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Abstract—We consider the problem of obfuscating sensitive
information while preserving utility, and we propose a machine-
learning approach inspired by the generative adversarial net-
works paradigm. The idea is to set up two nets: the generator,
that tries to produce an optimal obfuscation mechanism to protect
the data, and the classifier, that tries to de-obfuscate the data. By
letting the two nets compete against each other, the mechanism
improves its degree of protection, until an equilibrium is reached.
We apply our method to the case of location privacy, and we
perform experiments on synthetic data and on real data from the
Gowalla dataset. We evaluate the privacy of the mechanism not
only by its capacity to defeat the classifier, but also in terms of the
Bayes error, which represents the strongest possible adversary.
We compare the privacy-utility tradeoff of our method with that
of the planar Laplace mechanism used in geo-indistinguishability,
showing favorable results. Like the Laplace mechanism, our
system can be deployed at the user end for protecting his location.

I. INTRODUCTION

Data analytics are crucial for modern companies and, con-
sequently, there is an enormous interest in collecting and
processing all sort of personal information. Individuals, on the
other hand, are often willing to provide their data in exchange
of improved services and experiences. However there is the
risk that such disclosure of personal information could be used
against them. The rise of machine learning, with its capability
of performing powerful analytics on massive amounts of data,
has further exacerbated the risks. Several researchers have
pointed out possible threats such as the model inversion
attacks [1] and the membership inference attacks [2]–[5].

Nonetheless, if machine learning can be a threat, it can
also be a powerful means to build good privacy protection
mechanisms, as we will demonstrate in this paper. We focus
on mechanisms that obfuscate data by adding controlled noise.
Usually the quality of service (QoS) that the user receives in
exchange of his obfuscated data degrades with the amount of
obfuscation, hence the challenge is to find a good trade-off
between privacy and utility. Following the approach of [6],
we aim at maximizing the privacy protection while preserving
the desired QoS1. We consider the case of location privacy

and in particular the re-identification of the user from his
location, but the framework that we develop is general and
can be applied to any situation in which an attacker might
infer sensitive information from accessible correlated data.

1Other approaches take the opposite view, and aim at maximizing utility
while achieving the desired amount of privacy, see for instance [7].

Utility is typically expressed as a bound on the expected
distance between the real location and the obfuscated one2 [6],
[7], [9], [10], capturing the fact that location based services
usually offer a better QoS when they receive a more accurate
location. If also privacy is expressed as a linear function,
then the optimal trade-off can in principle be achieved with
linear programming [6], [7], [11], [12]. The limitation of this
approach, however, is that it does not scale to large datasets.
The problem is that the linear program needs one variable
for every pair (w, z) of real and obfuscated locations. Such
variables represent the probability of producing the obfuscated
location z when the real one is w. For a 50⇥ 50 grid this is
more than six million variables, which is already at the limit of
what modern solvers can do. For a 260⇥260 grid, the program
has 4.5 billion variables, making it completely intractable (we
could not even launch such a program due to the huge memory
requirements). Furthermore, the background knowledge and
the correlation between data points affect privacy and are
usually difficult to determine and express formally.

Our position is that machine learning can help to solve this

problem. Inspired by the GANs paradigm [13], we propose a
system consisting of two adversarial neural networks, G (gen-

erator) and C (classifier). The idea is that G generates noise
so to confuse the adversary as much as possible, within the
boundaries of the utility constraints, while C inputs the noisy
locations produced by G and tries to re-identify (classify) the
corresponding user. While fighting against C , G refines its
strategy, until a point where it cannot improve any longer.
Note that a significant difference from the standard GANs is
that, in the latter, the generator has to learn to reproduce an
existing distribution from samples. In our case, instead, the
generator has to “invent” a distribution from scratch.

The interplay between G and C can be seen as an instance
of a zero-sum Stackelberg game [6], where G is the leader,
and C is the follower, and the payoff function f is the privacy
loss. Finding the optimal point of equilibrium between G and
C corresponds to solving a minimax problem on f with G
being the minimizer and C the maximizer.

A major challenge in our setting is represented by the choice
of f . A first idea would be to measure it in terms of C ’s
capability to re-associate a location to the right user. Hence
we could define f as the expected success probability of C ’s

2This notion is known as distortion in information theory [8].



classification. Such function f would be convex/concave with
respect to the strategies of G and C respectively, so from
game theory we would derive the existence of a saddle point
corresponding to the optimal obfuscation-re-identification pair.
The problem, however, is that it is difficult to reach the saddle
point via the typical alternation between the two nets. Let us
clarify this point with a simple example3:

Example 1. Consider two users, Alice and Bob, in locations

a and b respectively. Assume that at first G reports their true

locations (no noise). Then C learns that a corresponds to

Alice and b to Bob. At the next round, G will figure that to

maximize the misclassification error (given the prediction of

C ) it should swap the locations, i.e., report a for Alice and

b for Bob. Then, on its turn, C will have to “unlearn” the

previous classification and learn the new one. But then, at

the next round, G will again swap the locations, and bring

the situation back to the starting point, and so on, without

ever reaching an equilibrium. Note that a possible equilibrium

point for G would be the mixed strategy that reports a for both

Alice and Bob4
(so that C could only make a bling guess),

but G may not stop there. The problem is that it is difficult

to calibrate the training of G so that it stops in proximity of

the saddle point rather than continuing all the way to reach

its relative optimum. The situation is illustrated in Fig.1a.

In order to address this issue we adopt a different target
function, less sensitive to the particular labeling strategy of
C . The idea is to consider not just the precision of the
classification, but, rather, the information contained in it. There
are two main ways of formalizing this intuition: the mutual in-

formation I(X;Y ) and the Bayes error B(X|Y ), where X,Y

are respectively the random variable associated to the true ids,
and to the ids resulting from the classification (predicted ids).
We recall that I(X;Y ) = H(X)�H(X|Y ), where H(X) is
the entropy of X and H(X|Y ) is the residual entropy of X

given Y , while B(X|Y ) is the probability of error when we
select the value of X with maximum aposteriori probability,
given Y . Mutual information and Bayes error are related by
the Santhi-Vardy bound [15]: B(X|Y )  1� 2�H(X|Y )

.

If we set f to be I(X;Y ) or 1 � B(X|Y ), we obtain the
payoff table illustrated in Fig.1b. Note that the mimimum f

in the first and last columns corresponds now to a point of
equilibrium for any choice of C . This is not always the case,
but in general it is closer to the equilibrium and makes the
training of G more stable: training G for a longer time does
not risk to increase the distance from the equilibrium point.

In this paper we use the mutual information to generate
the noise, but we evaluate the level of privacy also in terms
of the Bayes error, which represents the probability of error
of the strongest possible adversary. Both notions have been
used in the literature as privacy measures, for instance mutual
information has been applied to quantify anonymity [16],

3A similar example was independently pointed out in [14].
4There are two more equilibrium points: one is when both Alice and Bob

report a or b with uniform probability, the other is when they both report b.
All the three strategies are equivalent.

[17]. The Bayes error has been considered in [17]–[20],
and indirectly as min-entropy leakage in [21]. Oya et al.
advocate in [12] that to guarantee a good level of location
privacy a mechanism should measure well in terms of both
the Bayes error and the residual entropy (which is strictly
related to mutual information). Fig. 2 anticipates some of the
experimental results of Sections 4 and 5. We note that the
performance of our mechanism is much better than the planar
Laplace, and comparable to that of the optimal solution in all
the three cases in which we can determine the latter. Of course,
this comparison is not completely fair, because the planar
Laplace was designed to satisfies a different notion of privacy,
called geo-indistinguishability [9] (see next paragraph). Our
mechanism on the contrary does not satisfy this notion.

Other popular privacy metrics are differential privacy (DP)
[22], local differential privacy (LPD) [23], and d-privacy [24],
of which geo-indistinguishability is an instance. The main
difference between these and the notions used in this paper
is that they are worst-case measures, while ours are average.
In other words, ours refer to the expected level of privacy
over all sensitive data, while the others are concerned with
the protection of each individual datum. Clearly, the latter is
stronger, as proved in [?] and [?], although [?] has proved that
a conditional version of mutual information correspond to a
relaxed form of differential privacy called (", �)-differential
privacy. We regard the individual protection as an important
issue, and we plan to investigate the possibility of generating
worst-case mechanisms via ML in future work. This paper is a
preliminary exploration of the applicability of ML to privacy,
and as a starting point we focus on the average notions that
have been considered in location privacy [6], [11], [12].

