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Abstract

Type-two constructions abound in cryptography: adversaries for encryption and authentication

schemes, if active, are modeled as algorithms having access to oracles, i.e. as second-order algorithms.

But how about making cryptographic schemes themselves higher-order? This paper gives an answer

to this question, by first describing why higher-order cryptography is interesting as an object of

study, then showing how the concept of probabilistic polynomial time algorithm can be generalized

so as to encompass algorithms of order strictly higher than two, and finally proving some positive and

negative results about the existence of higher-order cryptographic primitives, namely authentication

schemes and pseudorandom functions.
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1 Introduction

Higher-order computation generalizes classic first-order one by allowing algorithms and

functions to not only take strings but also functions in input. It is well-known that this way

of computing gives rise to an interesting computability and complexity theory [26, 25, 31],

and that it also constitutes a conceptual basis for the functional programming paradigm, in

which higher-order subroutines allow for a greater degree of modularity and conciseness in

programs.
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In cryptography [19, 20, 24], computation is necessarily randomized, and being able

to restrict the time complexity of adversaries is itself crucial: most modern cryptographic

schemes are insecure against computationally unbounded adversaries. Noticeably, higher-

order constructions are often considered in cryptography, in particular when modeling active

adversaries, which have access to oracles for the underlying encryption, decryption, or

authentication functions, and can thus naturally be seen as second-order algorithms. Another

example of useful cryptographic constructions which can be spelled out at different type

orders, are pseudorandom primitives. Indeed, pseudorandomness can be formulated on

(families of) strings, giving rise to so-called pseudorandom generators [5], but also on (families

of) first-order functions on strings, giving rise to the so-called pseudorandom functions [21].

In the former case, again, adversaries (i.e., distinguishers) are ordinary polynomial time

algorithms, while in the latter case, they are polytime oracle machines.

Given the above, it is natural to wonder whether standard primitives like encryption,

authentication, hash functions, or pseudorandom functions, could be made higher-order. As

discussed in Section 2 below, that would represent a way of dealing with code-manipulating

programs and their security in a novel, fundamentally interactive, way. Before even look-

ing at the feasibility of this goal, there is one challenge we are bound to face, which is

genuinely definitional: how could we even give notions of security (e.g. pseudorandomness,

unforgeability, and the like) for second-order functions, given that those definitions would

rely on a notion of third-order probabilistic polynomial time adversary, itself absent from

the literature? Indeed, although different proposals exist for classes of feasible deterministic

functionals [9, 25], not much is known if the underlying algorithm has access to a source

of randomness. Moreover, the notion of feasibility cryptography relies on is based on the

so-called security parameter, a global numerical value which controls the complexity of all the

involved parties. In Section 3, we give a definition of higher-order probabilistic polynomial

time by way of concepts borrowed from game semantics [22, 23, 2], and being inspired by

recent work by Ferée [13]. We give evidence to the fact that the provided definition is general

enough to capture a broad class of adversaries of order strictly higher than two.

After having introduced the model, we take a look at whether any concrete instance

of a secure higher-order cryptographic primitive can be given. The results we provide are

about pseudorandom functions and (deterministic) authentication. We prove on the one

hand that those constructions are not possible if one insists on them having the expected

type (see Section 4.2). On the other hand, we prove (in Section 4.3 below) that second-order

pseudorandomness is possible if the argument function takes as input a string of logarithmic

length.

2 The Why and How of Authenticating Functions

Encryption and authentication, arguably the two simplest cryptographic primitives, are often

applied to programs rather than mere data. But when this is done, programs are treated as

ordinary data, i.e., as strings of symbols. In particular, two different but equivalent programs

are seen as different strings, and their encryptions or authentication tags can be completely

different objects. It is natural to ask the following: would it be possible to deal with programs

as functions and not as strings, in a cryptographic scenario? Could we, e.g., encrypt or

authenticate programs seeing them as black boxes, thus without any access to their code?

For the sake of simplicity, suppose that the program P we deal with has a very simple

IO behaviour, i.e. it takes as input a binary string of length n and returns a boolean.

