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Up-to techniques for Generalized Kantorovic

Distances

1 Introduction

Bisimulation has played a fundamental role in the analysis and verification of
traditional concurrent systems. In recent times, however, there is a growing
tendency to consider probabilistic frameworks, partly to capture the random
nature of interactions in distributed systems, partly to model and reason about
protocols which make use of randomized mechanisms, such as those used in
security and privacy. In this context, equivalences are not suitable, because
they are not robust w.r.t. small variation of the transition probabilities, and
they are usually replaced by (pseudo-)metrics: unlike an equivalence relation, a
metric can vary smoothly as a function of the probabilities, and it can be used
to measure the similarity of two systems in a more informative way than an
equivalence relation.

Bisimulation metrics are particularly successful, especially in the area of
concurrency, They can be defined by generalizing to metrics the bisimilarity
“progress” relation; using a terminology introduced by Sangiorgi [12], we say that
a relation between processes R progresses to S if for every pair of processes in R,
every transition from one process is matched by a transition from the other, and
the derivative processes are related by S. A bisimulation can then be defined as
a relation that progresses to itself. Using the same terminology for probabilistic
transitions, a metric d on states progresses to a metric l on distributions over
states if, for all processes at d-distance ε, every transition from one process is
matched by a transition from the other and the resulting distributions are at
l-distance at most ε. Then d is a bisimulation metric if it progresses to its own
lifting K(d) on distributions.

Among the bisimulation metrics, those based on the Kantorovich lifting are
the most popular. Originally proposed in the seminal works of Desharnais et al.
[5, 6, 7] and of van Breugel and Worrel [13, 14], the traditional Kantorovich lifting
has been extended in [3] so as to capture privacy properties such as differential
privacy [8]. Part of their success is due to the Kantorovich-Rubinstein duality,
which allows us to compute the lifting efficiently using linear programming
algorithms [1, 13, 15, 16].

Analogously to the bisimilarity relation ∼, which is defined as the union of all
bisimulations, the bisimilarity metric bm is defined coinductively as the smallest
bisimulation metric. This means that we can extend the bisimulation proof
method to metrics: given two processes P and Q, to prove P ∼ Q it is sufficient
to find a bisimulation R such that P RQ. Similarly, to show that bm(P,Q) ≤ ε,
it is sufficient to find a bisimulation metric d such that d(P,Q) ≤ ε. The main
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difficulty in the bisimulation method is that the cost of naively checking that
R is a bisimulation can be proportional to its size. Indeed, we need to prove
that for all pairs of processes in R, the derivatives of the matching transitions
are still related by R. Now, the size of bisimulations typically depends on the
complexity of the underlying transition system, and if the transition system is
unbounded, bisimulations are, in general, infinite sets. This difficulty translates
immediately to the metric level: to prove that d is a bisimulation metric we need
to prove that for all pairs of processes at d-distance ε, the distributions resulting
from the matching transitions have K(d)-distance at most ε.

One well known and general approach, originally due to Milner [9], for
reducing the sizes of bisimulations, is to represent them up to a different relation
that identifies redundant pairs of process expressions. For instance, he showed
that, when we consider the relation between the derivative processes, we can
reason modulo bisimilarity. In other words, to prove P ∼ Q it is sufficient to
find a relation R that relates P and Q, and that progresses to ∼ R ∼. In other
words, if P ′ and Q′ are the derivative processes, we do not need to show P ′RQ′,
we only need to find a pair or processes P ′′ and Q′′ such that P ′ ∼ P ′′, P ′′RQ′′,
and Q′′ ∼ Q′. Such an R is called bisimulation up to bisimilarity. This technique
was successively generalized by Sangiorgi [12], who introduced the notion of
bisimulation up to F , where F is a function from relations to relations. The idea
is that F(R) contains the pairs of derivatives. The method is sound if, whenever
R progresses to F(R), then R ⊆∼. The paper also defines respectfulness for
up-to techniques, later generalized as compatibility [11], which guarantees that
it is sound to compose them with each other. The up-to techniques can be so
effective that they may reduce the size of the relation to be checked from infinite
to finite, and even, in some cases, to a singleton.

In this paper we aim at generalizing the up-to bisimulation method to the
Kantorovich bisimulation metrics (in the extended version of [3]), thus enhancing
the corresponding proof technique. The aim is to obtain a proof method that
allows us to prove that bm(P,Q) ≤ ε by finding a metric d such that d(P,Q) ≤ ε,
and such that the set of pairs of processes for which we have to check the progress
relation is relatively small. In other words, a metric d which gives maximal
distance (and therefore the progress relation is verified trivially) between all
processes except a small set. As an example, consider the following processes
(from a probabilistic version of CCS):

A = a.([ 1
2 ]A | b⊕ [ 1

2 ]c) A′ = a.([ 1
2 ]A′ | b⊕ [ 1

4 ]c⊕ [ 1
4 ]d)

After performing an a-action, process A has one half probability of going back
to itself, with the additional possibility of performing an action b in parallel,
and one half probability of performing action c. Process A′ behaves similarly to
A, but with probability one fourth it performs action d instead of c. In order
to prove that bm(A,A′) ≤ 1

2 , we should define a metric assigning distance one
half not only to the pair (A,A′), but also to all pairs of the form A | bn and
A | bn, where bn is the parallel composition of n instances of b, representing the
pairs to be inspected after the action a is performed for the n-th time. Each
of these pairs should then be proved to satisfy the bisimulation metric clauses.
Using up-to techniques, we can prove that bm(A,A′) ≤ 1

2 just by considering a
(pre)metric assigning one half distance to (A,A′), and maximal distance to all
other non-identical states. When A performs a, then A′ replies with the same
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action and the (probabilistic) up-to-context technique guarantees that it is sound
to directly use the distance on (A,A′) in place of the distance on (A | b, A′ | b).

Plan of the paper Section 2 recalls some preliminary notions. Section 3
introduces some operators on premetrics and discusses some relevant properties
of them. Section 4 presents the extension to metrics of the up-to techniques.
Section 5 shows some examples of these techniques applied to probabilistic CCS
and to the verification of differential privacy. Finally, Section 6 concludes. Some
proofs were omitted for space reasons, they can be found in the appendix.

2 Preliminaries

Premetrics and metrics An (extended) premetric on a set X is a very
relaxed form of metric, namely a function m : X2 → [0,+∞] satisfying only
reflexivity (m(x, x) = 0). An (extended, pseudo) metric d on X is a premetric
also satisfying symmetry (d(x, y) = d(y, x)) and the triangle inequality (d(x, z) ≤
d(x, y) + d(y, z)). For simplicity we drop “extended” and “pseudo” but they are
always implied; we denote by M(X),Md(X) the set of premetrics and metrics
on X respectively. The kernel ker(m) of m is an equivalence relation on X
relating elements at distance 0, i.e. (x, y) ∈ ker(m) iff m(x, y) = 0.

Premetrics M(X) bounded by some maximal distance > ∈ [0,∞] form a
complete lattice under element-wise ordering (m ≤ m′ iff m(x, y) ≤ m′(x, y) for
all x, y), with suprema and infima given by (

∨
A)(x, y) = supm∈Am(x, y) and

(
∧
A)(x, y) = infm∈Am(x, y). Note that the lattice depends on the choice of > –

the value (possibly +∞) assigned by the top premetric >M(X) to all distinct
elements – which we generally leave implicit.

MetricsMd(X) bounded by > also form a complete lattice under ≤, with the
same supremum operator. On the other hand, the infimum operator, denoted by∧
d, is different since the inf of metrics is not necessarily a metric. Still, infima

exist and can be obtained by
∧
dA =

∨
(↓dA), where ↓dA = {d ∈Md(X) | ∀d′ ∈

A : d ≤ d′ }.

