
Deliverable D2.d

1

A Partial Metric Semantics of Higher-Order Types

and Approximate Program Transformations

Guillaume Geoffroy
University of Bologna, Department of Computer Science and Engineering, Italy

guillaume.geoffroy@unibo.it

Paolo Pistone
University of Bologna, Department of Computer Science and Engineering, Italy

paolo.pistone2@unibo.it

Abstract

Program semantics is traditionally concerned with program equivalence. However, in fields like

approximate, incremental and probabilistic computation, it is often useful to describe to which

extent two programs behave in a similar, although non equivalent way. This has motivated the

study of program (pseudo)metrics, which have found widespread applications, e.g. in differential

privacy. In this paper we show that the standard metric on real numbers can be lifted to higher-order

types in a novel way, yielding a metric semantics of the simply typed lambda-calculus in which

types are interpreted as quantale-valued partial metric spaces. Using such metrics we define a class

of higher-order denotational models, called diameter space models, that provide a quantitative

semantics of approximate program transformations. Noticeably, the distances between objects of

higher-types are elements of functional, thus non-numerical, quantales. This allows us to model

contextual reasoning about arbitrary functions, thus deviating from classic metric semantics.

2012 ACM Subject Classification Theory of computation → Denotational semantics

Keywords and phrases Simply typed λ-calculus, program metrics, approximate program transfor-

mations, partial metric spaces

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.23

Funding Guillaume Geoffroy: ERC CoG 818616 “DIAPASoN”, ANR 16CE250011 “REPAS”.

Paolo Pistone: ERC CoG 818616 “DIAPASoN”, ANR 16CE250011 “REPAS”.

1 Introduction

In program semantics one is usually interested in capturing notions of behavioral equivalence

between programs. However, in several fields like approximate [34], incremental [10, 2] and

probabilistic [13] computation, it is often more useful to be able to describe to which extent

two programs behave in a similar, although non equivalent way, so that one can measure the

change in the result produced by replacing one program by the other one.

This idea has motivated much literature on program (pseudo)metrics [4, 41, 5, 19, 6, 13, 11,

14, 21], that is, on semantics in which types are endowed with a notion of distance measuring

the differences in their behaviors. This approach has found widespread applications, for

example in differential privacy [35, 3, 7], where one is interested in measuring the sensitivity of

a program, i.e. its capacity to amplify changes in its inputs, and in the study of probabilistic

processes [16, 43, 11, 42].

Recent literature [44, 32] has highlighted the importance of contextuality to reason about

program similarity: many common situations require to measure the error produced by a

transformation of the form C[t] C[u], which replaces a program t by u within a context

C[], as a function of the mismatch between t and u and of the sensitivity of the context C[]

itself. For instance, the error produced by replacing the program λx. sin(x) by the identity

function λx.x in a given context C will be highly sensitive to how close to 0 these functions are

© Guillaume Geoffroy and Paolo Pistone;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.geoffroy@unibo.it
mailto:paolo.pistone2@unibo.it
https://doi.org/10.4230/LIPIcs.CSL.2021.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Partial Metric Semantics of Higher-Order Programs

evaluated in C. Similar cases of contextual reasoning can be found in many areas of computer

science: for example in techniques from numerical analysis (e.g. the Gauss-Newton method),

in which a computationally intensive function is replaced by its Taylor’s expansion around

some given point, or in approximate computing techniques like loop perforation [38], in which

a compiler can be asked to skip a certain number of iterations of a loop in a program.

The Problem of Coupling Program Metrics with Higher-Order Types. While several

frameworks for contextual reasoning have been developed in recent years [35, 20, 5, 44, 32],

these approaches suggest that describing program similarity for a fully higher-order language

in terms of program metrics still constitutes a major challenge.

In particular, when considering higher-order languages with a type Real for real numbers,

it is not clear how to lift the standard metric on Real to higher-order types, e.g. to Real → Real,

so that the distances between higher-order programs are measured in a contextual way.

A standard solution is to take the sup-distance, that is, to let, for f, g : Real → Real,

d(f, g) = sup{d(f(r), g(r)) | r ∈ Real}. This solution works well in models in which programs

are interpreted as non-expansive or Lipschitz-continuous maps [25, 5]. However such models

are not cartesian-closed1, so they do not account for the simply-typed lambda-calculus

in its full generality, but only for linear or sub-exponential variations of it (such as Fuzz

[35, 20, 5]). Also, it has been shown [13] that in a probabilistic setting the non-linearity of

higher-order programs has the effect of trivialising metrics, that is, of forcing distances to be

either 0 or 1, hence collapsing program distances onto usual notions of program equivalence.

Most importantly, even if one restricts to a sub-exponential language, the sup-distance is

inadequate to account for contextual transformations as the replacement of λx. sin(x) by

λx.x around 0, as the sup-distance between these two programs is infinite (see Fig. 3).

On the other side of the coin, other approaches like [44, 32] are fully contextual and

higher-order, but provide, at best, only weak approximations of a standard notion of metric.

Nonetheless, these approaches introduce the idea, which we retain here, that program

differences must be taken as being themselves some kind of programs, relating errors in input

with errors in output, and that accordingly, programs should be split in two different classes:

exact programs, computing mappings from well-defined inputs to well-defined outputs, and

approximate programs, mapping errors in the input to errors in the output.

Diameter Spaces. In this paper we introduce a new semantic framework to reason about

program similarity and approximate program transformations based on a class of higher-order

denotational models that we call diameter space models. Compared to existing higher-order

frameworks, the main novelty of these models is that program similarities are measured by

associating each simple type with a generalized partial metric space, yielding a lifting of the

standard metric on Real to higher-order types.

Generalized partial metric spaces are a well-investigated class of metric spaces that has

been widely applied in program semantics [8, 9, 33, 37, 36, 26, 23]. Such spaces generalize

standard metric spaces in that distances need not be real numbers, but can be functions or

any other type of object that lives in a suitable quantale [25], and self-distances d(x, x) need

not be 0 (which leads to a stronger triangular inequality: d(x, y) + d(z, z) ≤ d(x, z) + d(z, y)).

In our models a higher-order type A is interpreted as a 4-tuple (|A|, JAK, LAM, δA) called

a diameter space, where |A| is a set of exact values, JAK ⊂ P(|A|) is a complete lattice of

approximate values, LAM is a quantale, and δA : JAK → LAM is a function, called diameter,

1 In fact, cartesian closed categories of metric spaces and non-expansive functions do exist [19, 12], but,
to our knowledge, none of these categories contains the real numbers with the standard metric.

G. Geoffroy and P. Pistone 23:3

xx− ε x+ ε

f(x)

g(x)

f

g

δ2

δ1

(a) In differential logical relations the distance
between two functions f, g : R → R, com-
puted at (x, ε) is the maximum between δ1 =
max{d(f(x), g(y)); y ∈ [x − ε, x + ε]} and δ2 =
max{d(g(x), f(y)); y ∈ [x − ε, x + ε]}.

xx− ε x+ ε

f(x)

g(x)

h(x)

f

g
h

d(f, g)

d(g, h)
δ = d(g, g)

d(f, h)

(b) The distance arising from differential logical re-
lations is not a partial metric: the example above
shows that d(f, h) > d(f, g) + d(g, h) − d(g, g) (with
all distances computed at (x, ε)).

Figure 1 Differential logical relations do not yield partial metrics.

which provides a quantitative measure of approximate values. The map δA generalizes some

properties of the diameter function of the standard metric on real numbers. In particular, just

like the distance between two real numbers can be described as the diameter of the smallest

interval containing them, the map δA yields a generalized partial metric dA : |A| × |A| → LAM

in which the distance between two exact values of A is measured as the diameter of the

smallest approximate value containing them, i.e. dA(x, y) = δA(x ∨ y).