Authenticating P could in principle be done by querying P on some of its inputs and, based
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on the outputs to the queries, compute a tag for P. As usual, such an authenticating scheme

would be secure if no efficient adversary A could produce a tag for P without knowing the

underlying secret key k (such that |k| = n), unless with negligible probability. Please notice

that the adversary, contrarily to the scheme itself, could have access to the code of P, even if

that code has not been used during the authenticating process.

But how could security be defined in a setting like the above? The three entities at hand

have the following types, where MAC is the authentication algorithm, S = {0, 1}∗ is the set of

binary strings, and B = {0, 1} is the set of boolean values:

P : S→ B

MAC : S→ (S→ B)→ S

A : ((S→ B)→ S)→ (S→ B)× S

The first argument of MAC is the key k, which is of course not passed to the adversary A.

The latter can query MACk and produce a function and its tag. Its type, as expected, has

order three. The above is not an accurate description of the input-output behaviour of the

involved algorithms, and in particular of the fact that the length of the input string to P

might be in a certain relation to the length of k, i.e., the underlying security parameter.

Reflecting all this in the types above is however possible by replacing occurrences of the type

S with refinements of S, as follows:

P : S[n]→ B

MAC : S[n]→ (S[r(n)]→ B)→ S[p(n)]

A : ((S[r(n)]→ B)→ S[p(n)])→ (S[r(n)]→ B)× S[p(n)]

But how could the time complexity of the three algorithms above be defined? While

polynomial time computability of the function P and the authenticating algorithm MAC can

be captured in a standard way using, e.g., oracle Turing machines, the same cannot be said

about A. How to, e.g., appropriately account for the time A needs to “cook” a function f

in S[n] → B to be passed to its argument functional? Appealing as it is, our objective of

studying higher-order forms of cryptography is actually bound to be nontrivial, even from a

purely definitional perspective.

Given the above discussion, the contributions of this paper can be described in greater

detail, as follows:

On the one hand, we give a definition of a polynomial-time higher-order probabilistic

algorithm whose time complexity depends on a global security parameter and which is

based on games and strategies, in line with game semantics [22, 23, 2]. This allows to

discriminate satisfactorily between efficient and non-efficient adversaries, and accounts for

the complexity of first-and-second-order algorithms consistently with standard complexity

theory.

On the other hand, we give some positive and negative results about the possibility of

designing second-order cryptographic primitives, and in particular pseudorandom functions

and authentication schemes. In particular we prove, by an essentially information-theoretic

argument, that secure deterministic second-order authentication schemes of the kind

sketched above cannot exist. A simple and direct reduction argument shows that a

more restricted form of pseudorandom function exists under standard cryptographic

assumptions. Noticeably, the adversaries we prove the existence of are of a very peculiar

form, while the ones which we prove impossible to build are quite general.

ICALP 2020



108:4 On Higher-Order Cryptography

3 Higher-Order Probabilistic Polynomial Time Through Parametrized
Games

In this section, we introduce a framework inspired by game semantics, in which one can talk

about the efficiency of probabilistic higher-order programs in presence of a global security

parameter. While the capability of interpreting higher-order programs is a well-established

feature of game semantics, dealing at the same time with probabilistic behaviors and efficiency

constraints has – to the best of the authors’ knowledge – not been considered so far. The

two aspects have however been tackled independently. Several game models of probabilistic

languages have been introduced: we can cite here, for instance, the fully abstract model of

probabilistic Idealized Algol by Danos and Harmer [11], or the model of probabilistic PCF by

Clairambault at al. [8]. About efficiency, we can cite the work by Férée [13] on higher-order

complexity and game semantics, in which the cost of evaluating higher-order programs is

measured parametrically on the size of all their inputs, including functions, thus in line with

type-two complexity [9]. We are instead interested in the efficiency of higher-order definitions

with respect to the security parameter. Unfortunately, existing probabilistic game models

do not behave well when restricted to capture feasibility: polytime computable probabilistic

strategies in the spirit of Danos and Harmer do not compose (see the Extended Version of

this paper [3] for more details).

Contrary to most works in game semantics, we do not aim at building a model of a

particular programming language, but we take game semantics as our model of computation.

As a consequence, we are not bound by requirements to interpret particular programming

features or to reflect their discriminating power, and the resulting notions of games and

strategies will be very simple.