From a practical point of view our method belongs to the
local privacy category, like LDP and geo-indistinguishability,
in the sense that it can be deployed at the user’s end, with
no need of a trusted third party. Once the training is done
the system can be used as a personal device that, each time
the user needs to report his location to a LBS, generates a
sanitized version of it by adding noise to the real location.

A. Contribution

The contributions of the paper are the following:
• We propose an approach based on adversarial nets to

generate obfuscation mechanisms with a good privacy-
utility tradeoff. The advantage of our method is twofold:

– wrt linear programming methods, we can work on a
continuous domain instead of a small grid;

– wrt analytic methods (such as the Planar Laplace
mechanism) our approach is data-driven, taking into
account prior knowledge about the users.

• Although our approach is inspired by the GANs
paradigm, it departs significantly from it: In our case, the
distribution has to be “invented” rather than “imitated”.
Hence we need different techniques for evaluating a
distribution. To achieve our goal, we propose a new
method based on the mutual information between the
supervised and the predicted class labels.
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Fig. 1: Payoff tables of the games in Example 1, for various payoff functions f . A stands for Alice and B for Bob.

Synthetic data, low utility

Laplace Ours Optimal

0.39 0.74 0.75

Synthetic data, high utility

Laplace Ours Optimal

0.23 0.42 0.50

Gowalla data, low utility

Laplace Ours Optimal

0.33 0.80 0.83

Gowalla data, high utility

Laplace Ours Optimal

0.28 0.38 ?

Fig. 2: Bayes error on synthetic and Gowalla data, for the Laplace mechanism, our mechanism, and the optimal one, on a grid of 260⇥ 260 cells. In the
last table the Bayes error of the optimal mechanism is unknown: the linear program contains 4.5 billion variables, making it intractable in practice.

• We show that the use of the use of mutual information
(instead of the cross entropy) for the generator is crucial
for convergence. On the other hand for the classifier it is
possible to use cross entropy and it is more efficient.

• We evaluate the obfuscation mechanism produced by our
method on real location data from the Gowalla dataset.

• We compare our mechanism with the planar Laplace [9]
and with the optimal one, when it is possible to com-
pute or determine theoretically the latter. We show that
the performance of our mechanism is much better than
Laplace, and not so far from the optimal.

• We have made publicly available the implementation and
the experiments at https://gitlab.com/MIPAN/mipan.

B. Related work

Optimal mechanisms, namely mechanisms providing an
optimal compromise between utility and privacy, have attracted
the interest of many researchers. Many of the studies so
far have focused on optimization methods based on linear
programming [6], [7], [11], [12]. Although they can provide
exact solutions, the huge size of the corresponding linear pro-
grams limits the scalability of these methods. Our approach,
in contrast, using the efficient optimization process of neural
networks (the gradient descent), does not suffer from this
drawback. All the experiments were done on grid sizes for
which linear programming is completely intractable.

Adversarial networks to construct privacy-protection mech-
anisms have been also proposed by [14], [25], [26], with
applications on image data (the MNIST and the GENKI
datasets). The authors of [25], [26] have also developed
a theoretical framework similar to ours. From the method-
ological point of view the main difference is that in the
implementation they use as target function the cross entropy
rather than the mutual information. Hence in our setting the
convergence of their method may be problematic, due to the
“swapping effect” described in Example 1. We have actually

experimented the use of cross entropy as target function on our
examples in Section 4, and we could not achieve convergence.
The intermediate mechanisms were unstable and the level
of privacy was poor. Another related paper is [27], which
uses an adversarial network to produce mechanisms against
attribute inference attacks. The target function is the Kullback-
Liebler divergence, which, in this particular context where the
distribution of the secrets is fixed, reduces to cross entropy.
Hence in our setting we would get the same swapping effect
explained above.

Other works that have proposed the use of minimax learning
to preserve privacy are [?], [?], [?], [?]. The author of [?]
introduces the notion of minimax filter as a solution to the opti-
mization problem between privacy as expected risk and utility
as distortion, and propose various learning-based methods to
approximate such solution. The authors of [?] consider multi-
party machine learning, and use adversarial training to mitigate
privacy-related attacks such as party membership inference of
individual records. The authors of [?] propose the minimax
technique to remove private information from personal images.
Their approach is to use a stochastic gradient alternate min-
max optimizer, but since they express the objective in terms of
cross entropy, they may incur in the same problem as described
above, i.e., they cannot guarantee convergence. The authors of
[?] consider personal images, and in particular the problem of
preventing their re-identification while preserving their utility,
such as the the discernibility of the actions in the images. They
use the angular softmax loss as objective function, and do not
analyze the problem of convergence, but their experimental
results are impressive.

Another related line of work is the generation of synthetic
data via machine learning. An example is [?], where the au-
thors use an adversarial network to generate artificial medical
records that closely resemble participants of the Systolic Blood
Pressure Trial dataset. In this case, the paradigm they use is
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the same as the original GAN: the discriminator takes in input
both the records produced by the generator and samples from
the original dataset, and tries to distinguish them. The original
dataset is also obfuscated with differential privacy techniques
to prevent membership attacks.

One of the side contributions of our paper is a method to
compute mutual information in neural network (cfr. Section 3).
Recently, Belghazi et al. have proposed MINE, an efficient
method to neural estimation of mutual information [28],
inspired by the framework of [29] for the estimation of a
general class of functions representable as f -divergencies.
These methods work also in the continuous case and for high-
dimensional data. In our case, however, we are dealing with
a discrete domain, and we can compute directly and exactly

the mutual information. Another reason for developing our
own method is that we need to deal with a loss function that
contains not only the mutual information, but also a component
representing utility, and depending on the notion of utility the
result may not be an f -divergence.

Our paradigm has been inspired by the GANs [13], but it
comes with some fundamental differences:

• C is a classifier performing re-identification while in the
GANs there is a discriminator able to distinguish a real
data distribution from a generated one;

• in the GANs paradigm the generator network tries to
reproduce the original data distribution to fool the dis-
criminator. A huge difference is that, in our adversarial
scenario, G does not have a model distribution to refer to.
The final data distribution only depends on the evolution
of the two networks over time and it is driven by the
constraints imposed in the loss functions that rule the
learning process.

• We still adopt a training algorithm which alternates the
training of G and of C , but as we will show in Section 3,
it is different from the one adopted for GANs.

II. OUR SETTING

We formulate the privacy-utility optimization problem using
a framework similar to that of [30]. We consider four random
variables, X,Y, Z,W , ranging over the sets X ,Y,Z and W
respectively, with the following meaning:

• X: the sensitive information that the users wishes to
conceal,

• W : the useful information with respect to some service
provider and the intended notion of utility,

• Z: the information made visible to the service provider,
which may be intercepted by some attacker, and

• Y : the information inferred by the attacker.
We assume a fixed joint distribution (data model) PX,W over
the users’ data X ⇥W . We present our framework assuming
that the variables are discrete, but all results and definitions
can be transferred to the continuous case, by replacing the
distributions with probability density functions, and the sum-
mations with integrals. For the initial definitions and results
of this section X and Y may be different sets. Starting from
Section 3 we will assume that X = Y .

Symbol Description
C Classifier network (attacker).
G Generator network.

X,X Sensitive information. (Random var. and domain.)

W,W Useful information with respect to
the intended notion of utility.

Z,Z Obfuscated information accessible
to the service provider and to the attacker.

Y,Y Information inferred by the attacker.
P·,· Joint probability of two random variables.
P·|· Conditional probability.

PZ|W Obfuscation mechanism.
B(· | ·) Bayes error.

L[Z | W ] Utility loss induced by the obfuscation mechanism.
L Threshold on the utility loss.

H(·) Entropy of a random variable.
H(·|·) Conditional entropy.
I(·; ·) Mutual information between two random variables.