Measuring Distances between Programs of Functional Type. A primary source of inspira-

tion for our approach is the recent work by Dal Lago, Gavazzo and Yoshimizu on differential

logical relations [32]. This is a semantical framework for higher-order languages in which

a type is interpreted as a set X endowed with a kind of metric structure expressed by a

ternary relation ρ ⊆ X ×Q×X, where Q is an arbitrary quantale. To our knowledge, this

is the first place were the idea of varying the quantales in which distances are measured is

introduced as a key ingredient to obtain a cartesian closed category.

However, although such a relation ρ induces a distance function dρ(x, y) = sup{ε |

ρ(x, ε, y)}, this function is not a (partial) metric. We can show this fact with a simple

example: in this model the distance between two programs f, g : Real → Real is taken

in the quantale of functions from R × R∞
+ to R∞

+ : intuitively, d(f, g) associates a closed

interval [x− ε, x+ ε] (corresponding to the pair (x, ε)) with the smallest distance δ such that

[f(x) − δ, f(x) + δ] and [g(x) − δ, g(x) + δ] both contain the images of [x− ε, x+ ε] through

g and f respectively (see Fig. 1a). Then, as shown in Fig. 1b, by letting δ = d(g, g)(x, ε),

we have that d(g, g) sends the interval I = [x− ε, x+ ε] onto the interval [g(x) − δ, g(x) + δ],

which has diameter 2δ, while the image of I has diameter δ, making the triangular law of

partial metrics fail.

By contrast, in our model, the distance between two programs f, g : Real → Real lives

in the quantale of monotone maps from approximate values of Real (i.e. closed intervals) to

positive reals. More precisely, this distance is the function that maps a closed interval a to

the diameter of the smallest interval containing both f(a) and g(a). This notion of distance

does satisfy all the axioms of a partial metric, as illustrated in Fig. 2. Observe that we no

longer depict the “center” of the interval [x− ε, x+ ε], and that the triangular inequality

works because in summing d(f, g) and d(g, h) the self-distance d(g, g) is counted twice.

CSL 2021

23:4 A Partial Metric Semantics of Higher-Order Programs

x− ε x+ ε

f

g
h

d(f, g)

d(g, h) d(g, g)

d(f, h)

Figure 2 Our new metric is a partial met-

ric: in the example above it can be seen that

d(f, h) ≤ d(f, g) + d(g, h) − d(g, g) (with all dis-

tances computed in the interval [x − ε, x + ε]).

−ε +ε

sin(x)

x

δ

δ′

Figure 3 The self-distances δ, δ′ of sin(x) and

x in a small interval [−ε, ε] of 0 are very close.

Note that the distance of f from itself, which needs not be (constantly) 0, provides a

measure of the sensitivity of f , since it associates each interval a with the size of the interval

f(a) spanned by f on a (a similar feature is present in differential logical relations).

The use of partial metrics with functional distances yields a rich and expressive framework

to reason about contextual transformations. For instance, we can express the closeness of

λx. sin(x) and λx.x around 0 by the fact that their distance, applied to a small interval [−ε, ε]

around 0, is very close to the self-distance of λx. sin(x) on the same interval (as illustrated

in Fig. 3). Moreover, the triangular inequality of partial metrics can be used to infer new

bounds from previously established ones in a compositional way.

Diameter Space over a Cartesian Closed Category. Our approach was devised primarily to

account for transformations in higher-order languages designed for real analysis computation

(like e.g. Real PCF [18]). However, diameter spaces can be constructed starting from any

higher-order programming language with a reasonable denotational semantics. In fact, for any

cartesian closed category C, we can construct a cartesian lax-closed category Diam(C), whose

morphisms can be seen as approximate versions of the morphisms of C. The “lax” preservation

of the cartesian closed structure reflects the fact that, by composing approximations in a

higher-order setting, also their error rates compose (typically, approximating non β-normal

λ-terms will lead to higher error-rates than approximating their β-normal forms).

The generality of our construction shows in particular that our partial metric semantics

requires no restrictions (e.g. Lipschitz-continuity) on morphisms, and adapts well to the

model one starts with: for instance, the category Diam(Set) contains a partial metric on

the set of all set-theoretic functions from R to R, while the categories Diam(Eff) (where Eff

is the effective topos [27]) and Diam(Scott) show that our approach scales well to a more

computability-minded setting.

2 Generalized Partial Metric Spaces

Partial metric spaces were introduced in the early nineties as a variant of metric spaces in

which self-distances can be non-zero. Such spaces have attracted much attention in program

semantics [8, 9, 33, 37, 36, 26, 23], due to their compatibility with standard constructions

from both domain theory (since their topology is T0) and usual metric topology (e.g. Cauchy

sequences, completeness, Banach-fixed point theorem) [8, 33]. Generalized partial metric

spaces, i.e. partial metric spaces whose metric takes values over an arbitrary quantale [25],

are well-investigated too [29, 28].

G. Geoffroy and P. Pistone 23:5

In this paper we will only be concerned with partial metrics taking values over a commu-

tative integral quantale [25], of which we recall the definition below.

◮ Definition 1. A commutative integral quantale is a triple (Q,+,≤) where:

(Q,≤) is a complete lattice,

(Q,+) is a commutative monoid,

+ commutes with arbitrary infs,

the least element of Q is neutral for +.

For readability, we have we have reversed the ordering with respect to the conventional

definition, so that for example, ([0,∞],+,≤) is a commutative integral quantale whose least

element is 0 (as opposed to “([0,∞],+,≥) is a commutative integral quantale whose largest

element is 0”, which is what we would get with the usual definition). It is straightforward to

check that for all commutative integral quantales Q,R, the product monoid Q×R equipped

with the product ordering is also a commutative integral quantale. In addition, for all posets

X, the set of monotone functions from X to Q, equipped with the pointwise monoid operation

and the pointwise ordering, is also a commutative integral quantale. Another example of

commutative integral quantale is given by the lattice of ideals of any commutative ring, with

the product of ideals as the monoid operation.

We recall now the definition of a generalized partial metric space:

◮ Definition 2. A generalized partial metric space (in short, GPMS) is the data of a set X,

a commutative integral quantale Q and a function d : X ×X → Q such that:

for all x, y ∈ X, d(x, x) ≤ d(x, y),

for all x, y ∈ X, if d(x, x) = d(x, y) = d(y, y), then x = y,

for all x, y ∈ X, d(x, y) = d(y, x),

for all x, y, z ∈ X, d(x, z) + d(y, y) ≤ d(x, y) + d(y, z).

For every metric space (X, d), the structure (X, ([0,∞],+,≤), d) is a GPMS. As is

well-known [8], any real-valued GPMS (X, [0,∞], d) induces a metric d∗ by letting

d∗(x, y) = 2d(x, y) − d(x, x) − d(y, y) (⋆)

For a more telling and somewhat archetypal example, take any set X and consider the set

X≤ω of all sequences of elements of X indexed by an ordinal less than or equal to ω. For all

such sequences s, t, let d(s, t) = 2−n ∈ [0,∞], where n is the length of the largest common

prefix to s and t: one can check that (X≤ω, [0,∞], d) is indeed a generalized partial metric

space. In fact, if we interpret the prefixes of a sequence as pieces of partial information,

then we have d(s, s) = d(s, t) if and only if t is a refinement of s (i.e. if it contains more

information), and d(s, s) = 0 if and only if s is total (i.e. if it cannot be refined).

One can check that for all partial metric spaces (X,Q, dX) and (Y,R, dY), (X ×

Y,Q × R, dX×Y) is a generalized partial metric space, where dX×Y ((x1, y1), (x2, y2)) =

(dX(x1, x2), dY (y1, y2)). However, in general, it is not clear how one should define a partial

metric on a function space. In Section 3.2 we introduce a construction to obtain partial

metric spaces on function spaces by generalizing some properties of the standard diameter

function on sets of real numbers.

3 Approximate Programs for the Simply-Typed λ-Calculus over Real

To illustrate our construction, we start from a relatively concrete example: we consider a

simply-typed lambda calculus with a base type Real and primitives for real numbers, and we

follow the plan outlined in the introduction, which yields for each simple type a notion of

CSL 2021

23:6 A Partial Metric Semantics of Higher-Order Programs

approximate value, approximate function, diameter and distance between programs. Most

definitions are straightforward and intuitive: the interesting, not immediately obvious point

is that our construction does yield a partial metric on each type.