We present our game-based model of computation in three steps: first, we define a

category of deterministic games and strategies called PG – for parametrized games – which

capture computational agents whose behavior is parametrized by the security parameter.

This model ensures that computational agents are total: they always answer any request

by the opponent. In a second step, we introduce PPG, as a sub-category of PG designed

to model those agents whose time complexity is polynomially bounded with respect to the

security parameter. Finally, we deal with randomized agents by allowing them to interact

with a probabilistic oracle, that outputs (a bounded amount of) random bits.

3.1 Parametrized Deterministic Games

Our game model has been designed so as to be able to deal with security properties that – as

exemplified by computational indistinguishability – are expressed by looking at the behavior

of adversaries at the limit, i.e., when the security parameter tends towards infinity. The

agents we consider are actually families of functions, indexed by the security parameter. As

such, our game model can be seen as a parametrized version of Hyland’s simple games [22],

where the set of plays is replaced by a family of sets of plays, indexed by the natural numbers.

Moreover, we require the total length of any interaction between the involved parties to be

polynomially bounded in the security parameter.

We need a few preliminary definitions before delving into the definition of a game.

Given two sets X and Y , we define Alt(X, Y ) as {(a1, . . . , an) | ai ∈ X if i is odd, ai ∈

Y if i is even}, i.e., as the set of finite alternating sequences whose first element is in X.

Given any set of sequences X, Odd(X) (respectively, Even(X)) stands for the subset of X

containing the sequences of odd (respectively, even) length. From now on, we implicitly

assume that any (opponent or player) move m can be faithfully encoded as a string in an
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appropriate, fixed alphabet. This way, moves and plays implicitly have a length, that we will

indicate through the unary operator | · |. We fix a set Pol of unary polynomially-bounded

total functions on the natural numbers, which includes the identity ι, base-2 logarithm

⌊lg⌋, addition, multiplication, and closed under composition. Pol can be equipped with the

pointwise partial order: p ≤ q when ∀n ∈ N, p(n) ≤ q(n).

◮ Definition 1 (Parametrized Games). A parametrized game G = (OG, PG, LG) consists of

sets OG, PG of opponent and player moves, respectively, together with a family of non-empty

prefix-closed sets LG = {Ln
G}n∈N, where Ln

G ⊆ Alt(OG, PG), such that there is p ∈ Pol with

∀n ∈ N.∀s ∈ Ln
G.|s| ≤ p(n). The union of OG and PG is indicated as MG, and is said to be

set of moves of G.

For every n ∈ N, Ln
G represents the set of legal plays, when n is the current value of the

security parameter. Observe that the first move is always played by the opponent, and that

for any fixed value of the security parameter n, the length of legal plays is bounded by p(n),

where p ∈ Pol. In the following, we often form plays from moves coming from different

games or from different copies of the same game. If s is such a play, we indicate, e.g., the

sub-play of s consisting of the moves from G as sG.

◮ Example 2 (Ground Games). We present here some games designed to model data-types.

The simplest game is probably the unit game 1 = ({?}, {∗}, {Ln
1
}n∈N) with just one opponent

move and one player move, where Ln
1

= {ε, ?, ?∗} for every n. Just slightly more complicated

than the unit game is the boolean game B in which the two moves 0 and 1 take the place

of ∗. In the two games introduced so far, parametrization is not really relevant, since

Ln
G = Lm

G for every n, m ∈ N. The latter is not true in S[p] = ({?}, {0, 1}∗, {Ln
S[p]}n∈N)

with Ln
S[p] = {ε, ?} ∪ {?s | |s| = p(n)}, which will be our way of capturing strings. A slight

variation of S[p] is L[p], in which the returned string can have length smaller or equal to p(n).

◮ Example 3 (Oracle Games). As another example, we describe how to construct poly-

nomial boolean oracles as games. For every polynomial p ∈ Pol we define a game O
p as

({?}, {0, 1}, {Ln
Op}n∈N) with

Ln
Op = {?} ∪ {?b1?b2 . . .?bm | bi ∈ {0, 1} ∧m ≤ p(n)}

∪ {?b1?b2 . . .?bm? | bi ∈ {0, 1} ∧m < p(n)}.