Probabilistic automata, bisimilarity and metrics Let S be a countable
set of states.1 We denote by P(S) the set of all (discrete) probability measures
∆,Θ over S; the Dirac measure on s by δ(s). A Probabilistic automaton (hence-
forth PA) A is a tuple (S,A,D) where A is a countable set of action labels, and

D ⊆ S ×A× P(S) is a transition relation. We write s
α−→ ∆ for (s, α,∆) ∈ D,

and define a family of functions →α: S → 2P(S) as →α (s) = {∆ | s α−→ ∆}.
Let R ⊆ S × S be an equivalence relation on S; its lifting L(R) is an

equivalence relation on P(S), defined as (∆,Θ) ∈ L(R) iff ∆,Θ assign the same
probability to all equivalence classes of R. Probabilistic bisimilarity ∼ can be
defined as the largest equivalence relation R on S such that (s, t) ∈ R and

s
α−→ ∆ imply t

α−→ Θ with (∆,Θ) ∈ L(R).
Bisimilarity is a strong notion that often fails in probabilistic systems due

to some “small” mismatch of probabilities. Hence, it is natural to define a

1A countable state space is assumed for simplicity; however, the proofs of several results do
not rely on this assumption, and we expect those that do to be extendible to the continuous
case.
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metric that tells us “how much” different two states are, and such that its kernel
coincides with ∼. Let K :Md(S)→Md(P(S)) be a lifting operator mapping
metrics on S to metrics on distributions over S. A well known such operator is
the Kantorovich lifting, but it is not unique: in fact, the Kantorovich itself can
be generalized to a family of liftings, parametrized by an underlying distance
(c.f. Section 3.2).

A metric d ∈Md(S) is a bisimulation metric if d(s, t) < > and s
α−→ ∆ imply

t
α−→ Θ with K(d)(∆,Θ) ≤ d(s, t).2 The bisimilarity metric bm can be defined

as the
∧
d of all bisimulation metrics. Note that the lattice order of metrics has

inverse meaning than the one of relations: a smaller metric corresponds to a
larger relation.

It should be emphasized that, although ∼ is a uniquely defined relation, bm
depends first on the choice of > and second, on the choice of the K operator.
If K,L commute with ker, i.e. ker(K(d)) = L(ker(d)) for all d ∈Md(S), it can
be shown that ∼ = ker(bm) [3]. In other words, we can have different metrics,
all characterizing bisimilarity at their kernel, but which do not coincide on the
distance they assign to non-bisimilar states.

Note that, although ∼ was defined as the union of all equivalence relations
satisfying the bisimulation property, the “equivalence” requirement is only for
convenience, so that the lifting L(R) has a simple form; we could obtain the same
∼ as the union of all arbitrary relations R satisfying the same property. The
same is true for bm: although in the literature it is typically defined as the

∧
d of

bisimulation metrics, we show in Section 4.1 that it can be constructed as the
∧

of bisimulation premetrics. The advantage of using premetrics (resp. arbitrary
relations) is that one has to construct a simpler bisimulation premetric m (resp.
bisimulation relation R) not necessarily satisfying the triangle inequality (resp.
transitivity), in order to bound the bisimilarity distance between two states.

3 Premetrics: operations and their properties

In this section we discuss various operations on premetrics and their proper-
ties. These will provide the technical building blocks for developing the up-to
techniques in Section 4.

3.1 Lipschitz property and reverse maps

Lipschitz is a fundamental strong notion of continuity that plays a central
role in all constructions of this work. A function f : A → B is Lipschitz (or
nonexpansive) wrt the metrics mA,mB , written mA,mB-Lip, iff

mB(f(a), f(a′)) ≤ mA(a, a′) ∀a, a′ ∈ A

Tightly connected to this property is the reverse map on premetrics f←:M(B)→
M(A) induced by f : A→ B, defined as f←(mB)(a, a′) = mB(f(a), f(a′)).

Proposition 1. The following hold:

1. f is mA,mB-Lip iff mA ≥ f←(mB).

2Note that if d(s, t) = > (i.e. s, t are maximally “non-bisimilar”) then t
a−→ Θ is not

required at all.
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2. f←is monotone.

3. f←preserves metrics: mB ∈Md(B) implies f←(mB) ∈Md(A).

4. f←preserves
∧
,
∨

, that is: f←(
∧
M) =

∧
f←(M) and f←(

∨
M) =

∨
f←(M).

Note that, from the first property above, we have that mA = f←(mB) is the
smallest premetric such that f is mA,mB-Lip.

3.2 Generalized Kantorovich lifting

To construct metrics for probabilistic systems, as described in Section 2, one
needs to lift (pre)metrics on the state space S to (pre)metrics on P(S). One
well known such lifting is the Kantorovich metric, defined either via Lipschitz
functions, or dually as a transportation problem. In [3] a generalization of this
construction is given by extending the range of Lipschitz functions from (R, | · |)
to a generic metric space (V, dV ), where V ⊆ R is a convex subset of the reals
and dV ∈Md(V ).

A function f : S → V can be lifted to a function f̂ : P(S) → V by taking

expectations: f̂(∆) =
∫
S
fd∆. The requirement that V is convex ensures that

f̂(∆) ∈ V . Then, given a premetric m ∈ M(S), we can define a lifted metric
K(m) ∈M(P(S)) as:

K(m)(∆,Θ) = sup{dV (f̂(∆), f̂(Θ)) | f is m, dV -Lip}

The lifting K depends on the choice of (V, dV ) that we generally leave implicit:
many results are given for any member of the family, while some state specific
conditions on dV . Note the difference between m, the premetric being lifted, and
dV , a parameter of the construction. Using the construction of Section 2, each
member of the family gives rise to a different bisimilarity metric bm, and under
mild assumptions it can be shown that all of them characterize bisimilarity at
their kernel [3].3

Of particular interest is the classical Kantorovich K⊕, corresponding to
(V, dV ) = (R, | · |), and the multiplicative variant K⊗, corresponding to (V, dV ) =
((0,+∞), d⊗) where d⊗(a, b) = | ln a − ln b|. The corresponding bisimilarity
metric obtained from the classical Kantorovich has been extensively studied; an
important property of it is that bm(s, t) is a bound on the total variation distance
between the trace distributions originated from states s, t (a quantitative analogue
of the fact that bisimilarity implies trace equivalence). The multiplicative
Kantorovich provides the same bound, but for the multiplicative total variation
distance, a metric of central importance to the area of differential privacy. Hence,
the multiplicative variant provides a means for verifying privacy for concurrent
systems.

Somewhat unexpectedly, it turns out that K(m) is a proper metric, even if
m itself is only a premetric: the metric properties of K(m) come from those of
dV .

Proposition 2. The following hold:

1. K is monotone.

3Note that these “mild assumptions” are orthogonal to the results of this paper. If they
are not satisfied, ker(bm) might be strictly included in ∼, without violating any of our results.
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2. K(m) ∈Md(S) (a proper metric) for all premetrics m ∈M(S).

Another interesting property of K concerns its relationship with f←. Given
f : A → B, let f∗ : P(A) → P(B) denote the function mapping ∆ to its
pushforward measure, given by

f∗(∆)(Z) = ∆(f−1(Z)) for all measurable Z ⊆ B

Then, we can map metrics in M(B) to those in M(P(A)) by either applying f←

followed by K, or applying K followed by f∗
←. The two options are related by

the following result:

Proposition 3. Let f : A → B and mB ∈ M(B). Then (K ◦ f←)(mB) ≥
(f∗
←◦K)(mB).

Due to the above result, K can be shown to preserve the Lip property (c.f.
Section 3.4), which in turn is crucial for establishing the soundness of the up-to
context techniques.

Dual form on premetrics The classical Kantorovich lifting can be dually
expressed as a transportation problem. The primal and dual formulations are
well-known to coincide on metrics; however, this is no longer the case when we
work on premetrics. To see this, notice that in the transportation problem, the
distance Kd(m)(δ(s), δ(t)) (where Kd denotes the dual Kantorovich) between
two point distributions is exactly m(s, t), in other words δ←◦Kd = idM(S). On
the other hand, K(m) is always a metric, and it can be shown that δ←◦K gives
the metric closure operator.