Simple types are defined as follows: Real is a simple type; if A and B are simple

types, then A → B and A × B are simple types. For all n > 0, we fix a set Fn of

functions from Rn to R. We consider the usual Curry-style simply-typed λ-calculus over

the types defined above (the left and right projection are denoted by πL : A×B → A and

πR : A × B → B respectively, and the constructor for pairs by 〈−,−〉), enriched with the

following constants: for all r ∈ R, a constant r : Real; for all n > 0 and all f ∈ Fn, a constant

f : Real → . . . → Real → Real. We call this calculus STλC(Fn), and its terms are simply

called terms. We write t[x1 := u1, . . . , xn := un] to denote the simultaneous substitution

of u1, . . . , un for x1, . . . , xn in t. For all types A, we denote by ΛA the set of closed terms

of type A. The relation of β-reduction is enriched with the following rule, extended to all

contexts: for all n > 0, f ∈ Fn, and r1, . . . , rn ∈ R, fr1 . . . rn →β s, where s = f(r1, . . . , rn).

By standard arguments [1], this calculus has the properties of subject reduction, confluence

and strong normalisation.

◮ Remark 3. The class of real-valued functions which can be computed in STλC(Fn) depends

on the choice we make for Fn. With suitable choices (see for instance [40, 17, 18]) one can

obtain that all programs of type Real → Real compute continuous functions2, that all such

programs are integrable over closed intervals, or that all such programs are continuously

differentiable.

In addition to the usual notion of β-equivalence between terms of STλC(Fn), we will

exploit also a stronger equivalence: given two closed terms t, u of type A, we say that t and u

are observationally equivalent and write t ≈A u if for all terms C such that x : A ⊢ C : Real

is derivable, C[x := t] is β-equivalent to C[x := u] (which amounts to saying that they both

β-reduce to the same real number). It is clear that observational equivalence is a congruence

and that two β-equivalent terms are always observationally equivalent.

3.1 Approximate Values and Approximate Programs

The first step of our construction for STλC(Fn) is to associate to each simple type A a set

JAK whose elements are certain sets of programs of type A that we call approximate values of

type A. A closed term t ∈ ΛA represents a program with return type A and no parameters,

so an approximate value can be thought of as a specification of a program with return type

A and no parameters up to a certain degree of error or approximation.

For each simple type A, the set of approximate values JAK ⊆ P(ΛA) is defined inductively

as follows:

JRealK = {{t ∈ ΛReal | ∃r ∈ I, t →∗
β r} | I ⊆ R is a compact interval or ∅ or R},

JA×BK = {a× b | a ∈ JAK, b ∈ JBK}, where a× b = {t ∈ ΛA×B | πLt ∈ a and πRt ∈ b},

JA → BK = {{t ∈ ΛA→B | ∀u ∈ ΛA, tu ∈ I(u)} | I : ΛA → JBK}.

The approximate values of type Real are sets of closed programs of type Real which

essentially coincide with the compact intervals of R, plus the empty set and R itself. An

approximate value in JA × BK is a “rectangle” a × b, with a ∈ JAK and b ∈ JBK, while an

approximate value in JA → BK is uniquely determined by a function I from closed terms

u ∈ ΛA to approximate values I(u) ∈ JBK.

2 Note that for this to be possible, Fn cannot contain the identity function over Real.

G. Geoffroy and P. Pistone 23:7

sin(x) + 1

cos(x) − 1
sin(x + 1)

(a) λx. sin(x+1) is in [λx. sin(x)+1, λx. cos(x)+
1]Real→Real.

−1 1

−1

1 ε

δu[x]

t[x]

• •

•

•

•
r

(b) ε = (∂(u) ◦ ∂(t))([−1, 1]) is bigger than δ = ∂(u ◦
t)([−1, 1]) = [r, r].

Figure 4 Examples of functional approximate values and of approximate programs.

For example, any two terms t, u ∈ ΛReal with normal forms q, r ∈ R induce an approximate

value [t, u]Real = {v ∈ ΛReal | v →∗
β s ∧ (q ≤ s ≤ r ∨ q ≥ s ≥ r)} of type Real. Similarly, any

two terms t, u ∈ ΛReal→Real induce an approximate value [t, u]Real→Real = {v ∈ ΛReal→Real |

∀r ∈ ΛReal vr ∈ [tr, ur]Real}. For instance, if t = λx. sin(x) + 1 and u = λx. cos(x) − 1, then

[t, u]Real→Real contains all closed terms corresponding to maps oscillating between sin(x) + 1

and cos(x) + 1 (e.g. the program λx. sin(x+ 1), as illustrated in Fig. 4a).

For all A, the set JAK is a a subset of P(ΛA) closed under arbitrary intersections. We

deduce that JAK has arbitrary meets (given by intersections) and arbitrary joins
∨

i∈I ai =
⋂

{a ∈ JAK | ∀i ∈ I ai ⊆ a}, and thus JAK is a complete lattice. In particular, for all t ∈ ΛA,

there is a least element of JAK that contains t, which will be denoted by t. One can check

that t = u if and only if t ≈A u.

Monotone functions from approximate values to approximate values represent approximate

programs. They behave like a model of the simply-typed λ-calculus in a weak sense, namely:

for all monotone functions ~α 7→ c[~α] : JA1K × . . . × JAnK → JB → CK and ~α 7→ b[~α] :

JA1K × . . .× JAnK → JBK, we can define a monotone function ~α 7→ (c[~α] b[~α]) = sup{vu |

v ∈ c[~α], u ∈ b[~α]} : JA1K × . . .× JAnK → JCK,

for all monotone functions ~α 7→ c[~α] : JA1K × . . . × JAnK → JCK and all i ≤ n, we can

define a monotone function (αj)j 6=i 7→ (λαi. c[~α]) = {v ∈ ΛAi→C | ∀ti ∈ ΛAi
, vti ∈

c[α1, . . . , ti, . . . , αn]} :
∏

j 6=iJAjK → JAi → CK,

and these two constructions are weakly compatible with β-reduction and η-expansion:

◮ Proposition 4. For all monotone functions (~α, β) 7→ c[~α, β] : JA1K×. . .×JAnK×JBK → JCK

and ~α 7→ b[~α] : JA1K × . . . × JAnK → JBK, (~α 7→ (λβ. c[~α, β]) b[~α]) ≤ (~α 7→ c[~α, b[~α]]), and

for all monotone functions ~α 7→ d[~α] : JA1K × . . .× JAnK → JB → CK, (~α 7→ λβ. d[~α] β) ≥

(~α 7→ d[~α]), where functions are ordered by pointwise inclusion. In other words, on approxi-

mate programs, β-reduction and η-expansion discard information, and conversely β-expansion

and η-reduction recover some information.

Proof. Without loss of generality, we can assume n = 0. Let v ∈ λβ. c[β] and u ∈ b. By

definition, tu ∈ c[u], so tu ⊆ c[u] ⊆ c[b]. Therefore, (λβ. c[β]) b ⊆ b. Let v ∈ d. For all

u ∈ ΛB , by definition, vu ∈ du. Therefore, v ∈ λβ. d β. ◭

Beyond theoretical aspects (which will be made clearer in Section 5) Proposition 4 is also

important in practice because it implies that if we compute an approximation of a program

from approximations of its parts and then simplify the resulting approximate program using

β-reduction and η-expansion, what we obtain is still a valid approximation of the original

program.

CSL 2021

23:8 A Partial Metric Semantics of Higher-Order Programs

We can define a weak embedding from terms into approximate programs, by mapping

each term to its tightest approximation: for all terms t such that α1 : A1, . . . , αn : An ⊢ t : B,

we define a monotone function ∂(t) : JA1K × · · · × JAnK → JBK by ∂(t)(a1, . . . , an) =

sup{tu1 . . . un | u1 ∈ a1, . . . , un ∈ an}.