TABLE I: Table of symbols

An obfuscation mechanism can be represented as a condi-
tional probability distribution PZ|W , where PZ|W (z|w) indi-
cates the probability that the mechanism transform the data
point w into the noisy data point z. We assume that Z are
the only attributes visible to the attacker and to the service
provider. The goal of the defender G is to optimize the data
release mechanism PZ|W so to achieve a desired level of
utility while minimizing the leakage of the sensitive attributes
X . The goal of the attacker C is to retrieve X from Z as
precisely as possible. In doing so, it produces a classification
PY |Z (prediction).

Note that the four random variables form a Markov chain:

X $ W $ Z $ Y. (1)

Their joint distribution is completely determined by the data
model, the obfuscation mechanism and the classification:

PX,W,Z,Y (x,w, z, y) = PX,W (x,w)PZ|W (z | w)PY |Z(y | z).

From PX,W,Z,Y we can derive the marginals, the conditional
probabilities of any two variables, etc. For instance:

PX(x) =
X

w

PX,W (x,w). (2)

PZ(z) =
X

xw

PX,W (x,w)PZ|W (z | w). (3)

PZ|X(z|x) =

P
w
PX,W (x,w)PZ|W (z | w)

PX(x)
. (4)

PX|Z(x|z) =
PZ|X(z|x)PX(x)

PZ(z)
. (5)

The latter distribution, PX|Z , is the posterior distribution of X
given Z, and plays an important role in the following sections.

A. Quantifying utility

Concerning the utility, we consider a loss function ` : W ⇥
Z ! [0,1), where `(w, z) represents the utility loss caused
by reporting z when the true value is w.
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Definition 1 (Utility loss). The utility loss from the original

data W to the noisy data Z, given the loss function `, is

defined as the expectation of `:

L[Z | W, `] = E[` | W,Z] =
X

wz

PW,Z(w, z)`(w, z). (6)

We will omit ` when it is clear from the context. Note that,
given a data model PX,W , the utility loss can be expressed in
terms of the mechanism PZ|W :

L[Z | W ] =
X

xwz

PX,W (x,w)PZ|W (z|w)`(w, z). (7)

Our goal is to build a privacy-protection mechanism that keeps
the loss below a certain threshold L. We denote by ML the
set of such mechanisms, namely:

ML

def
= {PZ|W | L[Z | W ]  L}. (8)

The following property is immediate:

Proposition 1 (Convexity of ML). The set ML is convex and

closed.

B. Quantifying privacy as mutual information

We recall the basic information-theoretic definitions that
will be used in the paper:
Entropy of X:

H(X) = �
X

x

PX(x) logPX(x). (9)

Residual Entropy of X given Y :

H(X|Y ) = �
X

xy

PX,Y (x, y) logPX|Y (x|y). (10)

Mutual Information between X and Y :

I(X;Y ) = H(X)�H(X|Y ). (11)

Cross entropy between the posterior and the prediction:

CE(X,Y ) = �
X

z

PZ(z)
X

x

PX|Z(x|z) logPY |Z(y|z). (12)

We recall that the more correlated X and Y are, the larger
is I(X;Y ), and viceversa. The minimum I(X;Y ) = 0 is
when X and Y are independent; the maximum is when the
value of X determines uniquely the value of Y and viceversa.
In contrast, CE (X,Y ), that represents the precision loss in
the classification prediction, is not related to the correlation
between X and Y , but rather to the similarity between PX|Z
and PY |Z : the more similar they are, the smaller is CE (X,Y ).
In particular, the minimum CE (X,Y ) is when PX|Z = PY |Z .

The privacy leakage of a mechanism PZ|W with respect to
an attacker C, characterized by the prediction PY |Z , will be
quantified by the mutual information I(X;Y ). This notion
of privacy will be used as objective function, rather than
the more typical cross entropy CE (X,Y ). As explained in
the introduction, this choice makes the training of G more
stable because, in order to reduce I(X;Y ), G cannot simply
swap around the labels of the classification learned by C, it

must reduce the correlation between X and Z (via suitable
modifications of PZ|W ), and in doing so it limits the amount of
information that any adversary can infer about X from Z. We
will come back on this point in more detail in subsection 3.1.

C. Formulation of the game

The game that G and C play corresponds to the following
minimax formulation:

min
G

max
C

I(X;Y ) (13)

where the minimization by G is on the mechanisms PZ|W
ranging over ML, while the maximization by C is on the
classifications PY |Z .

Note that PZ|W can be seen as a stochastic matrix and
therefore as an element of a vector space. An important
property for our purposes is that the mutual information is
convex with respect to PZ|W :

Proposition 2 (Convexity of I). Given PX,W and PY |Z , let

f(PZ|W ) = I(X;Y ). Then f is convex.

Proposition 1 and 2 show that this problem is well defined:
for any choice of C, I(X;Y ) has a global minimum in ML,
and no strictly-local minima.

On the use of the the classifier: We note that, in principle,
one could avoid using the GAN paradigm, and try to achieve
the optimal mechanism by solving, instead, the following
minimization problem:

min
G

I(X;Z) (14)

where minG I(X;Z) is meant, as before, as a minimization
over the mechanisms PZ|W ranging over ML. This approach
would have the advantage that it is independent from the
attacker, so one would need to reason only about G (and there
would be no need for a GAN).

The main difference between I(X;Y ) and I(X;Z) is that
the latter represents the information about X available to any
adversary, not only those that are trying to retrieve X by
building a classifier. This fact reflects in the following relation
between the two formulations:

Proposition 3.

min
G

max
C

I(X;Y )  min
G

I(X;Z)

Note that, since minG I(X;Z) is an upper bound of our
target, it imposes a limit on maxC I(X;Y ).

On the other hand, there are some advantages in considering
minG maxC I(X;Y ) instead than minG I(X;Z): first of
all, Z may have a much larger and more complicated domain
than Y , so performing the gradient descent on I(X;Z) could
be infeasible. Second, if we are interested in considering
only classification-based attacks, then minG maxC I(X;Y )
should give a better result than minG I(X;Z). In this paper
we focus on the former, and leave the exploration of an
approach based on minG I(X;Z) as future work.
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D. Measuring privacy as Bayes error

As explained in the introduction, we intend to evaluate the
resulting mechanism also in terms of Bayes error. Here we
give the relevant definitions and properties.

Definition 2 (Bayes error). The Bayes error of X given Y is:

B(X | Y ) =
X

y

PY (y)(1�max
x

PX|Y (x | y)).

Namely, the Bayes error is the expected probability of
“guessing the wrong id” of an adversary that, when he sees
that C produces the id y, it guesses the id x that has the highest
posterior probability given y.

The definition of B(X | Z) is analogous. Given a mech-
anism PZ|W , we regard B(X | Y ) as a measure of the
privacy of PZ|W w.r.t. one-try [21] classification-based attacks,
whereas B(X | Z) is w.r.t. any one-try attack. The following
proposition shows the relation between the two notions.

Proposition 4. B(X | Z)  B(X | Y )

III. IMPLEMENTATION IN NEURAL NETWORKS

In this section we describe the implementation of our
adversarial game between G and C in terms of alternate
training of neural networks. The scheme of our game is
illustrated in Fig. 3, where:

• x, y, z and w are instances of the random variables X ,Y ,
Z and W respectively, whose meaning is described in
previous section. We assume that the domains of X and
Y coincide.

• s (seed) is a randomly-generated number in [0, 1).
• g is the function learnt by G , and it represents an

obfuscation mechanism PZ|W . The input s provides the
randomness needed to generate random noise. It is nec-
essary because a neural network in itself is deterministic.

• c is the classification learnt by C , corresponding to PY |Z .
The evolution of the adversarial network is described in

Algorithm 1. C and G are trained at two different moments
within the same adversarial training iteration. In particular
Ci is obtained by training the network C against the noise
generated by Gi�1 and Gi is obtained by fighting against Ci .

Note that in our method each Ci is trained on the output
of Gi�1 . This is a main difference with respect to the GANs
paradigm, where the discriminator is trained both on the output
of the generator and on samples from the target distribution
generated by an external source. Another particularity of our
method is that at the end of the i-th iteration, while Gi is
retained for the next iteration, Ci is discarded and the classifier
for iteration i+1 is reinitialized to the base one C0. The reason
is that restarting from C0 is more efficient than starting from
the last trained classifier Ci . This is because Gi may have
changed at step i the noise mechanism PZ|W and therefore
the association between X and Z expressed by PX|Z . The
predictions PY |Z(x | z) that Ci had produced during its
training (trying to match the PX|Z(x | z) previously produced
by Gi�1 as closely as possible), not only is not optimal

G C

c(z, y)

((w, s), x) (g((w, s)), x) = (z, x)

final g(w, s)

Fig. 3: Scheme of the adversarial nets for our setting.