Note that the dual forms of both the classical and the multiplicative Kan-
torovich are particularly useful since, in contrast to the primal form, they provide
direct algorithms for computing the distance between finite distributions. Since
the two forms no longer coincide, we should ensure that both of them are sound
when used in the up-to techniques. For a general Kantorovich lifting K, let Kd

be a monotone lifting that coincides with K on metrics. It can be shown that
Kd(m) ≤ K(m) for all premetrics m, which in turn means that replacing K
with Kd in the up-to techniques of Section 4 is sound.

3.3 Metric closure and chaining

A metric can be thought of as a generalization of an equivalence relation, since
it satisfies reflexivity, symmetry and transitivity (in the form of the triangle
inequality). Similarly to the equivalence closure, it is natural to define the metric
closure mO of m: intuitively, the goal is to decrease m just enough to enforce the
metric properties. Since Md is a complete lattice, mO can be naturally defined
as the greatest metric below m:

mO =
∨

(Md ∩ ↓m)

It can be shown that m 7→ mO is a closure operator whose fixpoints are exactly
Md(S).

Let MO denote the set {mO | m ∈ M}. We can show that metric closure
commutes with the infima of the two lattices.
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Proposition 4. Let M ⊆M. Then
∧
d(M

O) = (
∧
M)

O
.

This, in turn, means that the metric infimum
∧
d can be obtained by the

premetric infimum followed by metric closure, that is:
∧
dD = (

∧
D)

O
for

D ⊆Md(S). Based on this, we extend the
∧
d operator to premetrics, defined

as
∧
dM = (

∧
M)

O
.

Finally, we can define the chaining m1 fm2 of two premetrics as:

(m1 fm2)(s1, s2) = inf
t∈S

(m1(s1, t) +m2(t, s2))

Chaining combines two premetrics by passing through some midway point, and
will be used as a primitive block for constructing up-to techniques in Section 4.

Proposition 5. The following hold:

1. f is associative and monotone on both arguments

2. m1 ∧d m2 ≤ m1 fm2 ≤ m1 ∧m2

3. K(m1 fm2) ≤ K(m1)fK(m2)

3.4 Operations that preserve Lipschitz

The Lipschitz property plays a central role in all constructions of this work, since
both the Kantorovich lifting and the notion of progression depend on it. The
following operations preserving this property will play a crucial role in the up-to
techniques developed in Section 4.

Let f : A→ B and assume it is mA,mB-Lip. Moreover, let MA = {mi
A}i∈I

and MB = {mi
B}i∈I such that f is mi

A,m
i
B-Lip for all i ∈ I. The following hold:

1. Inc/dec-reasing the source/target metric: f is m′A,m
′
B-Lip ∀m′A ≥ mA,m

′
B ≤

mB

2. Infima and suprema: f is
∨
MA,

∨
MB-Lip and

∧
MA,

∧
MB-Lip

3. Metric closure: f is mA
O,mB

O-Lip

4. Kantorovich lifting: f∗ is K(mA),K(mB)-Lip

Note that the property (3) above implies that K(m) = K(mO) since the sup
in the definition of K for both sides ranges over the same set of functions.

3.5 Convex and quasiconvex premetrics

If X is a convex set then X2 can be also viewed as a convex set of vectors (x, y),
where

∑
i λi(xi, yi) = (

∑
i λixi,

∑
i λiyi) for all λi’s such that

∑
i λi = 1. This

allows us to talk about the convexity of a premetric jointly on both arguments.
We say that m ∈M(X) is:

• convex iff m(
∑
i λi(xi, yi)) ≤

∑
i λim(xi, yi)

• quasiconvex iff m(
∑
i λi(xi, yi)) ≤ maxim(xi, yi)
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Note that there exist several distinct abstract notions of convexity for general
metric spaces, here (quasi)convexity is used in the usual sense of (quasi)convex
functions.

The set P(S) is convex and so is V used in the construction of the Kantorovich
lifting. It can be shown that if dV is convex (resp. quasiconvex) then K(m) is also
convex (resp. quasiconvex) for all m ∈M(S). As a consequence, the classical
Kantorovich K⊕(m) is convex (since | · | is convex), while the multiplicative
variant K⊗(m) is quasiconvex (since d⊗ is quasiconvex).

4 Up-to techniques

In this section, we extend to the metric case the theory of up-to techniques
presented in [12]. All the constructions assume some fixed underlying PA, which
could be produced by a process calculus like the probabilistic CCS of Section 5.
In what follows, we use l to denote premetrics on P(S).

4.1 Progressions

For a relation R on states of a non-probabilistic automaton, bisimulation can
be defined in terms of progressions. A relation R progresses to R′, denoted by
R� R′, if whenever sR t and s

α−→ s′ then t
α−→ t′ and s′R′ t′, and vice versa.

A bisimulation can be thereby defined as a relation that progresses to itself, i.e.
R� R.

An important difference in the probabilistic case is that progressions have
different source and target domains. A premetric m on S (the source premetric)
progresses to a premetric l on P(S) (the target premetric).

Definition 1. Given m ∈ M(S), l ∈ M(P(S)) we say that m progresses to l,
written m� l, iff m(s, t) < > implies that:

• whenever s
α−→ ∆ then t

α−→ Θ with l(∆,Θ) ≤ m(s, t)

• whenever t
α−→ Θ then s

α−→ ∆ with l(∆,Θ) ≤ m(s, t)

Using the Hausdorff metric, progression can be written as a Lipschitz property:4

m� l iff ∀α : →α is m,H(l)-Lip

From the results about operations preserving Lipschitz, and the fact that
Hausdorff is monotone, we obtain the following useful properties of the progress
relation:

• m� l implies m′� l′ for all m′ ≥ m, l′ ≤ l.

• Let d ∈Md(P(S)). Then m� d implies mO� d.

• Let m =
∧
imi and l =

∧
li such that for all i: mi� li. Then m� l.

4We could also define progression as a Lipschitz property of a single function → (s) =

{(α,∆) | s α−→ ∆}.
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From the definition of bisimulation (pre)metrics (Section 2), we have that
m ∈M(S) is a bisimulation (pre)metric iff m� K(m). The bisimilarity metric
is traditionally defined as the

∧
d of all bisimulation metrics. Since metric

closure preserves the Lip property, it also preserves the bisimulation property,
which means that we can equivalently obtain bm as the

∧
of all bisimulation

premetrics. m is a bisimulation premetric iff mO is a bisimulation metric. Hence:
bm =

∧
d{d ∈Md(S) | d� K(d)} =

∧
{m ∈M(m) | m� K(m)}

Proof. Assuming thatm is a bisimulation premetric, we have that→α is m,H(K(m))-Lip
for all α. Since H(K(m)) is a metric, from Theorem 3.4 we get that →α

is mO, H(K(m))-Lip and sinceK(mO) = K(m) we get that→α is mO, H(K(mO))-Lip
which implies that mO is a bisimulation metric.

4.2 F functions, soundness, respectfulness

We can define an up-to technique using a function F on M(P(S)). Ideally, for
a premetric m on states, we want to allow the distance F(K(m))(∆,Θ) to be
used instead of K(m)(∆,Θ) in a bisimulation proof, since a bound to F(K(m))
could be easier to compute. Therefore, we consider progressions of the form
m� F(K(m)), where F :M(P(S))→M(P(S)).

Definition 2. A function F :M(P(S))→M(P(S)) is sound if m� F(K(m))
implies bm ≤ m.

Hence, if F is a sound function then a bisimulation premetric up-to F allows
us to derive upper-bounds to the distance between two states. At the same
time, using F in the target metric allows us to simplify the proof that the states
actually satisfy these bounds.