◮ Remark 5. The map ∂ is constant on classes of observational equivalence, and one can

check that it is is weakly compatible with the constructions of the λ-calculus, in particular:

∂(αi)(a1, . . . , an) = ai,

∂(tu)(a1, . . . , an) ⊆ ∂(t)(a1, . . . , an) ∂(u)(a1, . . . , an),

∂(λβ.t)(a1, . . . , an) ⊆ λβ. ∂(t)(β, a1, . . . , an).

This map ∂(t) can be taken as a measure of the sensitivity of t, as it maps an interval

a, that is a quantifiably uncertain input, to a quantifiably uncertain output ∂(t)(a). For

instance, if we take the term t[x] = sin(x) + 1 above, then ∂(t) : JRealK → JRealK sends the

interval [−π, π]Real into [0, 2]Real.

◮ Remark 6. When composing two maps ∂(t) and ∂(u), we might obtain a worse approxima-

tion than by computing ∂(t[u/x]) directly. For instance, let t[x] and u[x] be, respectively,

the discontinuous and Gaussian functions illustrated in Fig. 4b. If a is the interval [−1,+1],

then ∂(t)(a) = [−1, 1], and since u[x := −1] = u[x := 1] ≃β r for some 0 < r < 1, we deduce

that ∂(u)(∂(t)(a)) = [−1, 1]) [r, r] = ∂(u[t/x])(a).

3.2 A Partial Metric on Each Type

So far, we have associated each type A of STλC(Fn) with a complete lattice JAK ⊆ P(ΛA)

of approximate values of type A, and each typed program t : A → B with an approximate

program ∂(t) (in fact, a monotone function) from approximate values of type A to approximate

values of type B. We will now exploit this structure to define, for each type A of STλC(Fn),

a generalized partial metric on the closed (exact) programs of type A.

The first step is to define, for every simple type A, a commutative integral quantale

(LAM,≤A,+A) of distances of type A:

(LRealM,≤Real,+Real) = ([0,∞],≤,+),

LA×BM = LAM × LBM,

LA → BM = Poset(JAK, LBM).

where, for two posets Q,R, Poset(Q,R) denotes the set of monotone functions from Q to R.

Observe that the quantale LA → BM is a set of functions over the approximate values of A.

For all simple types A, we now define a distance function dA : ΛA × ΛA → LAM:

dReal(t, u) = |r − s|, where r, s are the unique elements of R such that t →∗
β r and u →∗

β s,

dA×B(t, u) = (dA(πLt, πLu), dB(πRt, πRu)),

dA→B(t, u) = a 7→ sup {dB(rv, sw) | r, s ∈ {t, u}, v, w ∈ a}.

It would be tempting to define dA→B(t, u)(a) simply as sup {dB(tv, uw) | v, w ∈ a}, but

then the axiom “dA→B(t, t) ≤ dA→B(t, u)” of partial metric spaces would fail.

The maps dA are clearly compatible with observational equivalence (i.e. if a ≈A a′ and

b ≈A b′, then dA(a, b) = dA(a′, b′)).

Our objective is now to prove that (ΛA/ ≈A, LAM, dA) is a generalized partial metric space.

To this end, we define for all simple types A a monotone diameter function δA : JAK → LAM

by δA(a) = sup{dA(t, u) | t, u ∈ a}. The key to our objective will be to prove that δA is sub-

modular on intersecting approximate values (henceforth, quasi-sub-modular – see Proposition

7): this generalizes the fact that, on the (real-valued) metric space R, the diameter is modular

over intersecting closed intervals (see Fig. 5).

G. Geoffroy and P. Pistone 23:9

a b

δ(a ∪ b)

δ(a ∩ b)

δ(a)

δ(b)

Figure 5 The diameter function is modular over intersecting real intervals: diam(a ∪ b) + diam(a ∩

b) = diam(a) + diam(b) for all a, b ∈ [R] such that a ∩ b 6= ∅. This property is at the heart of our

generalization of diameters. Observe that this property fails when a ∩ b is empty.

First, one can check that for all t, u ∈ ΛA, δA

(

t ∨ u
)

= dA(t, u), and that:

δReal(a) = sup{s− r | s, r ∈ R such that s, r ∈ a},

δA×B(p) =
(

δA

(

sup
{

πLt | t ∈ p
})

δB

(

sup
{

πRt | t ∈ p
}))

,

δA→B(b) = a 7→ δB

(

sup
{

vt | t ∈ a, v ∈ b
})

.

This leads then to the following:

◮ Proposition 7 (δA is quasi-sub-modular). For all simple types A and all a, b ∈ JAK such

that a ∧ b 6= ∅, δ(a ∧ b) + δ(a ∨ b) ≤ δ(a) + δ(b).

Proof. We proceed by induction on types.

Let a, b ∈ JRealK such that a ∧ b 6= ∅. Let I = {r ∈ R | r ∈ a} and J = {s ∈ R | s ∈ b}:

then I (respectively, J , I ∩ J , I ∪ J) is either R or a non-empty compact interval of R,

and its length in the usual sense is equal to δReal(a) (respectively, δReal(b), δReal(a ∧ b),

δReal(a ∨ b)). Note that the only reason we know that I ∪ J is an interval is because

a ∧ b 6= ∅ implies I ∩ J 6= ∅. The length of an interval of R is equal to its Lebesgue measure,

therefore length(I ∩J) + length(I ∪J) = length(I) + length(J), so δReal(a∧ b) + δReal(a∨ b) =

δReal(a) + δReal(b).

Let a, b ∈ JAL ×ARK such that a∧b 6= ∅. For all c ∈ JAL ×ARK, let cL = sup{πLt | t ∈ c}

and cR = sup{πRt | t ∈ c}. One can check that (a ∧ b)L = aL ∧ bL, (a ∧ b)R = aR ∧ bR,

(a ∨ b)L = aL ∨ bL and (a ∨ b)R = aR ∨ bR, so δ(a ∧ b) + δ(a ∨ b) = (δ(aL ∧ bL) + δ(aL ∨

bL), δ(aR ∧ bR) + δ(aR ∨ bR)) ≤ (δ(aL) + δ(bL), δ(aR) + δ(bR)) = δ(a) + δ(b).

Let f, g ∈ JA → BK and a ∈ JAK. For all h ∈ JA → BK, let ha = sup{vt | v ∈ h, t ∈ a}.

One can check that (f ∧ g)a ⊆ (fa) ∧ (ga) and (f ∨ g)a = (fa) ∨ (ga). As a result,

(δ(f∧g)+δ(f∨g))(a) ≤ δ((fa)∧(ga))+δ((fa)∨(ga)) ≤ δ(fa)+δ(ga) = (δ(f)+δ(g))(a). ◭

It is well-known [39] that any function δ : L → [0,∞] on a lattice L that is monotone

and sub-modular induces a pseudo-metric d : L × L → [0,∞] by letting d∗(a, b) = 2δ(a ∨

b) − δ(a) − δ(b). In fact, one can decompose this construction: first, one defines a partial

pseudometric d on L by d(a, b) = δ(a∨ b), and then d∗ is just the distance given by equation

(⋆): d∗(a, b) = 2d(a, b) − d(a, a) − d(b, b). We can use this way of reasoning to establish that

the maps dA are indeed partial metrics:

◮ Corollary 8. For all simple types A, (ΛA/ ≈A, LAM, dA) is a generalized partial metric

space, that is to say:

1. for all t, u ∈ ΛA, dA(t, t) ≤ dA(t, u),

2. for all t, u ∈ ΛA, if dA(t, t) = dA(t, u) = dA(u, u), then t ≈A u,

3. for all t, u ∈ ΛA, dA(t, u) = dA(u, t),

4. for all t, u, v ∈ ΛA, dA(t, v) + dA(u, u) ≤ dA(t, u) + dA(u, v).

CSL 2021

23:10 A Partial Metric Semantics of Higher-Order Programs

Proof. As mentioned above, for all t, u ∈ ΛA, dA(t, u) = δA(t ∨ u), which immediately gives

point 3. Since δA is monotone and t ∨ t ≤ t ∨ u, we also get point 1.