Our oracle games are actually a special case of a more general construction, that amounts to

building, from any game G, and any polynomial p, a game which consists in playing G at

most p(n) times. That is itself nothing more than a bounded version [18] of the exponential

construction from models of linear logic [16].

◮ Definition 4 (Bounded Exponentials). Let G = (OG, PG, LG) be a parametrized game.

For every p ∈ Pol, we define a new parametrized game !pG := (O!pG, P!pG, L!pG) as fol-

lows:

O!pG = N>0 ×OG, and P!pG = N>0 × PG;

For n ∈ N, Ln
!pG is the set of those plays s ∈ Alt(O!pG, P!pG) such that:

for every i, the i-th projection si of s is in Ln
G;

if a move (i+1, z) appears in s for i ∈ N>0, then a move (i, x) appears at some earlier

point of s, and i + 1 ≤ p(n).

We do not need any switching condition as in so-called AJM games [1]: the impossibility for

the observer to switch between the various copies of G when playing in !pG is a byproduct of

our very definition of a game. Observe that the game O
p is isomorphic to the game !pB –

we can build a bijection between legal plays having the same length.

ICALP 2020
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Games specify how agents could play in a certain interactive scenario. As such, they do

not represent one such agent, this role being the one of strategies. Indeed, a strategy on a

game is precisely a way of specifying the deterministic behavior of an agent, i.e. how the

agent plans to react to any possible move by the opponent. We moreover ask our strategies

to be total, i.e., that the player cannot refuse to play when it is her turn.

◮ Definition 5 (Strategies). A strategy on a parametrized game G = (OG, PG, LG) consists of

a family f = {fn}n∈N, where fn is a partial function from Odd(Ln
G) to PG such that:

for every s ∈ Odd(Ln
G), if fn(s) = x is defined, then sx ∈ Ln

G;

sxy ∈ Dom(fn) implies that x = fn(s);

for every s ∈ fn, if sx ∈ Ln
G then sx ∈ Dom(fn);

where f represents the set of plays characterising f, defined as the family {fn} where fn =

{ε} ∪ {sfn(s) | s ∈ Dom(fn)} ⊆ Ln
G.

Any strategy f is entirely characterized by its set of plays f. As such, it does not need to be

effective, i.e., it is entirely possible that f, seen as a function of the history and the security

parameter, is an uncomputable function.

Up to now, the games we have described are such that their strategies are meant to

represent concrete data: think about how a strategy for, e.g., B or O
p could look like.

It is now time to build games modeling functions, this being embodied by the following

construction on games:

◮ Definition 6 (Constructing Functional Games). The game G ⊸ H is given as OG⊸H =

PG + OH , PG⊸H = OG + PH , and LG⊸H = {s ∈ Alt(OG⊸H , PG⊸H) | sG ∈ LG, sH ∈ LH}.

Strategies for the game G ⊸ H are meant to model any agent that, when interacting with a

strategy in G, behaves like a strategy for H. When G and H are ground games, this can

indeed be seen as a function between the corresponding sets.

◮ Example 7. As an example, we look at the game O
p
⊸ S[p], which captures functions

returning a string of size p(n) after having queried a binary oracle at most p(n) times. First,

observe that:

O
p
⊸ S[p] = ({?S[p], 0, 1}, {?Op} ∪ {0, 1}⋆, {Ln

Op
⊸S[p]}n∈N),

where L
O

p
⊸S[p]

n is generated by the following grammar:

q ∈ LO
p
⊸S[p]

n ::=?S[p]o | ?S[p]e | ?S[p]es s ∈ {0, 1}∗ with |s| ≤ p(n)

e ::= ǫ | ?Opb1 . . .?Opbm bi ∈ {0, 1}, m ≤ p(n)

o ::=?Op | ?Opb1 . . .?Opbm−1?Op bi ∈ {0, 1}, m ≤ p(n)

Of course there are many strategies for this game, and we just describe two of them here,

both making use of the oracle: the first one – that we will call oncep – queries the oracle for

a random boolean, and returns the string 0p(n) or the string 1p(n) depending on the obtained

value. It is represented in Figure 1a. The second strategy – denoted multp and represented in

Figure 1b – generates a random key of length p(n) by making p(n) calls to the probabilistic

oracle.