Respectful functions Given a function F :M(P(S))→M(P(S)), one
can prove that it is a sound up-to technique by means of a direct proof. How-
ever, it is known that the composition of sound functions on relations is not
necessarily a sound function, and the standard counterexamples apply to the
metric setting as well. In the non-probabilistic case, this has led to the definition
of “respectfulness”: an up-to function F on relations is respectful if whenever
R� R′ and R ⊆ R′, then F(R)� F(R′) and F(R) ⊆ F(R′). Respectfulness
implies soundness and at the same time is closed under composition [12].
On metrics, the definition of respectfulness must take care of the fact that the
source and target metrics have different domains, and that the function F is
defined on the domain P(S) of the target metric. Hence, a “corresponding”
function G :M(S)→M(S) on the source metric has to be defined. Instead of
constructing a specific such G, we only assume its existence and that it “plays
well” with F and K, meaning that (K ◦ G)(m) ≤ (F ◦K)(m). A concrete G is
then chosen in the respectfulness proof of each up-to technique F .

Definition 3. A function F : M(P(S)) → M(P(S)) is respectful iff it is
monotone and there exists G :M(S)→M(S) such that for all m,m′ ∈M(S):

• (K ◦ G)(m) ≤ (F ◦K)(m)

• m� K(m′) and m ≥ m′ imply G(m)� K(G(m′)) and G(m) ≥ G(m′)
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Any respectful function is sound.

Proof. Let F be respectful and let G be its corresponding source map from the
definition of respectfulness. Assume that m� F(K(m)). Analogously to the
proof in [12], we define a sequence of metrics mn, n ≥ 0 as: m0 = m and mn+1 =
G(mn) ∧mn. By construction, mn ≥ mn+1 for all n ≥ 0. We now show that
mn� K(mn+1) for all n ≥ 0 For the base case n = 0, from the respectfulness of
F and the monotonicity of K we have that F(K(m)) ≥ K(G(m)) ≥ K(G(m)∧m).
Hence m � F(K(m)) implies m0 = m � K(G(m) ∧m) = K(m1). For the
inductive step, we want to show that mn+1 � K(mn+2), that is, G(mn)∧mn�
K(G(mn+1) ∧mn+1). We have that:

mn� K(mn+1) induction hypothesis

⇒ G(mn)� K(G(mn+1)) respectfulness, mn ≥ mn+1

⇒ G(mn) ∧mn� K(G(mn+1)) ∧K(mn+1) ∧ preserves �

⇒ G(mn) ∧mn� K(G(mn+1) ∧mn+1) K(a ∧ b) ≤ K(a) ∧K(b)

Since progressions are closed under infima,
∧
n≥0mn � K(

∧
n≥0mn). Hence,∧

n≥0mn is a bisimulation metric, and m ≥
∧
n≥0mn, which concludes the

proof.

4.2.1 Composing up-to techniques

The advantage of the respectfulness condition is that it makes it possible to derive
the soundness of a composed up-to function just by proving the respectfulness of
its components. We present here three operations that preserve respectfulness:
function composition, function chaining, and taking the infimum of a set of
functions (these operations respectively correspond to composition, chaining and
union in the relational case).

The composition of respectful functions is respectful.
The theorem is proved by showing that, given two respectful functions F1,F2

and their corresponding source maps G1,G2 from the definition of respectfulness,
F = F1 ◦ F2 and G = G1 ◦ G2 satisfy the requirements of respectfulness.

The chaining of up-to functions is defined using the f operator from Section
4.2.1. Define the chaining of two functions F1,F2 as (F1 f F2)(m) = F1(m)f
F2(m). Using the properties of f proved in Proposition 5, we derive the following
result.

The chaining of respectful functions is respectful.
Analogously to chaining, define the infimum of a countable set of functions∧
{Fi} as

∧
{Fi}(m) =

∧
{Fi(m)}. Given a countable set {Fi} of respectful

functions with corresponding source maps {Gi}, we prove that the function∧
{Fi} is respectful by using the source map

∧
{Gi}.

The infimum of a set of respectful functions is respectful.

4.2.2 Up-to bisimilarity metric and up-to (quasi)convexity

The respectfulness (and soundness) of up-to techniques such as up-to-bisimilarity-
metric can now be recovered by applying the operations presented in Section 4.2.1
to basic respectful functions. The identity Fid(l) = l and the constant-to-bm
Fbm(l) = K(bm) functions are respectful. The result directly follows from the
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definition: for the first we take Gid(m) = m, for the second Gbm(m) = bm. The up-
to-bisimilarity-metric function can be now simply constructed as FbmfFidfFbm,
and it is respectful as the chaining of respectful functions is (Theorem 4.2.1).
By Theorem 4.2.1, we can also derive the respectfulness of the up-to-triangle-
inequality function (corresponding to the up-to-transitive-closure technique on
relations), defined as

∧
{fnFid}n≥1, where fnFid is the chaining of Fid with

itself n-times.
Another useful proof technique consists in the possibility of splitting probability
distributions into components with common factors, and then only consider
the (possibly weighted) distances between the components. Define the up-to-
quasiconvexity and the up-to-convexity functions as follows:

• Fqcv(l)(∆,Θ) = inf{maxi l(∆i,Θi)|∆ =
∑
i pi∆i and Θ =

∑
i piΘi}

• Fcv(l)(∆,Θ) = inf{
∑
i pil(∆i,Θi)|∆ =

∑
i pi∆i and Θ =

∑
i piΘi}

The respectfulness of the above up-to techniques depends on the (quasi)convexity
of the Kantorovich operator. The following result is derived using the identity
Gid as a source map.

If K is quasiconvex (resp. convex) then Fqcv (resp. Fcv) is respectful.

4.3 Faithful contexts

With up-to context techniques, common contexts in the probability distributions
reached in the bisimulation game are allowed to be safely removed. Given a
set of states S, a context is a function C : S → S. As usual, we write C[s] to
denote the image of s under C. We look at states in S as defined by a language
whose terms are syntactically finite expressions, which justifies the following
assumption: for any class C of contexts, there is only a finite number of states s′

such that s = C[s′] for some C ∈ C.

Definition 4. Given a class of contexts C, a premetric m is closed under C iff
C is m,m-Lip for all C ∈ C. The closure of m under C, denoted by C(m), is
defined as the greatest premetric below m that is closed under C:

C(m) =
∨
{m′ ≤ m | m′ is closed under C}

Let C∗ = {C∗ | C ∈ C}. The up-to faithful context function FC is defined as:
FC(l) = C∗(l).

Since the Lipschitz property is preserved by
∨

(Thm 3.4), it is easy to
show that C(m) itself is closed under C, that is, C(m)(C[s], C[t]) ≤ C(m)(s, t) ≤
m(s, t) for all C ∈ C. Moreover, it follows from Thm 3.4 that K preserves the
closure under C. Hence, K(C(m)) is always closed under C∗: for all C ∈ C,
K(C(m))(C∗[∆], C∗[Θ]) ≤ K(C(m))(∆,Θ) ≤ K(m)(∆,Θ).
The function C(m) (respectively: C∗(l)) can be alternatively characterized by
considering the infimum value of m when a common context is removed from
two terms (respectively: from two distributions). The context closure (s, t)C of
the pair (s, t) is the set of all pairs of terms of the form (C[s], C[t]), for C ∈ C.
The context closure (∆,Θ)C∗ is extended to probability distributions using the
set of contexts C∗ ∈ C∗.

The functions C and C∗ can be alternatively characterized as follows:

12



1. C(m)(s, t) = inf{m(s′, t′) | (s, t) ∈ (s′, t′)C}

2. C∗(l)(∆,Θ) = inf{l(∆′,Θ′) | (∆,Θ) ∈ (∆′,Θ′)C∗}

In what follows, we often write C[∆] to denote C∗[∆].
Instead of directly proving soundness (or respectfulness) for up-to context

functions FC where C are contexts of a specific language, we follow [12] and define
the class of faithful contexts. Faithfulness only depends on general properties
of the semantics of the contexts, and the up-to-faithful-context function is
respectful whenever used with a quasiconvex Kantorovich operator (Theorem
4.3). In Section 5, the contexts of a probabilistic extension of CCS are proved to
satisfy the condition of faithfulness.