Data: train data // Training data
Models: Gi generator evolution at the i–th step;

Ci classifier evolution at the i–th step.

train(n, d) trains the network n on the data d.
Gi(data) outputs a noisy version of data .

C0 = base classifier model
G0 = base generator model
i = 0
while True do

i += 1
// Train class. from scratch
Ci = train(C0, Gi�1(train data))

A = Gi�1 and Ci in cascade
A = train(A, train data)

Gi = generator layer in A
end

Algorithm 1: Adversarial algorithm with classifier reset.

anymore: for some z’s it may have become completely wrong,
and starting from a wrong prediction is a drawback that slows
down the learning of the new prediction. There may be several
z’s for which the old prediction is a good approximation of
the new one to be learned, but according to our experiments
the net effect is negative: the training of the new classifier is
usually faster if we restart from scratch. It is worth noting that
this is only a matter of efficiency though: eventually, even if
we started from Ci , the new classifier would “unlearn” the
old, wrong predictions and learn the correct new ones.

At the end of each training iteration we evaluate the quality
of the produced noise by checking the performance of the C
network. In particular we make sure that the noise produced
by the G network affects the training, validation and test data
in a similar way. In fact, in case the performances were good
on the training data but not on the the other data, this would
be a result of overfitting rather than of a quality indicator of
the injected noise.

We describe now in more detail some key implementation
choices of our proposal.

A. Mutual information vs cross entropy

Based on the formulation of our game (9), the alternate
training of both G and C is performed using the mutual

information I(X;Y ) as the loss function. The goal of G is to
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minimize I(X;Y ) by refining the mechanism PZ|W , while C
aims at maximizing it by refining the classifier PY |Z .

We remark that the use of mutual information as loss
function is not standard. A more typical function for training
a classifier is the cross entropy CE (X,Y ), which is more
efficient to implement. CE (X,Y ) is minimized when PX|Z
and PY |Z coincide. Such outcome would correspond to the
perfect classifier, that predicts the exact probability PX|Z(x|z)
that a given sample z belongs to the class x. One could
then think of reformulating the game in terms of the cross
entropy CE (X,Y ), where C would be the minimizer (trying
to infer probabilistic information about the secret x from a
given observation z) and G the maximizer (trying to prevent
the adversary C from achieving this knowledge). However, as
already observed in Example 1 in the introduction, training G

via CE (X,Y ) does not allow to reach an equilibrium, because
it takes into account only one adversarial strategy (i.e., one
particular classification). Indeed, a maximum CE (X,Y ) can
be achieved with a PZ|W that simply causes a swapping of
the associations between the labels x’s and the corresponding
noisy locations z’s. This would change PX|Z and therefore
fool the present classifier (because the prediction PY |Z would
not be equal anymore to PX|Z), but at the next round, when
C will be trained on the new data, it will learn the new
classification PX|Z and obtain, again, the maximum informa-
tion about x that can be inferred from z. The possibility of
ending up in such cyclic behavior is experimentally proved
in Section ??. Note that this problem does not happen with
mutual information, because swapping the labels does not
affect I(X;Y ) at all.

Since G can only change the mechanism PZ|W , the only
way for G to reduce the mutual information I(X;Y ) is
to reduce I(X;Z) by reducing the correlation between W

and Z (X is correlated to Z only via W ) . This limits
the information about X that can be inferred from Z, for
any possible adversary, i.e., for any possible prediction PY |Z ,
hence also for the optimal one. Still, if Z is very large I(X;Z)
cannot be reduced directly in an efficient way, and this is the
reason why G needs the feedback of the optimal prediction
PY |Z : in contrast to I(X;Z), minimizing I(X;Y ) can be
done effectively in neural networks via the gradient descent
when X (the domain of X and Y ) is “reasonably small”.

The above discussion about I(X;Y ) vs CE (X,Y ) holds
for the generator G, but what about the adversary C? Namely,
for a given PZ|W , is it still necessary to train C on I(X;Y ),
or could we equivalently train it on CE (X,Y )? The following
result answers this question positively.

Proposition 5.

argmin
G

max
C

I(X;Y ) = argmin
G

I(X,Y
0) ,

with Y
0

defined by PY 0|Z = argmin
C

CE (X,Y
0) = PX|Z .

Given the above result, and since minimizing CE (X,Y ) is
more efficient than maximizing I(X;Y ), in our implementa-
tion we have used CE (X,Y ) for the training of C. Of course,

we cannot do the same for G: as discussed above, the generator
needs to be trained by using I(X;Y ).

A consequence of ?? is that the adversary represented by
C at the point of equilibrium is at least as strong as the
Bayesian adversary, namely the adversary that minimizes the
expected probability of error in the 1-try attack (which consists
in guessing a single secret x given a single observable z [21].)
Indeed, from PY |Z one can derive the following decision
function (deterministic classifier) f⇤ : Z ! X , which assigns
to any z the class y with highest predicted probability:

f
⇤(z) = argmax

y

PY |Z(y|z) (15)

To state formally the property of the optimality of f
⇤ w.r.t.

1-try attacks, let us recall the definition of the expected error
R(f) for a generic decision function f : Z ! X :

R(f) =
X

xz

PX,Z(x, z)1f (x, z) (16)

where

1f (x, z) =

(
1 if f(z) 6= x

0 otherwise
(17)

We can now state the following result, that relates the error
of the attacker f⇤ (induced by the C at the equilibrium point)
and the minimum Bayes error of any adversary for the G at
the equilibrium point (cfr. Definition 2 and Proposition 4):

Proposition 6. If PY |Z = argminC CE (X,Y ), and f
⇤

is

defined as in (??), then:

R(f⇤) = B(X,Z)

B. Implementing Mutual Information

In order to describe the implementation of the mutual
information loss function, we will consider the training on
a specific batch of data. This technique is based on the idea
that the whole training set of cardinality N can be split into
subsets of cardinality N

0 with N
0  N . This is useful to to fit

data in the memory and, since during each epoch the network
is trained on all the batches, this corresponds to using all the
training data (provided that the data distribution in each batch
is a high fidelity representation of the training set distribution,
otherwise the learning could be unstable).

To obtain the mutual information between X and Y we
estimate the distributions PX , PY and PX,Y . Then we can
compute I(X;Y ) using (??), or equivalently as the formula:

X

x

PX(x) logPX(x)�
X

x,y

PX,Y (x, y) log
PX,Y (x, y)
PY (y)

. (18)

Let us consider a batch consisting of N
0 samples of type

(z, x) in the context of the classification problem, and let
|X | represents the cardinality of X , i.e., the total number of
classes. In the following we denote by T and Q , respectively,
the target and the prediction matrices for the batch. Namely,
T and Q are N

0 ⇥ |X | matrices, whose rows correspond to
samples and whose columns to classes, defined as follows. T
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represents the class one-hot encoding: the element in row i and
column x, T (i, x), is 1 if x is the target class for the sample i,
and 0 otherwise. Q , on the other hand, reports the probability
distribution over the classes computed by the classifier: Q(i, x)
is the predicted probability that sample i be in class x.

The estimation of PX(x) for the given batch can be obtained
by computing the frequency of x among the samples, namely:

PX(x) =
1

N 0

N
0X

i=1

T (i, x). (19)

Similarly, PY (y) is estimated as the expected prediction of y:

PY (y) =
1

N 0

N
0X

i=1

Q(i, y). (20)

The joint distribution PX,Y can be estimated by considering
the correlation of X and Y through the samples. Indeed, the
probability that sample i has target class x and predicted
class y can be computed as the product T (i, x)Q(i, y), and
by summing up the contributions of all samples (where each
sample contributes for 1/N 0) we obtain PX,Y (x, y).