One can check (by induction on types) that the restriction of δA to the ideal generated

by the t (for t ∈ ΛA) is strictly monotone. Therefore, if dA(t, t) = dA(t, u) = dA(u, u),

i.e. δA(t) = δA(t ∨ u) = δA(u), then t = t ∨ u = u, so t ≈A u.

The triangular inequality is an immediate consequence of the quasi-sub-modularity of δA:

d(t, v)+d(u, u) = δ(t∨v)+δ(u) ≤ δ((t∨u)∨(u∨v))+δ((t∨u)∧(u∨v)) ≤ δ(t∨u)+δ(u∨v) =

d(t, u) + d(u, v). ◭

4 Computing Program Distances using Partial Metrics

In the previous section we showed how to associate each simple type A with a partial metric

dA over the closed terms of type A. We now illustrate through a few basic examples how

the higher-order and metric features of this semantics can be used to formalize contextual

reasoning about program differences.

To make our examples more realistic, we will consider some natural extensions of

STλC(Fn). It is not difficult to see that all constructions from Section 3 still work if

we add to STλC(Fn) some new base types. For example, we can add to our language a type

Nat for natural numbers, indicating for each n ∈ N, the corresponding normal forms of Nat

as n. A natural choice is to let JNatK = {{t | ∃n ∈ a t n} | a finite subset of N or a = N},

LNatM = [0,∞] and dNat(t, u) = |n−m|, where t →∗
β n and u →∗

β m.

Moreover, our constructions scale well also to extensions of STλC(Fn) obtained by adding

new program constructors, as soon as these do not compromise the existence and uniqueness

of normal forms (since the fact that closed programs of type Real have a normal form plays

an important role to define JRealK). For instance, if we suppose that all programs of type

Real → Real in STλC(Fn) are either differentiable or integrable (see Remark 3), we can

consider extension of STλC(Fn) with differential or integral operators, as in Real PCF [17, 18].

We start with a classical example from approximate computing that we adapt from [44].

◮ Example 9 (Loop perforation). We work in the extension of STλC(Fn) with a type Nat.

We discuss a transformation that replaces a program t which performs n iterations by a

program which only performs the iterations 0, k, 2k, 3k, . . . , each repeated k times.

Suppose t : (A × A → A) → Nat → (A → A) → A, for n ≥ 1, is a term such that

thnf computes the n-times iteration of h as follows: th0f = h〈f0, f0〉 and th(n + 1)f =

h〈thnf, f(n + 1)〉. Let Perfk(t), the k-th perforation of t, be the program (Perfk(t))hnf =

t(λx.(h(k)x))⌊n⌋k(λx.f(x ∗ k), where ⌊n⌋k indicates the least m ≤ n such that m is divisible

by k, and x ∗ k is the multiplication of x by k.

To compute the distance dA(vn, wn) between vn = thnf and its perforation wn =

Perfk(t)hnf we can reason as follows:

i. vn performs n-iterations while wn performs k⌊n⌋k ≤ n iterations, and we can compute

dA(vn, v(k⌊n⌋k)) as the diameter of ∂(t)∂(h)([k⌊n⌋k, n]Nat)∂(f).

ii. If n is divisible by k, then for i ≤ n, at the i-th iteration of vn the function f is applied

to i, while at the i-th iteration of wn, f is applied to ⌊i⌋k. Now, the error of replacing

fi by f⌊j⌋k, with i, j in some a ∈ JNatK, is accounted for by the approximate program

c[y] = ∂(f)(y − k), where y − k = y ∨ {u− k | u ∈ y}. We deduce then that dA(vn, wn)

is bounded by the diameter of ∂(t)∂(h)n(λy.c[y]).

iii. From the fact that wn = w(k·⌊n⌋k) and the triangular inequality of the partial metric dA

we deduce dA(vn, wn) = dA(vn, w(k·⌊n⌋k)) ≤ dA(vn, v(k·⌊n⌋k)) + dA(v(k·⌊n⌋k), w(k·⌊n⌋k)) −

dA(v(k·⌊n⌋k), v(k·⌊n⌋k))

G. Geoffroy and P. Pistone 23:11

From facts i.-iii. we deduce an explicit bound for dA(vn, wn) in terms of ∂(t), ∂(f) and n:

dA(vn, wn) ≤ δA(∂(t)∂(h)([k⌊n⌋k, n]Nat)∂(f)) + δA(∂(t)∂(h)n(λy.∂(f)(y − k))) − δA(∂(t)∂(h)n∂(f)).

We now show how the partial metric semantics can be used to reason about basic

approximation techniques from numerical analysis.

◮ Example 10 (Taylor approximation). We assume that all programs of type Real → Real in

STλC(Fn) are differentiable and that for all n, program t : Real → Real and real number r,

we can define a term Tn(t, r) : Real → Real computing the n-th truncated Taylor polynomial

of t at r. The distance dReal→Real(t, T
n(t, 0)) is the map associating an interval a with the

diameter of the smallest interval containing the image of a under both t and Tn(t, 0). This

value will approximately converge to the self-distance of t when a is a small interval of 0,

and will tend to diverge when a contains points which are far enough from 0.

For example, if t is the function t = λx. sin(x), and a is an interval of 0, then using

standard analytic reasoning we can compute a bound dReal→Real(t, T
n(t, 0))(a) ≤ δReal(a)n+1

(n+1)! ,

which tends to 0 as the diameter of a tends to 0.

Observe that if, instead, we used the sup-distance dsup(t, u) = sup{dReal(tr, ur) | r ∈

ΛReal}, then we could not reason as above, since the sup-distance between λx. sin(x) and its

truncated Taylor polynomials is infinite.

◮ Example 11 (Integral approximation). We now assume that all functions in Fn are integrable

and that we have (see [18]) at our disposal a program λfx.I[0,x](f) : (Real → Real) → Real →

Real such that I[0,r](t) computes (a precise enough approximation of) the definite integral
∫ |r|

0
tx dx. In many contexts we might prefer to replace the expensive computation of

I[0,r](t) by the (more economical but less precise) computation of a finite Riemann sum

Rn
[0,r](t) =

∑n
i=1(txi) · |r|/n, where xi = i · |r|/n.

Suppose now that, in order to approximate the integral of some computationally expensive

program t on [0, r], we replace t by some more efficient program u which, over [0, r], is very

close to t. Let εt(r) indicate the distance between the true integral of t over [0, r] and Rn
[0,r](t),

and moreover let ηt,u(r) be the diameter of ∂(t)([0, r]) ∨ ∂(u)([0, r]).

Using the metric structure of Real we can then bound the error we incur in by replacing

the true integral of t with the Riemann sum of u. In fact, by standard calculation we can

compute the bound dReal(R
n
[0,r](t),R

n
[0,r](u)) ≤ dReal→Real(t, u)([0, r]) · |r| = ηt,u(r) · |r|. Then,

using the triangular inequality of the standard metric on Real we deduce

dReal(I[0,r](t),R
n
[0,r](u)) ≤ dReal(I[0,r](t),R

n
[0,r](t)) + dReal(R[0,r](t),R

n
[0,r](u))

≤ εt(r) + ηt,u(r) · |r|

Using the partial metric on Real → Real, we can also derive a bound expressing how much

the error above is sensitive to changes of r. First, using standard analytic techniques (under

suitable assumptions for t and its derivatives) one can find a program v : Real → Real such

that vr computes an upper bound for εt(r). Then, using the triangular inequality of the

partial metric on Real → Real we deduce, for all interval a, the following bound:

dReal→Real(λx.I[0,x](t), λx.R
n
[0,x](u))(a)

≤ dReal→Real(λx.I[0,x](t), λx.R
n
[0,x](t))(a) + dReal→Real(λx.R[0,x](t), λx.R

n
[0,x](u))(a)

− dReal→Real(λx.R[0,x](t), λx.R
n
0,x](t))(a)

≤ dReal→Real(v, v)(a) +
(

dReal→Real(t, u)(a) − dReal→Real(t, t)(a)
)

· δReal(a)

CSL 2021

23:12 A Partial Metric Semantics of Higher-Order Programs

5 Diameter Space Models Over a Cartesian Closed Category

The examples from the last section relied on the fact that our partial metric semantics scales

well to extensions of STλC(Fn) with new base types and new program constructors. In this

section we justify this fact in more general terms. In fact, we show that the constructions

from Section 3 can be reproduced starting from any model of the simply-typed λ-calculus.