Definition 5. A context class C is faithful if whenever C ∈ C, all transitions of
C[s] are of the form C[s]

α−→
∑
i piCi[∆], where Ci ∈ C and either

1. ∆ = δ(s) and ∀t: C[t]
α−→
∑
i piCi[δ(t)], or

2. s
α′−−→ ∆ and ∀t: if t

α′−−→ Θ then C[t]
α−→
∑
i piCi[Θ].

We can now prove the respectfulness of FC , assuming that the Kantorovich
operator is quasiconvex. The reason for this extra condition is that faithfulness
allows contexts to be probabilistic, meaning that when a transition is performed,
the common context can be split into a weighted sum of contexts. Quasiconvexity
then allows us to establish a bound to the distances between weighted sums of
distributions with a common contexts (e.g.,

∑
i piCi[∆

′] and
∑
i piCi[Θ

′]) based
on the bounds of the components, which now are of the desired form (Ci[∆

′]
and Ci[Θ

′]).
If K is quasiconvex then FC is respectful.

Proof. The monotonicity of FC comes directly from the definition of C(m). Let
G(m) = C(m), we prove that G is the source map required by the definition of
respectfulness:

1. we prove K(G(m)) ≤ FC(K(m)). From G(m) ≤ m we derive K(G(m)) ≤
K(m), and since G(m) is closed under C and K preserves closedness, then
K(G(m)) is closed under C∗. Finally, FC(K(m)) is the greatest premetric
below K(m) that is is closed under C∗, from which the result follows;

2. suppose m� K(m′) and m ≥ m′. Then G(m) ≥ G(m′) comes from the
monotonicity of C(m), and it remains to prove that G(m) � K(G(m′)).
We first show that

? for any faithful context C, C[s]
α−→ ∆ implies that, for all t, if

m(s, t) < > then C[t]
α−→ Θ with K(G(m′))(∆,Θ) ≤ m(s, t)

by considering the two cases of the definition of respectfulness and using
quasiconvexity to derive the result. Since a term has only a finite number
of subterms, by Theorem 4.3 we have G(m)(s, t) = m(s′, t′) for some s′, t′

and C faithful such that s = C[s′] and t = C[t′]. Hence, by property ? we
have that G(m)� K(G(m′)).
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a.⊕i [pi]Pi
α−→
∑
i piδ(Pi)

P
α−→ ∆

P +Q
α−→ ∆

P
α−→ ∆

P |Q α−→ ∆ | δ(Q)

P
α−→ ∆ Q

ᾱ−→ Θ

P |Q τ−→ ∆ |Θ
P

α−→ ∆ α 6= a, ā

(νa)P
α−→ ∆

P
α−→ ∆ A = P

A
α−→ ∆

Figure 1: Structured Operational Semantics for pCCS

5 Up-to techniques for probabilistic CCS

The conditions of faithfulness are quite general and can be instantiated by several
varieties of probabilistic languages. We consider here CCS with a probabilistic
choice operator and prove that its unary contexts (i.e., terms with a single hole,
occurring only once) are faithful. The terms of pCCS are defined by the following
grammar:

P,Q ::= 0
∣∣∣ α.⊕i [pi]Pi

∣∣∣ P +Q
∣∣∣ P |Q ∣∣∣ (νa)P

∣∣∣ A
where α ::= a, ā, τ is an action label, for some underlying set of labels such that
a ∈ Act iff ā ∈ Act, and ¯̄α = α for α ∈ Act, where τ 6∈ Act. The semantics is
given by the rules in Figure 1, where the parallel composition of distributions
∆,Θ on pCCS terms is defined by ∆ |Θ(P ) = ∆(P1) ·Θ(P2) if P = P1 |P2, and
0 otherwise. The symmetric rules for the nondeterministic choice and parallel
composition are omitted. We assume that every constant A of the language is
defined by an equation A = P for some pCCS process P where A may occur
guarded. When the distribution following an action label is a point distribution,
the ⊕i is omitted.

The (unary) contexts of pCCS are faithful.
Theorem 5 is proved by induction on the structure of the contexts. Since

the up-to context technique is respectful for faithful contexts (Theorem 4.3), it
follows from Theorem 5 that the up-to context function FC where C is the set of
pCCS contexts is respectful.

Example 1. Let A and A′ be the pCCS constants defined in the introduction.
We prove that their distance in the bisimilarity metric bm⊕, based on the standard
Kantorovich lifting K⊕ and with > = 1, is bounded by 1

2 . Define the premetric
m on pCCS terms as follows: m(A,A′) = 1

2 and, for all P,Q different from
A,A′, m is the discrete metric, i.e., m(P,Q) = 0 if P = Q and m(P,Q) = 1
otherwise. We prove that m is a bisimulation premetric up-to (Fcv ◦ FC)f Fid,
i.e., the chaining of the up-to-convexity-and-context function with the up-to-
identity function.
Suppose that A moves (the case when A′ moves is symmetrical). If A

a−→ ∆ =
1
2 · δ(A) + 1

2 · δ(c), then A′
a−→ ∆′ = 1

2 · δ(A
′) + 1

4 · δ(c) + 1
4 · δ(d). Define

∆′′ = 1
2 · δ(A

′) + 1
2 · δ(c). Then:

((Fcv ◦ FC)f Fid)(K⊕(m))(∆,∆′) ≤ (Fcv ◦ FC)(K⊕(m))(∆,∆′′) + (K⊕(m))(∆′′,∆′)

≤ 1
2 · (K⊕(m))(δ(A), δ(A′)) + (K⊕(m))(∆′′,∆′)

≤ 1
4 + 1

4
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Note that the same premetric and the same proof can be applied when an arbitrary
pCCS process P is substituted to b in the definition of the constants A,A′.

Finally, we give an example to illustrate how the generalized Kantorovich
lifting captures differential privacy, and how the techniques developed in this
paper can help to verify this property. Following [3], we model differential privacy
in pCCS as a bound eε on the ratio between the probability that a process P
produce a set of traces ψ, and the probability that an “adjacent” process P ′

produce the same set ψ, for any ψ. In [3] it is shown that in order to establish
this property it is sufficient to show that bm⊗(P, P ′) ≤ ε, where bm⊗ is defined
based on the multiplicative Kantorovich K⊗ and > = +∞.

In the example, we consider a database D containing medical information
relative to (at most) n patients. We assume that we are interested in obtaining
statistical information about a certain disease, and that for this purpose we
are allowed to ask queries like “how many patients are affected by the disease”.
Queries of this kind are called counting queries and it is well known that they
can be sanitized, i.e. made ε-differentially private, by adding geometric noise to
the real answer, namely a noise distribution py(z) = cze

|z−y|ε, where y is the
real answer, z is the reported answer (ranging between 0 and n), and cz is a
normalization constant that depends only on z. Another database D′ is adjacent
to D if it differs from D for only one record (i.e., one patient). Clearly, the
(sanitized) answers to the above query in two adjacent databases will differ by at
most 1, and it is easy to see that the ratio between py+1(z) and py(z) is at most
eε, which proves that ε-differential privacy is satisfied by the geometrical-noise
method.

Example 2. Consider the adjacent databases D,D′ where y and y + 1 patients
are affected by the disease, respectively. We model D and D′ in pCCS as

D = q.⊕nz=0 [py(z)]v̄z.D D′ = q.⊕nz=0 [py+1(z)]v̄z.D
′

where the prefix q represents the acceptance of a query request, and the action v̄z
represents the delivery of the reported answer. Consider now a process Q that
queries the database. This can be defined as Q = q̄.+n

z=0 vz.w̄z, where +n
z=0Pz

denotes the nondeterministic choice P0 + P2 + ...+ Pn. It is possible to prove
that the processes D |Q and D′ |Q satisfy ε-differential privacy, by proving that
bm⊗(D |Q,D′ |Q) ≤ ε.