More precisely, for a sample i 2 {1, ..., N 0} let us define
the |X | ⇥ |X | matrix Ji as Ji(x, y) = T (i, x)Q(i, y). Then
we can estimate PX,Y (x, y) as:

PX,Y (x, y) =
1

N 0

N
0X

i=1

Ji(x, y). (21)

The estimation of the mutual information relies on the esti-
mation of the probabilities, which is based on the computation
of the frequencies. Hence, in order to obtain a good estimation,
the batches should be large enough to represent well the true
distributions. Furthermore, if the batch size is too small, the
gradient descent is unstable since the representation of the
distribution changes from one batch to the other. In the ML
literature there are standard validation techniques (such as the
cross validation) that provide guidelines to achieve a “good
enough” estimation of the probabilities.

C. Base models

The base model C0 is simply the “blank” classifier that
has not learnt anything yet (i.e. the weights are initialized
according to the Glorot initialization, which is a standard
initialization technique [?]). As for G0, we have found out
experimentally that it is convenient to start with a noise
function pretty much spread out. This is because in this way
the generator has more data points with non-null probability
to consider, and can figure out faster which way to go to
minimize the mutual information.

D. Utility

The utility constraint is incorporated in the loss function of
G in the following way:

LossG = ↵⇥ Lossutility + � ⇥ I(X;Y ), (22)

where ↵ and � are parameters that allow us to tune the trade-
off between utility and privacy. The purpose of Lossutility
is to ensure that the constraint on utility is respected, i.e.,
that the obfuscation mechanism that G is trying to produce
stays within the domain ML. We recall that ML represents
the constraint L[Z | W ]  L (cfr. (8)). Since we need
to compute the gradient on the loss, we need a derivable
function for Lossutility . We propose to implement it using
softplus, which is a function of two arguments in R defined as:
softplus(a, b) = ln(1+e

(a�b)). This function is non negative,
monotonically increasing, and its value is close to 0 for a < b,
while it grows very quickly for a > b. Hence, we define

Lossutility(PZ|W ) = softplus(L[Z | W ], L). (23)

With this definition, Lossutility does not interfere with
I(X;Y ) when the constraint L[Z | W ]  L is respected, and
it forces G to stay within the constraint because its growth
when the constraints is not respected is very steep.

E. On the convergence of our method

In principle, at a each iteration i, our method relies on
the ability of the network Gi to improve the obfuscation
mechanism starting from the one produced by Gi�1, and
given only the original locations and the model Ci, which are
used to determine the direction of the gradient for LossG .
The classifier Ci is a particular adversary modeled by its
weights and its biases. However, thanks to the fact that the
main component of LossG is I(X;Y ) and not the the cross
entropy, Gi takes into account all the attacks that would
be possible from Ci’s information. We have experimentally
verified that indeed, using the mutual information rather than
the cross entropy, determines a substantial improvement on the
convergence process, and the resulting mechanisms provide a
better privacy (for the same utility level). Again, the reason is
that the the cross entropy would be subject to the “swapping
effect” illustrated by Example 1 in the introduction.

Another improvement on the convergence is due the fact
that, as explained before, we reset the classifier to the initial
weight setting (C0) at each iteration, instead than letting Ci

evolve from Ci�1.
The function that G has to minimize, LossG , is convex

wrt PZ|W . This means that there are only global minima,
although there can be many of them, all equivalent. Hence
for sufficiently small updates the noise distribution modeled
by PZ|W converges to one of these optima, provided that
the involved network has enough capacity to compute the
gradient descent involved in the training algorithm. In practice,
however, the network G represents a limited family of noise
distributions, and instead of optimizing the noise distribution
itself we optimize the weights of this network, which intro-
duces multiple critical points in the parameter space.

Number of epochs and batch size: The convergence of the
game can be quite sensitive to the number of epochs and batch
size. We just give two hints here, referring to literature [31] for
a general discussion about the impact they have on learning.
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First, choosing a batch too small for training G might result
in too strict a constraint on the utility. In fact, since the utility
loss is an expectation, a larger number of samples makes
it more likely that some points are pushed further than the
threshold, taking advantage of the fact that their loss may be
compensated by other data points for which the loss is small.

Second, training C for too few epochs might result into a
too weak adversary. On the other hand if it is trained for a long
time we should make sure that the classification performances
do not drop over the validation and test set because that might
indicate an overfitting problem.

IV. CROSS ENTROPY VS MUTUAL INFORMATION:
DEMONSTRATION ON SYNTHETIC DATA

In this section we perform experiments on a synthetic
dataset to obtain an intuition about the behaviour of our
method. The dataset is constructed with the explicit purpose
of being simple, to facilitate the interpretation of the results.
The main outcome of these experiments is confirming the
fact that, as discussed in Sec 3.1, training the generator G

wrt cross entropy is not sound. Even in our simple synthetic
case, training G with CE (X,Y ) as the loss function fails
to converge: G is just “moving points around”, temporarily
fooling the current classifier, but failing to really hide the
correlation between the secrets and the reported locations.

On the other hand, training G with mutual information
behaves as expected: the resulting network generates noise that
mixes all classes together, making the classification problem
hard for any adversary, not only for the current one. Note that
cross entropy is still used, but only for C (cfr. Sec 3.1).

The dataset: We consider a simple location privacy prob-
lem; 4 users X = Y = {blue, red, green, yellow} want to
disclose their location while protecting their identities. Both
the real locations W as well as the reported locations Z are
taken to be all locations in a squared region of 6.5⇥6.5 sq km
centered in 5, Boulevard de Sébastopol, Paris. Each location
entry is defined by a pair of coordinates normalized in [�1, 1].

The synthetic dataset consists of 600 real locations for
each of the 4 users (classes), for a total of 2400 entries. The
locations of each user are placed around one of the vertices
of a square of 300 ⇥ 300 sq meters centered in 5, Boulevard
de Sébastopol, Paris. (Each user corresponds to a different
vertex.) They are randomly generated so to form a cloud of
600 entries around each vertex and in such a way that no
locations falls further than about 45m from the corresponding
vertex. These sets are represented in Fig. 4 ((a) and (b), left):
it is evident from the figure that the four classes are easily
distinguishable; without noise a linear classifier could predict
the class of each location with no error at all.

Of the total 2400 entries of the dataset we use 1920 for
training and validation (480 for each user) and 480 for testing
(120 for each user).

Network architecture: A relatively simple architecture is
used for both G and C networks. They consist of three fully
connected hidden layers of neuron with ReLU function. In
particular C has 60, 100 and 51 hidden neurons respectively

in the first, second and third hidden layers. The G network
has 100 neurons in each hidden layer; such an architecture has
proved to be enough to learn how to reproduce the Laplace
noise distribution (✏ = ln(2)/100) with a negligible loss.

Bayes error estimation: As explained in Section 2, we use
the Bayes error B(X | Z) to evaluate the level of protection
offered by a mechanism. To this purpose, we discretize Z into
a grid over the 6.5 ⇥ 6.5 sq km region, thus determining a
partition of the region into a number of disjoint cells. We will
create different grid settings to see how the partition affects
the Bayes error. In particular, we will consider the cases where
the side of a cell is 25m, 50m, 100m and 500m long, which
corresponds to 260 ⇥ 260 = 67600, 130 ⇥ 130 = 16900,
65⇥ 65 = 4225 and 13⇥ 13 = 169 cells, respectively.

We run experiments with different numbers of obfuscated
locations (hits). Specifically, for each grid we consider 10, 100,
200 and 500 obfuscated hits for each original one.

Each hit falls in exactly one cell. Hence, we can estimate
the probability that a hit is in cell i as:

P (celli) =
number of hits in celli

total number of hits
, (24)

and the probability that a hit in cell i belong to class j:

P (Classj |celli) =
number of hits of classj in celli

number of hits in celli
,

(25)
We can now estimate of the Bayes error as follows:

B(X | Z) = 1�
k�1X

i=0

max
j

P (Classj |celli)P (celli) (26)

where k is the total number of cells.
Note that these computations are influenced by the chosen

grid. In particular we have two extreme cases:
• when the grid consists of only one cell the Bayes error is

1� 1/k = k�1/k for any obfuscation mechanism PZ|W .
• when the number of cells is large enough so that each

cell contains at most one hit, then the Bayes error is 0
for any obfuscation mechanism.

In general, we expects a finer granularity to give higher dis-
crimination power and to decrease the Bayes error, especially
with methods that scatter the obfuscated locations far away.

