation for ANN and k-NNwith data
pre-processing, and the frequentist approach.

(f) Vulnerability estimation for ANN and k-NN with
channel pre-processing, and the frequentist approach.

(g) Normalized estimation error for ANN and k-NN with
channel pre-processing, and the frequentist approach.

Figure 12: Supplementary plots for the multiple-guesses experiment.
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(a) Vulnerability estimation for ANN and k-NNwith data
pre-processing.

(b) Vulnerability estimation for ANN and k-NN with
channel pre-processing.

(c) Vulnerability estimation for the frequentist approach. (d) Normalized estimation error for the frequentist ap-
proach.

(e) Vulnerability estimation for ANN and k-NNwith data
pre-processing, and the frequentist approach.

(f) Normalized estimation error for ANN and k-NN with
data pre-processing, and the frequentist approach.

(g) Vulnerability estimation for ANN and k-NN with
channel pre-processing, and the frequentist approach.

(h) Normalized estimation error for ANN and k-NN with
channel pre-processing, and the frequentist approach.

Figure 13: Supplementary plots for the location-privacy experiment.
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(a) Vulnerability estimation for ANN and k-NNwith data
pre-processing.

(b) Vulnerability estimation for ANN and k-NN with
channel pre-processing.

(c) Vulnerability estimation for the frequentist approach. (d) Normalized estimation error for the frequentist ap-
proach.

(e) Vulnerability estimation for ANN and k-NNwith data
pre-processing, and the frequentist approach.

(f) Normalized estimation error for ANN and k-NN with
data pre-processing, and the frequentist approach.

(g) Vulnerability estimation for ANN and k-NN with
channel pre-processing, and the frequentist approach.

(h) Normalized estimation error for ANN and k-NN with
channel pre-processing, and the frequentist approach.

Figure 14: Supplementary plots for the di�erential-privacy experiment.
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(a) Vulnerability estimation for ANN and k-NNwith data
and channel pre-processing.

(b) Vulnerabiloty estimation for the frequentist ap-
proach.

(c) Normalized estimation error for the frequentist ap-
proach.

(d) Vulnerability estimation for ANN and k-NN with
data and channel pre-processing, and the frequentist ap-
proach.

(e) Normalized estimation error for ANN and k-NN with
data and channel pre-processing, and the frequentist ap-
proach.

Figure 15: Supplementary plots for the password-checker experiment.
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