What we want to prove now is that the level of differential privacy decreases
linearly with the number of queries (this is a well-known fact, the interest here is
to show it using up-to techniques). Namely that if we define the processes P and
P ′ as the parallel composition of i instances of Q and D and D′ respectively,
then K⊗(P, P ′) ≤ iε We prove this for the case i = 2. Define the premetric m as
m(D |Q |Q,D′ |Q |Q) = 2ε, and as the discrete metric on all other pairs. The in-
teresting case is when D (symmetrically: D′) synchronizes with one of the queries.

Suppose that D |Q |Q τ−→ ∆, with ∆ =
∑n
z=0 py(z) · δ(v̄z.D | (+n

z=0vz.w̄z) |Q).

Then D′ |Q |Q τ−→ ∆′, with ∆′ =
∑n
z=0 py+1(z) · δ(v̄z.D′ | (+n

z=0vz.w̄z) |Q).
We derive the result by exploiting the soundness of the composition of up-to-
quasiconvexity, up-to-context and up-to-bm functions, chained with up-to-identity.
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Let ∆′′ =
∑n
z=0 py(z) · δ(v̄z.D′ | (+n

z=0vz.w̄z) |Q). We have:

((Fqcv ◦ FC ◦ Fbm)f Fid)(K⊗(m))(∆,∆′)

≤ (Fqcv ◦ FC ◦ Fbm)(K⊗(m))(∆,∆′′) + (K⊗(m))(∆′′,∆′)

≤ (K⊗(bm))(δ(D |Q), δ(D′ |Q)) + (K⊗(m))(∆′′,∆′)

≤ ε+ ε

6 Conclusion and future work

In this paper we studied techniques to increase the efficiency of the bisimulation
proof method in the case of the (extended) Kantorovich metric. To this purpose,
we have explored properties of the Kantorovich lifting, and we have generalized
to the case of metrics the bisimulation up to F method by Sangiorgi. This allows
us to reduce the size of the set of pairs for which we have to show the progress
relation.

The theory of compatibility [11] for up-to techniques generalizes the re-
spectfulness conditions on relations in a lattice-theoretic setting, where general
properties of the progress relation and of the up-to functions (seen as functionals
on the same lattice) can be proved and later instantiated to capture bisimulation
relations on automata. A more recent approach [10] consists in directly focusing
on the greatest compatible (or respectful) function. In this paper we consid-
ered probabilistic systems and metrics, where the domain and the target of the
progress relation are not in the same lattice anymore, and the up-to functions
are defined on the target domain. The generalization of the techniques presented
in this paper to a lattice-theoretic setting provides an interesting line of research.
In [2], up-to techniques are developed in an abstract fibrational setting, from
which one could be able to obtain techniques for metrics. Studying whether the
techniques of this paper can be obtained in this way is left as future work.
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A Appendix

This appendix is not part of the original paper published by LIPIcs. It contains
all proofs omitted from the main body of the paper due to space constraints, an
expanded version of the proof of Theorem 4.2, and a short description of the
Hausdorff lifting.

A.1 Proofs of Section 3

Proposition 1. The following hold:

1. f is mA,mB-Lip iff mA ≥ f←(mB).

2. f←is monotone.

3. f←preserves metrics: mB ∈Md(B) implies f←(mB) ∈Md(A).

4. f←preserves
∧
,
∨

, that is: f←(
∧
M) =

∧
f←(M) and f←(

∨
M) =

∨
f←(M).

Proof. The first three are immediate from the definition. The fourth is also
straightforward:

f←(
∧
M)(a, a′) = (

∧
M)(f(a), f(a′))

= inf
mA∈M

mA(f(a), f(a′))

= inf
mB∈f←(M)

mB(a, a′) set mB = f←(mA)

= (
∧
f←(M))(a, a′)

and similarly for
∨

.

Proposition 2. The following hold:

1. K is monotone.

2. K(m) ∈Md(S) (a proper metric) for all premetrics m ∈M(S).

Proof. Monotonicity comes from the definition of K and the fact that m1 ≤ m2

implies that any m1, dV -Lip function is also m2, dV -Lip.
K(m)(∆,∆) = 0 comes directly from the fact that

dV (f̂(∆), f̂(∆)) = 0

Similarly, symmetry comes from the fact that:

dV (f̂(∆), f̂(Θ)) = dV (f̂(Θ), f̂(∆))

Finally, the triangle-inequality of K(m) comes from that of dV :

K(m)(∆1,∆2)

= sup
f
{dV (f̂(∆1), f̂(∆2))

≤ sup
f
{dV (f̂(∆1), f̂(∆3)) + dV (f̂(∆3), f̂(∆2))} triang. ineq. of dV

≤ sup
f
{dV (f̂(∆1), f̂(∆3))}+ sup

f
{dV (f̂(∆3), f̂(∆2))}

= K(m)(∆1,∆3) +K(m)(∆3,∆2)
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Proposition 3. Let f : A → B and mB ∈ M(B). Then (K ◦ f←)(mB) ≥
(f∗
←◦K)(mB).

Proof. By definition of K we have that:

(K ◦ f←)(mB)(∆,Θ) = sup{dV (ĥ(∆), ĥ(Θ)) | h : f←(mB), dV -Lip}

On the other hand:

(f∗
←◦K)(m)(∆,Θ)

= K(m)(f∗(∆), f∗(Θ))

= sup{dV (ĝ(f∗(∆)), ĝ(f∗(Θ))) | g : m, dV -Lip}

= sup{dV ( ˆg ◦ f(∆), ˆg ◦ f(Θ)) | g : m, dV -Lip}

Now for every m, dV -Lip function g : B → V , the function h = g ◦ f : A→ V is
f←(mB), dV -Lip since

dV (h(a), h(a′)) = dV (g(f(a)), g(f(a′))) h = g ◦ f
≤ m(f(a), f(a′)) g : m, dV -Lip

= f←(m)(a, a′) Def. of f←

Hence the sup for (K ◦ f←)(mB)(∆,Θ) ranges over a (possibly) larger set, from
which the result follows.

Proposition 4. Let M ⊆M. Then
∧
d(M

O) = (
∧
M)

O
.

Proof. For all m ∈M we have that
∧
d(M

O) ≤ mO ≤ m, in other words
∧
d(M

O)
is a lower bound of M . Hence we have that

∧
d(M

O) ≤
∧
M . Since (

∧
M)

O
is

the greatest metric below
∧
M and

∧
d(M

O) is a metric below
∧
M we must

have
∧
d(M

O) ≤ (
∧
M)

O
.

Moreover for all m ∈M we have that
∧
M ≤ m and by the monotonicity of O

we get (
∧
M)

O ≤ mO, so (
∧
M)

O
is a lower bound of MO. Since (

∧
M)

O ∈Md

is a lower bound of MO ⊆ Md, it must be below its Md-infimum, that is
(
∧
M)

O ≤
∧
d(M

O). We conclude by anti-symmetry.

Proposition 5. The following hold:

1. f is associative and monotone on both arguments

2. m1 ∧d m2 ≤ m1 fm2 ≤ m1 ∧m2

3. K(m1 fm2) ≤ K(m1)fK(m2)

Proof. Associativity and monotonicity comes directly from the definition.
m1 fm2 ≤ m1 ∧m2 is obtained by setting t = s1, s2 in the definition above.

Setting d = m1 ∧d m2 (a metric) we have that d(s1, s2) ≤ d(s1, t) + d(t, s2) ≤
m1(s1, t) +m2(t, s2) which shows m1 ∧d m2 ≤ m1 fm2.