We estimate the Bayes error on the testing data in order
to evaluate how well the obfuscation mechanisms protect new
data samples never seen during the training phase. Moreover
we evaluate the Bayes error on the same data we used for
training and we compare the results with those obtained for
the testing data. We notice that, in general, the difference
between the two results is not large, meaning that the deployed
mechanisms efficiently protect the new samples as well.

The planar Laplace mechanism: We compare our method
against the planar Laplace mechanism [9], whose probability
density to report z, when the true location is w, is:

L✏

w
(z) =

✏
2

2⇡
e
�✏ d(w,z)

, (27)

where d(w, z) is the Euclidean distance between w and z.

9



In order to compare the the Laplace mechanism with ours,
we need to tune the privacy parameter ✏ so that the expected
distortion of L✏ is the same as the upper bound on the utility
loss applied in our method, i.e. L. To this purpose, we recall
that the expected distortion L[Z | W ] of the planar Laplace
depends only on ✏ (not on the prior PW ), and it is given by:

L[Z | W ] =
2

✏
. (28)

A. Experiment 1: relaxed utility constraint

As a first experiment, we choose for the upper bound L on
the expected distortion a value high enough so that in principle
we can achieve the highest possible privacy, which is obtained
when the observed obfuscated location gives no information
about the true location, which means that I(X;Y ) = 0. In
this case, the attacker can only do random guessing. Since we
have 4 users, the Bayes error is B(X | Y ) = 1� 1/4 = 0.75.

For the distortion, we take `(w, z) to be the geographical
distance between w and z. One way to achieve the maximum
privacy is to map all locations into the middle point. To
compute a sufficient L, note that the vertices of the original
locations form a square of side 300m, hence each vertex is at
a distance 300 ⇥

p
2/2 ⇡ 212m from the center. Taking into

account that the locations can be as much as 45m away from
the corresponding vertex, we conclude that any value of L

larger than 212+45 = 247m should be enough to allow us to
obtain the maximum privacy. We set the upper bound on the
distortion a little higher:

L = 270m, (29)

but we will see from the experiments that a much smaller
value of L would have been sufficient.

We now need to tune the planar Laplace so that the expected
distortion is at least L. We decide to set:

✏ =
ln 2

100
(30)

which, using Equation (18), gives us a value

L[Z | W ] ⇡ 288m > L. (31)

We have used this instance of the planar Laplace also as a
starting point of our method: we have defined G0 as L✏ with
✏ = ln 2/100. For the next steps, Gi and Ci are constructed as
explained in Algorithm 1. In particular, we train the generator
with a batch size of 128 samples for 100 epochs during each
iteration. The learning rate is set to 0.0001. For this particular
experiment we set the weight for the utility loss to 1 and the
weight for the mutual information to 2. The classifier is trained
with a batch size of 512 samples and 3000 epochs for each
iteration. The learning rate for the classifier is set to 0.001.

1) Training G wrt cross entropy: As discussed in Sec 3.1,
training G wrt CE (X,Y ) is not sound. This is confirmed
in the experiments by the fact that G is failing to converge.
Fig. 4 shows the distribution generated by G in two different
iterations of the game. We observe that, trying to fool the
classifier C, the generator on the right-hand side has simply

moved locations around, so that each class has been placed in
a different area. This clearly confuses a classifier trained on
the distribution of the left-hand side, however the correlation
between labels and location is still evident. A classifier trained
on the new G can infer the labels as accurately as before.

As a consequence, after each iteration, the accuracy of the
newly trained Ci is always 1, while the Bayes error B(X|Z)
is 0. The generator fails to converge to a distribution that
effectively protects the users’ privacy. We can hence conclude
that the use of cross entropy is unsound for training G.

2) Training G wrt mutual information: Using now I(X;Y )
for training G (while still using the more efficient cross
entropy for C, as explained in Sec 3.1), we observe a totally
different behaviour. After each iteration the accuracy of the
classifier drops, showing that the generator produces mean-
ingful noise. Around iteration i = 149 the accuracy of Ci

becomes ⇡ 0.25 both over the training and the validation set.
This means that Ci just randomly predicts one of the four
classes. We conclude that the noise injection is maximally
effective, since 0.75 is the maximum possible Bayes error.
Hence we know that we can stop.

The result of our method, i.e., the final generator Gi, to the
testing set is reported in Fig. 5(c). The empirical distortion is
⇡ 219.26m. This is way below the limit of 270m set in (19),
and it is due to the fact that to achieve the optimum privacy we
probably do not need more than ⇡ 220m. In fact, the distance
of the vertices from the center is ⇡ 212m, and even though
some locations are further away (up to 45m more), there are
also locations that are closer, and that compensate the utility
loss (which is a linear average measure).

For comparison, the result of the application of the planar
Laplace to the testing set is illustrated in Fig. 5(a). The em-
pirical distortion (i.e., the distortion computed on the sampled
obfuscated locations) is ⇡ 298.40m, which is in line with the
theoretical distortion formulated in (21).

From Fig. 5 we can see that, while the Laplace tends to
“spread out” the obfuscated locations, our method tends to
concentrate them into a single point (mode collapse), i.e.,
the mechanism is almost deterministic. This is due to the
fact that the utility constraint is sufficiently loose to allow
the noisy locations to be displaced enough so to overlap
all in the same point. When the utility constraint is stricter,
the mechanism is forced to be probabilistic (and the mode
collapse does not happen anymore). For example, consider
two individuals, A and B, in locations a and b respectively,
at distance 100m, assume that L = 40m. Assume also, for
simplicity, that there are no other locations available. Then the
optimal solution maps a into b with probability 2/5, and into
itself with probability 3/5 and vice versa for b). Nevertheless,
we can expect that our mechanism will tend to overlap the
obfuscated locations of different classes, as much as allowed
by the utility constraint. With the Laplace, on the contrary, the
areas of the various classes remain pretty separated. This is
reflected by the Bayes error estimation reported in Fig. 7.

We note that the Bayes error of the planar Laplace tend
to decrease as the grid becomes finer. We believe that this is
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(a) Iteration 30 (b) Iteration 40

Fig. 4: Using cross entropy for producing the noise does not make the system converge. The left sides of Figures (a) and (b) show the original synthetic
data without noise. The right sides show the noisy data at different iterations. L = 270m.

(a) (b) (c)

Fig. 5: Synthetic testing data. From left to right: Laplace noise, no noise, our noise produced using mutual information. L = 270m.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260
0.75 0.00 0.00 0.00

(a) Training data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260
0.75 0.00 0.00 0.00

(b) Testing data.

Fig. 6: Estimation of B(X | Z) on the original version of the synthetic data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.60 0.75 0.40 0.75 0.38 0.75 0.35 0.73
100 0.60 0.75 0.41 0.75 0.40 0.75 0.39 0.74
200 0.60 0.75 0.41 0.75 0.40 0.75 0.39 0.74
500 0.60 0.75 0.41 0.75 0.40 0.75 0.40 0.74

(a) Training data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.59 0.75 0.38 0.75 0.36 0.75 0.26 0.73
100 0.60 0.75 0.40 0.75 0.39 0.75 0.37 0.74
200 0.60 0.75 0.41 0.75 0.39 0.75 0.38 0.74
500 0.60 0.75 0.41 0.75 0.40 0.75 0.39 0.74

(b) Testing data.

Fig. 7: Estimation of B(X | Z) on synthetic data for the Laplace and our mechanisms, with L = 270m. The empirical utility loss for training and testing
data is ⇡ 282.07m�298.40m respectively for the Laplace and ⇡ 219.70m�219.26m for ours. The optimal mechanism gives B(X | Z) = 1�1/4 = 0.75.

due to the fact that, with a coarse grid, there is an effect of
confusion simply due to the large size of each cell. We remark
that the behavior of our noise, on the contrary, is quite stable.
Note that, when the grid is very coarse (13 ⇥ 13 cells) the
Bayes error is 0.75 already on the original data (cfr. Fig. 6),
which must be due to the fact that all the vertices are in the
same cell. While the Bayes error remains 0.75 also with our
obfuscation mechanism, with Laplace it decreases to 0.60. The
reason is that the noise scatters the locations in different cells,
and they become, therefore distinguishable.

B. Experiment 2: stricter utility constraint

We are now interested in investigating how our method be-
haves when a stricter constraint on the utility loss is imposed.