First, we need a suitable notion of model of the simply-typed λ-calculus to start with.

Traditionally, one uses cartesian closed categories: cartesian categories where, for all objects

A, the functor A × − has a right adjoint (the exponential functor). However, since many

usual examples are in fact poset-enriched categories (e.g. Scott domains and continuous

functions, coherent spaces and stable functions), and since any (locally small) category can

be poset-enriched by using equality as the ordering, we will consider instead cartesian closed

poset-enriched categories. To give a counterpart to Proposition 4, we also need a notion of

“weak” model of the simply-typed λ-calculus: since poset-enriched categories are a particular

case of 2-categories (with a unique 2-arrow from f to g if and only if f ≤ g), we follow Hilken

[24] and consider cartesian categories where, for all objects A, the functor A× − has a lax

right adjoint (the lax-exponential functor).

Products and exponentials, when they exist, are necessarily unique up to unique iso-

morphism: thus, traditionally, a cartesian closed category is defined as a category in which

all finite products and exponentials exist, rather than a category equipped with products

and exponentials (i.e. it is a category with a given property, rather than a category with

additional structure). However, this is not the case for lax-exponentials, so for consistency

we will adopt the “structure” picture in both cases. Adapting Hilken’s definitions [24] to the

simpler case of poset-enriched categories, we obtain:

◮ Definition 12. Let (C,×, 1) be a cartesian poset-enriched category. An exponential

(respectively, a lax-exponential) on C is the data of a map exp from Ob(C × C) to Ob(C)

and two families of monotone maps (evW,X,Y : C(W, exp(X,Y)) → C(W × X,Y)) and

(λW,X,Y : C(W ×X,Y) → C(W, exp(X,Y))) such that:

evW,X,Y and λW,X,Y are natural with respect to W ,

for all g ∈ C(W ×X,Y), ev(λ(g)) = g (respectively, ev(λ(g)) ≤ g),

for all f ∈ C(W, exp(X,Y)), f = λ(ev(f)) (respectively, f ≤ λ(ev(f))).

One can check that this definition makes exp a functor (respectively, a lax-functor)

from Ob(Cop × C) to Ob(C) (with exp(f, g) defined as λ(g ◦ ev(id) ◦ (id ×f))). In addition,

this definition implies that ev and λ are natural, in the sense that ev(exp(α, β) ◦ f ◦ γ) =

β◦ev(f)◦(γ×α) and exp(α, β)◦λ(g)◦γ = λ(β◦g◦(γ×α)) (respectively, lax-natural [24], in the

sense that ev(exp(α, β)◦f ◦γ) ≤ β◦ev(f)◦(γ×α) and exp(α, β)◦λ(g)◦γ ≤ λ(β◦g◦(γ×α))).

For the rest of this section, we fix a cartesian poset-enriched category (C,×, 1) (we denote

by 〈−,−〉 the pairing transformation and by πL and πR the projections) and an exponential

(exp, ev, λ) on C. The morphisms of this category represent exact programs, so they play the

role of the terms from Section 3.

◮ Definition 13. A C-diameter space A is the data of

an object |A| of C. The poset C(1, |A|) will be denoted by ΛA;

a set JAK of downwards-closed subsets of ΛA that is closed under arbitrary intersections.

In particular, JAK is a complete lattice whose meet is given by intersection, and for all

t ∈ ΛA, there is a least element of JAK that contains t, which will be denoted by t;

a commutative integral quantale (LAM,+,≤);

G. Geoffroy and P. Pistone 23:13

a monotone function δA : JAK → LAM such that

∀a, b ∈ JAK s.t. a ∧ b 6= ∅, δ(a ∧ b) + δ(a ∨ b) ≤ δ(a) + δ(b),

and such that for all t, u ∈ ΛA, if δA(t) = δA(t ∨ u), then t = t ∨ u.

The role of the condition a ∧ b 6= ∅ is illustrated by Fig. 5.

◮ Example 14. If C is the category whose objects are the simple types from Section 3 and

whose morphisms are the (open) terms modulo β-equivalence, then for all simple types A,

(A, JAK, LAM, δA) defines a C-diameter space.

Following Section 3, for all C-diameter spaces A and B, we define a C-diameter space A×B

such that |A×B| = |A| × |B| and a C-diameter space exp(A,B) such that |exp(A,B)| =

exp(|A| , |B|):

JA × BK = {a × b | a ∈ JAK, b ∈ JBK}, where a × b = {t ∈ C(1, |A| × |B|) | πL ◦ t ∈

a and πR ◦ t ∈ b},

LA×BM = LAM × LBM,

δA×B(c) = (δA({πL ◦ t | t ∈ c}), δB({πR ◦ t | t ∈ c})),

Jexp(A,B)K={{t ∈ C(1, exp(|A| , |B|)) | ∀u ∈ ΛA, ev(t)◦u ∈ I(u)} | I ∈ Poset(ΛA, JBK)},

Lexp(A,B)M = Poset(JAK, LBM),

δexp(A,B)(c) = a 7→ δB

(

sup
{

ev(v) ◦ t | t ∈ a, v ∈ c
})

.

We need a counterpart to Proposition 4. As explained above, we obtain this by organizing

the C-diameter spaces as a cartesian poset-enriched category with a lax-exponential. First,

we need to define a notion of morphisms between two C-diameter spaces A and B (which

represent approximate programs). By analogy with Section 3, these will be monotone functions

from JAK to JBK; however, in order to actually obtain a cartesian category (which was not

an issue in Section 3), we will need to add an extra condition:

◮ Definition 15. We denote by Diam(C) the poset-enriched category defined as follows:

the objects of Diam(C) are the C-diameter spaces,

for all C-diameter spaces A and B, Diam(C)(A,B) is the set of all monotone functions

ϕ : JAK → JBK such that there exists f ∈ C(|A| , |B|) such that for all t ∈ ΛA, f ◦ t ∈ ϕ
(

t
)

(ordered by pointwise inclusion).

One can check that the operation −×− defined above on C-diameter spaces is a cartesian

product in Diam(C). In addition, one can check that there exists in Diam(C) a terminal

object 1Diam(C) such that
∣

∣1Diam(C)

∣

∣ = 1C. In other words, Diam(C) is cartesian. Here too,

we denote by 〈−,−〉 the pairing transformation and by πL and πR the projections.

Now, following Section 3, we can complete the definition of the lax-exponential: let

A,B,C be C-diameter spaces,

for all ϕ ∈ Diam(C)(A, exp(B,C)), we define evA,B,C(ϕ) ∈ Diam(C)(A × B,C) by

evA,B,C(ϕ)(p) = sup
{

ev(v) ◦ u | v ∈ ϕ(πL(p)), u ∈ πR(p)
}

,

for all ψ ∈ Diam(C)(A × B,C), we define λA,B,C(ψ) ∈ Diam(C)(A, exp(B,C)) by

λA,B,C(ψ)(a) = {v ∈ Λexp(B,C) | ∀u ∈ ΛB , ev(v) ◦ u ∈ ψ(a× u)}.

◮ Proposition 16. The triple (exp, ev, λ) is a lax-exponential on Diam(C).

Proof. Naturality with respect to A is immediate.

Let p = a × b ∈ JA × BK. For all v ∈ λ(ψ)(a) and and u ∈ b, by definition ev(u) ◦ u ∈

ψ(a× u) ⊆ ψ(p). Therefore, ev(λ(ψ))(p) ⊆ p.