Then K(m1fm2) is a metric below both K(m1),K(m2) (monotonicity of K),
so it must hold that K(m1 fm2) ≤ K(m1) ∧d K(m2) ≤ K(m1)fK(m2).

Let f : A→ B and assume it is mA,mB-Lip. Moreover, let MA = {mi
A}i∈I

and MB = {mi
B}i∈I such that f is mi

A,m
i
B-Lip for all i ∈ I. The following hold:
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1. Inc/dec-reasing the source/target metric: f is m′A,m
′
B-Lip ∀m′A ≥ mA,m

′
B ≤

mB

2. Infima and suprema: f is
∨
MA,

∨
MB-Lip and

∧
MA,

∧
MB-Lip

3. Metric closure: f is mA
O,mB

O-Lip

4. Kantorovich lifting: f∗ is K(mA),K(mB)-Lip

Proof. 1) Directly from the definition of Lipschitz.
2) We know that f←preserves infima and suprema and that f is mA,mB-Lip

iff mA ≥ f←(mB) (Prop 1).
For all i we have that

mi
A ≥ f←(mi

B) ≥
∧
f←(MB) = f←(

∧
MB)

Hence f←(
∧
MB) is a lower bound of MA, so it must hold that

∧
MA ≥ f←(

∧
MB).

Similarly for
∨

.
3) Assume that f is mA, dB-Lip, from Prop 1 this means that mA ≥ f←(dB).

But f←preserves metrics and mA
O is the largest metric below mA, hence we

must have mA
O ≥ f←(dB), which again from Prop 1 gives that f is mA

O, dB-Lip.
4) We know that f is mA,mB-Lip iff mA ≥ f←(mB) (Prop 1). Hence we

have:

K(mA) ≥ K(f←(mB)) monotonicity of K

≥ f∗←(K(mB)) Prop 3

which means that f∗ is K(mA),K(mB)-Lip.

A.2 Proofs of Section 4

The following proof is an expanded version of the proof presented in the main
body of the paper, with the purpose of being easier to follow.

Any respectful function is sound.

Proof. Let F be respectful and let G be its corresponding source map from the
definition of respectfulness. Assume m � F(K(m)), we need to show that
bm ≤ m. We construct a sequence of metrics mn, n ≥ 0 as:

m0 = m

mn+1 = G(mn) ∧mn

By construction we have that

mn ≥ mn+1 ∀n ≥ 0

We now show that
mn� K(mn+1) ∀n ≥ 0

For the base case n = 0, from the respectfulness of F and the monotonicity of
K we have that F(K(m)) ≥ K(G(m)) ≥ K(G(m) ∧m). Hence m� F(K(m))
implies m0 = m� K(G(m) ∧m) = K(m1).
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Assuming the property holds for n ≥ 0, we want to show that mn+1 �
K(mn+2), that is:

G(mn) ∧mn� K(G(mn+1) ∧mn+1)

We have that:

mn� K(mn+1) (induction. hyp.)

⇒ G(mn)� K(G(mn+1)) (respectf., mn ≥ mn+1)

⇒ G(mn) ∧mn� K(G(mn+1)) ∧K(mn+1) ∧ preserves �

⇒ G(mn) ∧mn� K(G(mn+1) ∧mn+1) K(a ∧ b) ≤ K(a) ∧K(b)

Finally, we have that:

∀n ≥ 0 : mn� K(mn+1)

⇒
∧
n≥0mn�

∧
n≥1K(mn) ∧ preserves �

⇒
∧
n≥0mn�

∧
n≥0K(mn) smaller target

⇒
∧
n≥0mn� K(

∧
n≥0mn) K(

∧
A) ≤ K(

∧
A)

hence
∧
n≥0mn is a bisimulation metric, and m ≥

∧
n≥0mn, which concludes the

proof.

The composition of respectful functions is respectful.

Proof. Let F1,F2 be respectful functions, and G1,G2 their corresponding source
maps from the definition of respectfulness. Also let F = F1 ◦F2 and G = G1 ◦G2.
We show that F ,G satisfy the requirements of respectfulness.
F is monotone as the composition of monotone functions. Moreover, from the

respectfulness of F1 we have thatK(G1(G2(m))) ≤ F1(K(G2(m)). Then, from the
respectfulness of F2 we haveK(G2(m)) ≤ F2(K(m)) which from the monotonicity
of F1 implies F1(K(G2(m)) ≤ F1(F2(K(m))). Hence (K ◦ G1 ◦ G2)(m) ≤
(F1 ◦ F2 ◦K)(m).

Finally, suppose m � K(m′) and m ≥ m′, since F2 is respectful we have
that G2(m)� K(G2(m)) and G2(m) ≥ G2(m′). For the latter progression, since
F1 is respectful we get that G1(G2(m)) � K(G1(G2(m′))) and G1(G2(m)) ≥
G1(G2(m′))) which concludes the proof.

Define the chaining of two functions F1,F2 as (F1fF2)(m) = F1(m)fF2(m).
The chaining of respectful functions is respectful.

Proof. Let F1,F2 be respectful functions, and G1,G2 their corresponding source
maps from the definition of respectfulness. Also let F = F1fF2 and G = G1fG2.
We show that F ,G satisfy the requirements of respectfulness.

The monotonicity of F comes directly from the monotonicity of f (Prop 5).
From the faithfulness of F1,F2 we get K(Gi(m)) ≤ Fi(K(m)), i ∈ {1, 2}, which
from the monotonicity of f implies that K(G1(m))fK(G2(m)) ≤ F1(K(m))f
F2(K(m)). From Prop 5 we have that

K(G1(m)f G2(m)) ≤ K(G1(m))fK(G2(m)) ≤ F1(K(m))f F2(K(m))

which means that (K ◦ G)(m) ≤ (F ◦K)(m).
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Now assume that m� K(m′) and m ≥ m′. From faithfulness we have that
Gi(m)� K(Gi(m)) and Gi(m) ≥ Gi(m′), i ∈ {1, 2}. Hence:

G1(m) ∧ G2(m)� K(G1(m′)) ∧K(G2(m′)) ∧ preserves �

⇒ G1(m) ∧ G2(m)� K(G1(m′))fK(G2(m′)) (a ∧ b) ≥ (af b)

⇒ G1(m) ∧ G2(m)� K(G1(m′)f G2(m′)) K(a)fK(b) ≥ K(af b)

⇒ G1(m) ∧d G2(m)� K(G1(m′)f G2(m′)) metric closure, K(a) ∈Md

⇒ G1(m)f G2(m)� K(G1(m′)f G2(m′)) (a ∧d b) ≤ (af b)

⇒ G(m)� K(G(m′))

Finally by the monotonicity of f we get that G1(m)fG2(m) ≥ G1(m′)fG2(m′),
hence G(m) ≥ G(m′), which means that F ,G satisfy all the requirements of
respectfulness.

The infimum of a set of respectful functions is respectful.

Proof. Given a countable set {Fi} of respectful functions with corresponding
source maps {Gi}, we prove that the function F =

∧
{Fi} is respectful by using

the source map G =
∧
{Gi}. F is monotone as the infimum of monotone functions.

Moreover, from the respectfulness of Fi we have that K(Gi(m)) ≤ Fi(K(m)).
Hence,

∧
{K(Gi(m))} ≤

∧
{Fi(K(m))}. By the monotonicity of K we have

K(
∧
{Gi(m)}) ≤

∧
{K(Gi(m))}, and we can conclude that K(

∧
{Gi(m)}) ≤∧

{Fi(K(m))}.
Finally, suppose m� K(m′) and m ≥ m′. Since Fi is respectful we have

that Gi(m)� K(Gi(m)) and Gi(m) ≥ Gi(m′). By the properties of progressions
(Section 4.1) we have

∧
{Gi(m)} �

∧
{K(Gi(m))}, and by

∧
{K(Gi(m))} ≥

K(
∧
{Gi(m)}) (monotonicity of K) we derive

∧
{Gi(m)}� K(

∧
{Gi(m)}). By

definition, Gi(m) ≥ Gi(m′) for all i implies
∧
{Gi(m)} ≤

∧
{Gi(m′)}, which

concludes the proof.