In order to do so, we run an experiment similar to the one
in Section 4.1. We repeat the same steps but now we set L

and the privacy parameter (and consequently the distortion
rate) of the planar Laplace as follows:

L = 173m ✏ =
ln 2

60
L[Z | W ] ⇡ 173.12m (32)

Similarly to the previous section, training G wrt cross
entropy fails to converge, producing generators that achieve
no privacy protection. As a consequence, we only show the
results of training G wrt mutual information.

The result of the application of the Laplace mechanism is
illustrated in Fig. 8(a). The empirical distortion is ⇡ 172.35m.
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(a) (b) (c)

Fig. 8: Synthetic testing data. From left to right: Laplace noise, no noise, our noise produced using mutual information. L = 173m.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.64 0.74 0.26 0.45 0.23 0.43 0.22 0.41
100 0.64 0.74 0.26 0.45 0.24 0.43 0.23 0.42
200 0.64 0.74 0.26 0.45 0.24 0.43 0.24 0.42
500 0.64 0.74 0.26 0.45 0.24 0.43 0.24 0.42

(a) Training data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.63 0.74 0.25 0.44 0.23 0.42 0.19 0.39
100 0.64 0.74 0.26 0.45 0.24 0.43 0.23 0.42
200 0.64 0.74 0.26 0.45 0.23 0.43 0.23 0.42
500 0.64 0.74 0.26 0.45 0.23 0.43 0.23 0.42

(b) Testing data

Fig. 9: Estimation of B(X | Z) on the synthetic data for the Laplace and for our mechanisms, with L = 173m. The empirical utility loss for training and
testing data is ⇡ 170.53m – 172.35m respectively for the Laplace and ⇡ 166.78m – 171.50m for ours. The optimal mechanism gives B(X | Z) = 0.50,
since the utility bound is large enough to let mixing the red and blue points, as well as the green and the yellow, but does not allow more confusion than that.

Following the same pattern as in Section 4.1, we train G
and C . The training of G is performed for 30 epochs during
each iteration with a batch size of 512 samples and a learning
rate of 0.0001. The classifier C is trained for 3000 epochs
with a batch size of 512 samples and 0.001 as the value for
the learning rate during each iteration. We are particularly
interested in the 24th iteration where C ’s performance is
degraded by the obfuscation performed by G trained during
the previous iteration. Training C with 32 samples batch
size and learning rate set to 0.001 for 100 epochs with the
obfuscated data gives the results reported in Table 2. In this

Data Accuracy F1 score
Training data ⇡ 0.55 ⇡ 0.54

Validation data ⇡ 0.53 ⇡ 0.53
Test data ⇡ 0.52 ⇡ 0.51

TABLE II: Summary of the experiment with our noise.

case, increasing the number of epochs does not improve the
classification precision and makes C more prone to overfitting.

The obfuscation provided by G at the 24th iteration pro-
duces the distributions on the testing illustrated in Fig. 8(c).
The empirical distortion is ⇡ 171.50m. The estimated Bayes
error for the two mechanisms is reported in Fig. 9.

V. EXPERIMENTS ON THE GOWALLA DATASET

In the previous section we saw that our method behaves as
expected in a simple synthetic dataset, producing an obfusca-
tion mechanism that is close to the optimal one (when G is
trained wrt mutual information). We now study the behaviour
of our method to real location data from the Gowalla dataset.

Since cross entropy was shown to be unsound, we only present
results using mutual information for training G.

The dataset: The dataset consists of data extracted from the
Gowalla dataset [32], a collection of check-ins made available
by the Gowalla location-based social network. Among all
the provided features, only the users’ identifiers (classes), the
latitude and longitude of the check-in locations are considered.
The data are selected as follows:

1) we consider a squared region centered in 5, Boulevard
de Sébastopol, Paris, France with 4500m long side;

2) we select the 6 users who checked in the region most
frequently, we retain their locations and discard the rest;

3) we filter the obtained locations to reduce the overlapping
of the data belonging to different classes by randomly
selecting for each class 82 location samples for training
and validation purpose, and 20 samples for the test.

We obtain 492 pairs (locations , id) to train and validate the
model, and 120 to test it. For each of these, the generator
creates 10 pairs with noisy locations using different seeds. As
usual, G0 does it using the Laplace function, the other Gi’s
use the mechanism learnt at the previous step i � 1. Thus in
total we obtain 4920 pairs for training and 1200 for testing.
Fig.10 shows the result of the mechanism applied to the testing
data, where each color corresponds to a different user.

A. Experiment 3: relaxed utility constraint

In this experiment we study the case of a large upper bound
on the utility loss, which would potentially allow to achieve
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(a) (b) (c)

Fig. 10: Gowalla testing data. From left to right: Laplace noise, no noise, our noise produced using mutual information. L = 1150m.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260
0.12 0.06 0.04 0.03

(a) Training data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260
0.11 0.04 0.03 0.03

(b) Testing data.

Fig. 11: Estimation of B(X | Z) on the original version of the data from Gowalla.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.56 0.83 0.37 0.83 0.19 0.82 0.06 0.80
100 0.57 0.83 0.53 0.83 0.46 0.82 0.31 0.81
200 0.57 0.83 0.55 0.83 0.50 0.82 0.40 0.81
500 0.57 0.83 0.56 0.83 0.54 0.82 0.48 0.81

(a) Training data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.51 0.83 0.18 0.82 0.07 0.80 0.01 0.79
100 0.56 0.83 0.45 0.82 0.30 0.81 0.13 0.80
200 0.56 0.83 0.49 0.82 0.38 0.81 0.21 0.80
500 0.56 0.83 0.53 0.82 0.46 0.81 0.33 0.80

(b) Testing data.

Fig. 12: Estimation of B(X | Z) on the Gowalla data for the Laplace and for our mechanisms, with L = 1150m. The utility loss for training and testing data
is ⇡ 1127.83m � 1132.63m respectively for the Laplace and ⇡ 961.38m � 979.40m for ours. The optimal mechanism gives B(X | Z) = 1� 1/6 = 0.83.

(a) (b) (c)

Fig. 13: Gowalla testing data. From left to right: Laplace noise, no noise, our noise produced using mutual information. L = 518m.

the maximum utility. We set L and the privacy parameter (and
consequently L[Z | W ]) of the planar Laplace as follows:

L = 1150m ✏ =
ln 2

400
L[Z | W ] ⇡ 1154.15m (33)

The results for the Laplace and our method are illustrated in
Fig.10. As we can see, the utility constraint is relaxed enough
to allow our method to achieve the maximum privacy. As
reported in Fig.12, indeed, the Bayes error is close to that of
random guess, namely 1� 1/6 ⇡ 0.83. Fig. 11 shows the part
of the Bayes error due to the discretization of the domain Z .

The planar Laplace, on the other hand, confirms the relatively
limited level of privacy as observed in the synthetic data.

B. Experiment 4: stricter utility constraint

We consider now a much tighter utility constraint, and we
set the parameters of the planar Laplace as follows:

L = 518m ✏ =
ln 2

180
L[Z | W ] ⇡ 519.37m (34)

The results of the application of the Laplace and of our
method to the testing data are shown in Fig. 13, and the Bayes
error is reported in Fig. 14. As the grid becomes finer, both the
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Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.38 0.50 0.29 0.42 0.20 0.37 0.27 0.08
100 0.39 0.51 0.36 0.44 0.34 0.43 0.27 0.40
200 0.39 0.51 0.36 0.44 0.35 0.43 0.31 0.41
500 0.38 0.51 0.37 0.44 0.36 0.43 0.34 0.42

(a) Training data.

Number of cells
13⇥ 13 65⇥ 65 130⇥ 130 260⇥ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.34 0.47 0.20 0.36 0.08 0.35 0.03 0.12
100 0.37 0.49 0.32 0.41 0.25 0.38 0.15 0.32
200 0.37 0.48 0.33 0.41 0.30 0.39 0.21 0.35
500 0.37 0.49 0.35 0.42 0.32 0.40 0.28 0.38

(b) Testing data.