Let a ∈ JAK and v ∈ ϕ(a). For all u ∈ ΛB, by definition, ev(v) ◦ u ∈ λ(ϕ)(a × u), so

v ∈ λ(ev(ϕ))(a). ◭

CSL 2021

23:14 A Partial Metric Semantics of Higher-Order Programs

As in Section 3, we can find a kind of weak embedding from C to Diam(C). Namely, for

all C-diameter spaces A and B, we define a monotone map ∂ : C(|A| , |B|) → Diam(C)(A,B)

by ∂(f)(a) = sup{f ◦ t | t ∈ a}. The following compatibility result is immediate and offers a

counterpart to Remark 6:

◮ Proposition 17. For all C-diameter spaces A,B,C, all f ∈ C(|A| , |B|) and all g ∈

C(|B| , |C|), ∂(g ◦ f) ≤ ∂(g) ◦ ∂(f). In addition, ∂(id|A|) = idA.

One way to reformulate this result is that ∂ induces an oplax-functor from the category

with the same objects as Diam(C) and the same morphisms as C, to Diam(C).

One can check that ∂ preserves products, in the sense that ∂(〈f, g〉) = 〈∂(f), ∂(g)〉,

∂(πL) = πL and ∂(πR) = πR. In addition ∂ is weakly compatible with the exponential, which

corresponds to Remark 5:

◮ Proposition 18. Let A,B,C be C-diameter spaces,

for all f ∈ C(|A| , exp(|B| , |C|)), ∂(ev(f)) ≤ ev(∂(f)),

for all g ∈ C(|A| × |B| , |C|), ∂(λ(g)) ≤ λ(∂(g)).

Finally, following Section 3, for all C-diameter spaces A and all t, u ∈ ΛA, we write t ≈A u

if t = u. In addition, we define a function dA : ΛA × ΛA → LAM by dA(t, u) = δA(t∨u). Then

the same arguments as in Corollary 8 show that:

◮ Proposition 19. For all C-diameter spaces A, (ΛA/ ≈A, LAM, dA) is a generalized partial

metric space.

One can check that what is described in Section 3 is indeed an instance of this construction.

Here are a couple more examples:

◮ Example 20. We can take C = Set (with the morphisms ordered by equality): Diam(Set)

contains an object RealSet that represents the real numbers with their standard metric

and the compact intervals (plus ∅ and R) as approximate values, namely |RealSet| = R,

JRealSetK = {the compact intervals, ∅,R}, LRealSetM = [0,∞] and δRealSet
(I) = length(I).

In this case, |exp(RealSet,RealSet)| is the set of all functions from R to R, so dRealSet
defines

a partial metric on all such functions.

◮ Example 21. We can take C = Eff, the effective topos [27]: Eff contains an object REff

of recursive reals, and we can define an object RealEff in Diam(Eff) by |RealEff | = REff ,

JRealEffK = {I ∩ REff | I ∈ JRealSetK}, LRealEffM = [0,∞] and δRealEff
(I) = length(I).

In this case, |exp(RealEff ,RealEff)| is the set of all recursive functions from RealEff to

RealEff , so dRealEff
defines a partial metric on all such functions.

◮ Example 22. We can take C = Scott, the poset-enriched category of Scott domains and

continuous functions. It contains an object representing the reals: RScott = (R ∪ {⊥},⊑),

with r ⊑ s iff r = s or r = ⊥. Again, we can define in Diam(Scott) an object RealScott that

represents the real numbers with their standard metric, and this defines a partial metric

on |exp(RealScott,RealScott)|, the set of all Scott continuous functions from RScott to RScott,

which are essentially the partial functions from R to R.

6 Conclusions

Related Work. As stated in the introduction, differential logical relations [32] are a primary

source of inspiration for our approach. A related, but more syntactic approach to approximate

program transformations is that of Westbrook and Chauduri [44], who use a System F-based

G. Geoffroy and P. Pistone 23:15

type system with a type of real numbers and an explicit distinction between exact and

approximate programs. Most examples of contextual reasoning from [44] can be reformulated

in our framework (as the case of loop perforation discussed in Section 4).

The literature on program pseudo-metrics is vast. A major distinction can be made

between those approaches in which metrics account for extensional aspects of programs (like

ours), and approaches in which metrics are used to characterize more intensional aspects. To

the first family belong all metric models developed for reasoning about differential privacy

[35, 3, 7], probabilistic computation [13, 14] and co-inductive models [16, 43, 11, 42]. To the

second class belong approaches like [19] which recovers the Scott model of PCF through a

ultrametric semantics, and most models based on partial metric spaces [9, 33], which rely on

a correspondence between continuous Scott domains and the T0 topology of partial metrics.

From a more mathematical viewpoint, [12] discusses a characterization of exponentiable

GPMS, showing that no such category can both be cartesian closed and contain the standard

metric on R. This result seems to add further evidence of the necessity of considering

metrics over varying quantales in order to model higher-order languages. Finally, the elegant

categorical approach to GPMS based on quantaloid-enriched categories from [26] seems to

provide the relevant structure to develop explicit typing rules for our approximate programs.

Future Work. The approach we presented lends itself to further extensions and general-

izations. First, we would like to investigate the interpretation of more type constructions

than those of STλC(Fn) (e.g. coproducts, recursive types, effects). Moreover, we would like

to explore the possibility of exploiting the structure of the category Diam(C) to construct

new and more refined notions of approximations. For example (we work in Diam(Set) for

simplicity), starting from the “standard” set of approximate values I on RX×X (with elements

of I being families of compact intervals Ux,x′ ⊆ R indexed by elements of X and X ′), one

can define a new family ∆∗I of approximate values for RX by “pulling back” the exact map

∆ : RX → RX×X defined by ∆f(x, x′) = f(x′) − f(x), i.e. letting ∆∗I = {∆−1(a) | a ∈ I}.

The new approximate values then correspond to sets of functions f ∈ RX with a controlled

variation, that is, such that f(x′) − f(x) is bounded by some family of intervals Ux,x′ ∈ I.

Another interesting research direction concerns probabilistic extensions of STλC(Fn).

Probabilistic metrics [15, 30, 13, 14] have been the object of much research in recent years, due

to the relevance of metric reasoning in some areas of computer science in which probabilistic

computation plays a key role (e.g. in cryptography [22] and machine learning [31]). A

convenient starting point seems to be the recent generalization of probabilistic (generalized)

metric spaces to the partial metric case [23].

References

1 S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum. Handbook of Logic in Computer Science:

Volume 2. Background: Computational Structures. Handbook of Logic in Computer Science.

Clarendon Press, 1992. URL: https://books.google.fr/books?id=zqkXKMNXVi0C.

2 Mario Alvarez-Picallo and C.-H. Luke Ong. Change actions: models of generalised differentia-

tion. In FOSSACS 2019, volume 11425 of LNCS, pages 45–61, 2019.

3 Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, Pierpaolo Degano, and

Catuscia Palamidessi. Differential privacy: On the trade-off between utility and information

leakage. In Proceedings of the 8th International Conference on Formal Aspects of Security

and Trust, FAST–11, pages 39–54, Berlin, Heidelberg, 2011. Springer-Verlag. doi:10.1007/

978-3-642-29420-4_3.

CSL 2021

https://books.google.fr/books?id=zqkXKMNXVi0C
https://doi.org/10.1007/978-3-642-29420-4_3
https://doi.org/10.1007/978-3-642-29420-4_3

23:16 A Partial Metric Semantics of Higher-Order Programs

4 A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of non

deterministic recursive programs. Theoretical Computer Science, 11(2):181–205, 1980. doi:

10.1016/0304-3975(80)90045-6.

5 Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram

Cherigui. A semantic account of metric preservation. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages - POPL 2017. ACM Press,

2017. doi:10.1145/3009837.3009890.

6 Christel Baier and Mila E. Majster-Cederbaum. Denotational semantics in the cpo and metric

approach. Theoretical Computer Science, 135(2):171–220, 1994. doi:10.1016/0304-3975(94)

00046-8.

7 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic

relational reasoning for differential privacy. In Proceedings of the 39th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages - POPL ’12. ACM Press, 2012.

doi:10.1145/2103656.2103670.