If K is quasiconvex (resp. convex) then Fqcv (resp. Fcv) is respectful.

Proof. We prove the result using the identity function on states Gid. Both func-
tions are monotonic, and if K is quasiconvex (respectively: convex) then by defi-
nition K(Gid(m))(∆,Θ) ≤ supiK(m)(∆i,Θi) (respectively: K(Gid(m))(∆,Θ) ≤∑
i piK(m)(∆i,Θi)) for all ∆ =

∑
i pi∆i and Θ =

∑
i piΘi, from which we

derive K(Gid(m)) ≤ Fqcv(m) (respectively: K(Gid(m)) ≤ Fcv(m)). Finally, the
identity satisfies the second condition of the definition of respectfulness.

The functions C and C∗ can be alternatively characterized as follows:

1. C(m)(s, t) = inf{m(s′, t′) | (s, t) ∈ (s′, t′)C}

2. C∗(l)(∆,Θ) = inf{l(∆′,Θ′) | (∆,Θ) ∈ (∆′,Θ′)C∗}

Proof. The left-to-right inequalities are a direct consequence of C and C∗ being
m,m-Lipschitz. For the opposite inequalities, we first prove that inf{m(s′, t′)|(s, t) ∈
(s′, t′)C} ≤ C(m)(s, t) by showing that:

• inf{m(s′, t′)|(s, t) ∈ (s′, t′)C} ≤ m(s, t)

• for all C ∈ C, inf{m(s′, t′)|(C[s], C[t]) ∈ (s′, t′)C} ≤ inf{m(s′, t′)|(s, t) ∈
(s′, t′)C}

22



The inequality on distributions, i.e., inf{l(∆′,∆′)|(∆,Θ) ∈ (∆′,Θ′)C} ≤ C∗(l)(∆,Θ),
follows analogously.

Lemmas used in Theorem 4.3:

• K preserves closedness under C. That is, if m is closed under C, then K(m)
is closed under C∗.

Proof. Direct consequence of the fact that K on both metrics preserves
the Lip property (Theorem 3.4).

• Lemma ?: for any faithful context C, C[s]
a−→ ∆ implies that, for all t, if

m(s, t) < > then C[t] −→ Θ with K(G(m′))(∆,Θ) ≤ m(s, t)

Proof. By the definition of faithfulness, we have two cases:

1. ∆ =
∑
i piCi[δ(s)] where Ci ∈ C, and for all t : C[t]

a−→ Θ =∑
i piCi[δ(t)].

We have that:

K(G(m′))(∆,Θ)

= K(G(m′))(
∑
i piCi[δ(s)],

∑
i piCi[δ(t)])

≤ max
i
K(G(m′))(Ci[δ(s)], Ci[δ(t)]) quasiconv. of K(G(m′))

≤ K(G(m′))(δ(s), δ(t)) closedness under C
≤ K(m)(δ(s), δ(t)) G(m′) ≤ m′ ≤ m
≤ m(s, t)

2. ∆ =
∑
i piCi[∆

′] where Ci ∈ C, s
a′−−→ ∆′ and for all t: if t

a′−−→ Θ′

then C[t]
a−→ Θ =

∑
i piCi[Θ

′].

We derive from m� K(m′), m(s, t) < > and s
a′−−→ ∆′ that t

a′−−→ Θ′

with K(m′)(∆′,Θ′) ≤ m(s, t). Hence, C[t]
a−→ Θ =

∑
i piCi[Θ

′] and
we have:

K(G(m′))(∆,Θ)

= K(G(m′))(
∑
i piCi[∆

′],
∑
i piCi[Θ

′])

≤ max
i
K(G(m′))(Ci[∆

′], Ci[Θ
′]) quasiconv. of K(G(m′))

≤ K(G(m′))(∆′,Θ′) closedness under C
≤ K(m′)(∆′,Θ′) G(m′) ≤ m′

≤ m(s, t)
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A.3 Proofs of Section 5

The (unary) contexts of pCCS are faithful.

Proof. The proof is by induction on the structure of contexts C. The case C = 0
is trivial.

• Case C = α.⊕i [pi]Ci.

The only transition allowed is C[s]
α−→
∑
i pi · δ(Ci[s]), and indeed for all t

we have that C[t]
α−→
∑
i pi · δ(Ci[t]).

• Case C = C1 + C2. We can assume without loss of generality that
C[s] = C1[s] + s2. If s2 moves, the result immediately follows from the fact
that for any t, the component s2 of C1[t] + s2 can do the same transition
and identical distributions are reached (and identical distributions satisfy
both cases of the definition of faithfulness, by just considering contexts
without holes). If C1[s] moves, i.e., C1[s] + s2

α−→ ∆ with C1[s]
α−→ ∆,

then the result follows from the inductive hypothesis on C1.

• Case C = C1 |C2. We can assume without loss of generality that C[s] =
C1[s] | s2. and C[t] = C1[t] | s2 for some s2. We have three cases:

– If C[s]
α−→ ∆ with s2

α−→ ∆′ =
∑
i pi · s′i and ∆ =

∑
i pi · δ(C[s] | si′)

then C[t]
α−→ Θ =

∑
i pi · δ(C[t] | si′) and the result follows by con-

sidering as contexts C ′i = C[·] | s′i, since
∑
i pi · K(m)(δ(s), δ(t)) ≤

K(m)(δ(s), δ(t)) ≤ m(s, t).

– If C[s]
α−→ ∆ with C1[s]

α−→ ∆1 and ∆ = ∆1 | s2 then by the inductive
hypothesis on C1 we have two cases:

1. ∆1 =
∑
i piCi[δ(s)] and ∀t: C1[t]

α−→
∑
i piCi[δ(t)].

Hence, ∆ =
∑
i piCi[δ(s)] | s2 and for all t, C[t]

α−→ Θ =
∑
i piCi[δ(t)] | s2

2. ∆1 =
∑
i piCi[∆

′] with s
α′−−→ ∆′ and ∀t: if t

α′−−→ Θ′ then

C1[t]
α−→
∑
i piCi[Θ

′].
The result follows as in the previous case.

– C[s]
τ−→ ∆ resulting form the synchronization C1[s]

α−→ ∆1 and

s2
ᾱ−→ ∆2 =

∑
j qj · uj . By the inductive hypothesis we have two

cases:

1. ∆1 =
∑
i piCi[δ(s)] and ∀t: C1[t]

α−→
∑
i piCi[δ(t)].

Hence, ∆ =
∑
i,j piqjCi[δ(s)] |uj and for all t, C[t]

α−→ Θ =∑
i,j piqjCi[δ(t)] |uj

2. ∆1 =
∑
i piCi[∆

′] with s
α′−−→ ∆′ and ∀t: if t

a′−−→ Θ′ then

C1[t]
α−→
∑
i piCi[Θ

′].
The result follows as in the previous case.

• Case C = (νa)C1.

(νa)C1[s]
α−→ ∆ iff C1[s]

α−→ ∆1 and α 6= a, ā. Hence, the result directly
follows from the inductive hypothesis.

• Case C = A.
Since C has no empty holes, the definition is trivially satisfied.
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A.4 Hausdorff lifting

The Hausdorff lifting H : M(A) → M(2A), which can be used to define the
progression relation (Definition 1), lifts a metric on A to a metric on sets over A.
It is defined as:

H(d)(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

Note that the inf of the empty set is > (+∞ or whatever the top element of our
range of distances is). Hence for all X ∈ 2A we have that H(d)(∅, X) = >, and
we only need to set H(d)(∅, ∅) = 0 as a special case to make it a metric.
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