Fig. 14: Estimation of B(X | Z) on the Gowalla data for the Laplace and for our mechanisms, with L = 518m. The utility loss fort training and testing
data is ⇡ 523.40m � 535.21m respectively for the Laplace and ⇡ 487.34m � 502.89m for ours. We could not compute the optimal mechanism due to the
high complexity of the linear program.

planar Laplace and our method become more sensitive to the
number of samples, in the sense that the (approximation of)
the Bayes error grows considerably as the number of samples
increases. This is not surprising: when the cells are small they
tend to have a limited number of hits. Therefore the number of
hits whose class is in minority (in a given cell), and hence not
selected as the best guess, is limited. Note that these minority
hits are those that contribute to the Bayes error.

VI. CONCLUSION AND FUTURE WORK

We have proposed a method based on adversarial nets
to generate obfuscation mechanisms with a good tradeoff
between privacy and utility. The crucial feature of our ap-
proach is that the target function to minimize is the mutual
information rather than the cross entropy. We have applied
our method to the case of location privacy, and experimented
with a set of synthetic data and with data from Gowalla.
We have compared the mechanism obtained via our approach
with the planar Laplace, the typical mechanism used for geo-
indistinguishability, obtaining favorable results.

Although the experiments here were limited to the case
of location privacy, our setting is very general and can in
principle be applied to any kind of sensitive and public data
with finite domain. The same holds for the notion of utility: in
this paper we have considered the distortion, i.e. the expected
distance between the original value w and its corresponding
noisy version z, but our framework can accommodate any
notion of loss on which the gradient descent is applicable.
In the future we plan to explore the validity of our approach
to other privacy scenarios and other loss utility functions. We
also plan to study the estimation of mutual information by
means of other functions which are more suitable for neural
networks training in order to reduce the computational burden.

We also plan to explore the possibility of using other
notions of privacy. In particular, we are considering using
directly the Bayes error B(X,Z) in the objective function.
The main challenge is when the domain of Z is too large,
as it makes unfeasible to estimate accurately B(X,Z). We
are currently exploring an approach based on partitioning
the domain of Z, so to reduce its cardinality. We are also
interested in considering the notion g-vulnerability [33] which
generalizes (the converse of) the Bayes error to the case in
which the adversary’s attack is rewarded by a generic gain
functions g. Our main challenge, however, is to extend our

framework to deal with worst-case notions of privacy, such as
differential privacy and geo-indistinguishability. To this end,
we plan to start with a variant of differential privacy called
Rényi differential privacy [?], which is formulated in terms of
divergence, and explore the applicability of the learning-based
method for estimating f -divergences proposed in [?].

Moreover we plan to enhance the flexibility of the constraint
on distortion (in the loss function), by requiring it to be per

user rather than global. More specifically, we aim at producing
obfuscation mechanisms that satisfy constraints stating that
the expected displacement for each user is at most up to a
certain threshold. The motivation is that different users may
have different requirements. Another potential application is
to encompass a notion of fairness, that can be obtained by
requiring that the threshold is the same for everybody.
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VII. APPENDIX

A. Proofs of the results in the paper

Proposition 2 (Convexity of I). Given PX,W and PY |Z , let

f(PZ|W ) = I(X;Y ). Then f is convex.

Proof. Let us recall that

X $ W $ Z $ Y. (35)

represents a Markov chain where:
• the relation between the two random variables X and W

is defined by the data distribution PX,W ,
• the relation between Z and Y depends only on the chosen

classifier according to PY |Z ,
• the relation between Z and W can be described by the

variable PZ|W

If we consider X as the secret input and Y as the observable
output of a stochastic channel, the mutual information between
the two random variable can be expressed as

I(X;Y ) = g(PY |X). (36)

We know from [8] that g(·) is a convex function wrt PY |X .
We can express PY |X as:

PY |X(y|x) =
P

zw
PX,W (x,w)PZ|W (z|w)PY |Z(y|z)P

w
PX,W (x,w)

. (37)

Eq. (27) represents a linear function of the variable PZ|W
(all the other probabilities are constant). Hence f(PZ|W ) =
g(h(PZ|W )) where g(·) is convex and h(·) is linear. The
composition of a convex function with a linear one is a convex
function and this concludes the proof.

Proposition 3.

min
G

max
C

I(X;Y )  min
G

I(X;Z)

Proof. Given that eq. (1) represents a Markov chain, X $
Z $ Y represents one as well. From the data processing
inequality it follows that:

I(X;Y )  I(X;Z) . (38)

Hence we have:

max
C

I(X;Y )  I(X;Z) , (39)

and therefore:

min
G

max
C

I(X;Y )  min
G

I(X;Z) . (40)

Proposition 4. B(X | Z)  B(X | Y )
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Proof.

B(X | Z) =
X

z

PZ(z)(1�max
x

PX|Z(x | z))

= 1�
X

z

PZ(z)max
x

PX|Z(x | z)

= 1�
X

y

PY (y)
X

z

PZ|Y (z|y)max
x

PX|Z(x | z)

 1�
X

y

PY (y)max
x

X

z

PZ|Y (z|y)PX|Z(x | z)

= 1�
X

y

PY (y)max
x

PX|Y (x | y)

= B(X | Y )

Proposition 5.
argmin

G
max
C

I(X;Y ) = argmin
G

I(X,Y
0) ,

with Y
0

defined by PY 0|Z = argmin
C

CE (X,Y
0) = PX|Z .

Proof. PXW is fixed, and therefore H(X) is fixed as well.
Hence the goal of C of maximizing I(X;Y ) reduces to
maximizing �H(X|Y ). Consider two mechanisms, PZ1|W
and PZ2|W , and the distributions induced on X by Z1 and
Z2 respectively, namely PX|Z1

and PX|Z2
. Consider the

predictions PY1|Z1
and PY1|Z2

that C obtains by minimizing
the cross entropy with PX|Z1

and PX|Z2
respectively.

It is well known that argmin
Q
CE (P,Q) = P , hence we

have PY1|Z1
= PX|Z1

and PY2|Z2
= PX|Z2

. (Note that X ,
Y1 and Y2 all have the same domain X .) Hence, taking into
account that X $ Z1 $ Y1 and X $ Z2 $ Y2 (i.e., they
are Markov chains), we have:

�H(X|Y1)  �H(X|Y2)

iff
P

z PZ1 (z)
P

xy PX|Z1=z(x|z)PY1|Z1=z(y|z) logPY1|Z1=z(y|z)
P

z PZ2 (z)
P

xy PX|Z2=z(x|z)PY2|Z2=z(y|z) logPY2|Z2=z(y|z)

iff
P

z PZ1 (z)
P

xy PX|Z1=z(x|z)PX|Z1=z(y|z) logPX|Z1=z(x|z)
P

z PZ2 (z)
P

xy PX|Z2=z(x|z)PX|Z2=z(y|z) logPX|Z2=z(x|z)

iff

�H(X|Z1)  �H(X|Z2).

Finally, observe that
� H(X|Z1)  �H(X|Z2) implies max

PY1|Z
I(X;Y1)  max

PY2|Z
I(X;Y2)

(41)

and recall that PYi|Z is the prediction produced by C.

Proposition ??. If PY |Z = argminC CE (X,Y ), and f
⇤

is

defined as in (??), then:

R(f⇤) = B(X,Z)

Proof. Let PY |Z = argminC CE (X,Y ) and let f
⇤ be

defined as in (??). We note that, for every z 2 Z:

P
x
PX|Z(x|z)1f⇤(x, z)

=
X

x 6=f⇤(z)

PX|Z(x, z)

=
X

x 6=argmaxy PY |Z(y|z)

PX|Z(x, z)

= 1�
X

x=argmaxy PY |Z(y|z)

PX|Z(x, z)

= 1� PX|Z(argmax
x
PX|Z(x|z) | z))

= 1�maxx PX|Z(x | z))

where the first equality is due to the definition of 1f⇤ , the
second one is due to the definition of f⇤, and the last but one
follows from the fact that PY |Z = argminC CE (X,Y ) and
therefore, by ??, PY |Z = PX|Z . Hence, we have:

R(f⇤)

=
P

xz PX,Z(x, z)1
⇤
f (x, z)

=
P

xz PZ(z)PX|Z(x|z)1
⇤
f (x, z)

=
P

z PZ(z)
P

x PX|Z(x|z)1
⇤
f (x, z)

=
P

z PZ(z)(1�maxx PX|Z(x | z))

= B(X | Z) (cfr. Definition 2)
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