8 Michael Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial metric

spaces. American Mathematical Monthly - AMER MATH MON, 116:708–718, October 2009.

doi:10.4169/193009709X460831.

9 Michael A. Bukatin and Joshua S. Scott. Towards computing distances between programs via

scott domains. In Sergei Adian and Anil Nerode, editors, Logical Foundations of Computer

Science, pages 33–43, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

10 Y. Cai, P.G. Giarrusso, T. Rendel, and K. Ostermann. A theory of changes for higher-

order languages: incrementalizing λ-calculi by static differentiation. ACM SIGPLAN Not.,

49:145–155, 2014.

11 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. General-

ized bisimulation metrics. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 –

Concurrency Theory, pages 32–46, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

12 Maria Manuel Clementino, Dirk Hofmann, and Isar Stubbe. Exponentiable functors between

quantaloid-enriched categories. Applied Categorical Structures, 17(1):91–101, 2009. doi:

10.1007/s10485-007-9104-5.

13 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about λ-terms: The affine case. In

Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS), LICS ’15, page 633?644, USA, 2015. IEEE Computer Society. doi:10.1109/LICS.

2015.64.

14 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about λ-terms: The general case.

In Hongseok Yang, editor, Programming Languages and Systems, pages 341–367, Berlin,

Heidelberg, 2017. Springer Berlin Heidelberg.

15 J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue of weak

bisimulation for probabilistic processes. In Proceedings 17th Annual IEEE Symposium on

Logic in Computer Science, pages 413–422, July 2002. doi:10.1109/LICS.2002.1029849.

16 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics

for labelled markov processes. Theoretical Computer Science, 318(3):323–354, 2004. doi:

10.1016/j.tcs.2003.09.013.

17 Pietro Di Gianantonio and Abbas Edalat. A language for differentiable functions. In Frank

Pfenning, editor, Foundations of Software Science and Computation Structures, pages 337–352,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

18 Abbas Edalat and Martín Hötzel Escardó. Integration in real pcf. Information and Computation,

160(1):128–166, 2000. doi:10.1006/inco.1999.2844.

19 Martín Hötzen Escardó. A metric model of PCF. In Workshop on Realizability Semantics and

Applications, 1999.

20 Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.

Linear dependent types for differential privacy. In Proceedings of the 40th annual ACM

https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1016/0304-3975(94)00046-8
https://doi.org/10.1016/0304-3975(94)00046-8
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.4169/193009709X460831
https://doi.org/10.1007/s10485-007-9104-5
https://doi.org/10.1007/s10485-007-9104-5
https://doi.org/10.1109/LICS.2015.64
https://doi.org/10.1109/LICS.2015.64
https://doi.org/10.1109/LICS.2002.1029849
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1006/inco.1999.2844

G. Geoffroy and P. Pistone 23:17

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’13. ACM

Press, 2013. doi:10.1145/2429069.2429113.

21 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:

Applicative distances. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS ’18, page 452?461, New York, NY, USA, 2018. Association for

Computing Machinery. doi:10.1145/3209108.3209149.

22 Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System

Sciences, 28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9.

23 Jialiang He, Hongliang Lai, and Lili Shen. Towards probabilistic partial metric spaces:

Diagonals between distance distributions. Fuzzy Sets and Systems, 370:99–119, 2019. Theme:

Topology and Metric Spaces. doi:10.1016/j.fss.2018.07.011.

24 Barnaby P. Hilken. Towards a proof theory of rewriting: the simply typed 2λ-calculus.

Theoretical Computer Science, 170(1):407–444, 1996. doi:10.1016/S0304-3975(96)80713-4.

25 Dirk Hofmann, Gavin J Seal, and W Tholen. Monoidal Topology: a Categorical Approach to

Order, Metric and Topology. Cambridge University Press, New York, 2014.

26 Dirk Hofmann and Isar Stubbe. Topology from enrichment: the curious case of partial metrics.

Cahiers de Topologie et Géométrie DIfférentielle Catégorique, LIX, 4:307–353, 2018.

27 J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. [van Dalen], editors, The L. E.

J. Brouwer Centenary Symposium, volume 110 of Studies in Logic and the Foundations of

Mathematics, pages 165–216. Elsevier, 1982. doi:10.1016/S0049-237X(09)70129-6.

28 Gunther Jäger and T. M. G. Ahsanullah. Characterization of quantale-valued metric spaces and

quantale-valued partial metric spaces by convergence. Applied General Topology, 19(1):129–144,

2018.

29 Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial metrizability in value

quantales. Applied General Topology, 5(1):115–127, 2004.

30 Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences,

22(3):328–350, 1981. doi:10.1016/0022-0000(81)90036-2.

31 Andreas Krause, Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular

observation selection. Journal of Machine Learning Research (JMLR), 9:2761–2801, December

2008.

32 Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu. Differential logical relations, part

I: the simply-typed case. In 46th International Colloquium on Automata, Languages, and

Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 111:1–111:14, 2019.

doi:10.4230/LIPIcs.ICALP.2019.111.

33 S. G. Matthews. Partial metric topology. Annals of the New York Academy of Sciences,

728(1):183–197, 1994. doi:10.1111/j.1749-6632.1994.tb44144.x.

34 Sparsh Mittal. A survey of techniques for approximate computing. ACM Comput. Surv., 48(4),

2016.

35 Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A calculus for

differential privacy. SIGPLAN Not., 45(9):157–168, September 2010. doi:10.1145/1932681.

1863568.

36 Bessem Samet, Calogero Vetro, and Francesca Vetro. From metric spaces to partial

metric spaces. Fixed Point Theory and Applications, 2013(1):5, 2013. doi:10.1186/

1687-1812-2013-5.

37 M. P. Schellekens. The correspondence between partial metrics and semivaluations. Theoretical

Computer Science, 315(1):135–149, 2004.

38 Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. Manag-

ing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software

Engineering, ESEC/FSE ?11, pages 124–134, New York, NY, USA, 2011. Association for

Computing Machinery.

CSL 2021

https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/3209108.3209149
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/j.fss.2018.07.011
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.1016/S0049-237X(09)70129-6
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
https://doi.org/10.1145/1932681.1863568
https://doi.org/10.1145/1932681.1863568
https://doi.org/10.1186/1687-1812-2013-5
https://doi.org/10.1186/1687-1812-2013-5

23:18 A Partial Metric Semantics of Higher-Order Programs

39 D. A. Simovici. On submodular and supermodular functions on lattices and related structures.

In 2014 IEEE 44th International Symposium on Multiple-Valued Logic, pages 202–207, May

2014. doi:10.1109/ISMVL.2014.43.

40 Paul Taylor. A lambda calculus for real analysis. Journal of Logic and Analysis, 2(5):1–115,

2010.

41 Franck van Breugel. An introduction to metric semantics: operational and denotational models

for programming and specification languages. Theoretical Computer Science, 258(1):1–98,

2001. doi:10.1016/S0304-3975(00)00403-5.

42 Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic

transition systems. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,

Automata, Languages and Programming, pages 421–432, Berlin, Heidelberg, 2001. Springer

Berlin Heidelberg.

43 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic transition

systems. Theoretical Computer Science, 331(1):115–142, 2005. Automata, Languages and

Programming. doi:10.1016/j.tcs.2004.09.035.

44 Edwin Westbrook and Swarat Chaudhuri. A semantics for approximate program transforma-

tions, 2013. URL: https://arxiv.org/abs/1304.5531.

https://doi.org/10.1109/ISMVL.2014.43
https://doi.org/10.1016/S0304-3975(00)00403-5
https://doi.org/10.1016/j.tcs.2004.09.035
https://arxiv.org/abs/1304.5531

	Introduction
	Generalized Partial Metric Spaces
	Approximate Programs for the Simply-Typed lambda-Calculus over Real
	Approximate Values and Approximate Programs
	A Partial Metric on Each Type

	Computing Program Distances using Partial Metrics
	Diameter Space Models Over a Cartesian Closed Category
	Conclusions