We now look at how to compose strategies: given a strategy on G ⊸ H, and H ⊸ K,

we want to build a strategy on G ⊸ K that combines them. We define composition as

in [22, 32], except that we need to take into account the security parameter n.
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O
p

⊸ S[p]

O

O

?S[p]

b

P ?Op

P bp(n)

(a) The strategy oncep.

O
p

⊸ S[p]

O ?S[p]

P ?Op

O b1

...

P ?Op

O bp(n)

P b1 . . . bp(n)

(b) The strategy multp.

Figure 1 Two Distinct Strategies on the Game O
p
⊸ S[p].

◮ Definition 8 (Composition of Strategies). Let G, H, K be parametrized games, and let f, g

be two strategies on G ⊸ H and H ⊸ K respectively. We first define the set of interaction

sequences of f and g as:

(f 9 g)n = {s ∈ (MG + MH + MK)⋆ | sG,H ∈ fn ∧ sH,K ∈ gn}.

From there, we define the composition of f and g as the unique strategy f; g such that:

f; gn = {sG,K | s ∈ (f 9 g)n}.

We can check that f; g is indeed a strategy on G ⊸ K, and that moreover composition, seen

as an operation on strategies, is associative and admits an identity. We can thus define PG as

the category whose objects are parametrized games, and whose set of morphisms PG(G, H)

consists of the parametrized strategies on the game G ⊸ H.

3.2 Polytime Computable Strategies

Parametrized games have been defined so as to have polynomially bounded length. However,

there is no guarantee on the effectiveness of its strategies, i.e., that the next player move, can

be computed algorithmically from the history, uniformly in the security parameter. This can

be however tackled by considering a subcategory of PG in which strategies are not merely

functions, but can be (efficiently) computed:

◮ Definition 9 (Polytime Computable Strategies). Let G be a parametrized game, and f be a

strategy on G. We say that f is polytime computable when there exists a polynomial time

Turing machine which on input (1n, s) returns f(n)(s).

All strategies we have given as examples in the previous section are polytime computable.

For example, the two strategies from Example 7 are both computable in linear time.

◮ Proposition 10 (Stability of Polytime Computable Strategies). Let G, H, K be polynomially

bounded games. If f, g are polytime computable strategies, respectively on G ⊸ H, and

H ⊸ K, then f; g is itself a polytime computable strategy.

For elementary reasons, the identity strategy on any game G is polytime computable. We

can thus write PPG for the the sub-category of PG whose objects are paramterized games,

and whose morphisms are polytime computable strategies.

ICALP 2020
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Let us now consider the algorithm MAC from Section 2. Its type can be turned into the

parametrized game S[ι] ⊸!q(S[r] ⊸ B) ⊸ S[p]. The bounded exponential !q serves to model

the fact that the argument function can be accessed a number of times which is polynomially

bounded on n. As a consequence, MAC can only query the argument function a number of

times which is negligibly smaller than the number of possible queries, itself exponential in n

(if r(n) ≥ n). As we will see in Section 4, this is the key ingredient towards proving security

of such a message authentication code to be unattainable.

3.3 Probabilistic Strategies

Both in PG and in PPG, strategies on any game G are ultimately functions, and the way they

react to stimuli from the environment is completely deterministic. How could we reconcile

all this with our claim that the framework we are introducing adequately models randomized

higher-order computation? Actually, one could be tempted to define a notion of probabilistic

strategy in which the underlying function family {fn}n∈N is such that fn returns a probability

distribution fn(s) of player moves when fed with the history s. This, however, would lead to

some technical problems when composing strategies: it would be hard to keep the composition

of two efficient strategies itself efficient (see [3]).

It turns out that a much more convenient route consists, instead, in defining a probabilistic

strategy on G simply as a deterministic polytime strategy on O
p
⊸ G, namely as an

ordinary strategy having access to polynomially many random bits. Actually, we have already

encountered strategies of this kind, namely oncep and multp from Example 7. This will be

our way of modeling higher-order probabilistic computations.

But in which sense does any probabilistic strategy behave probabilistically, given that,

after all, behind it there is a deterministic (polytime) Turing machine? The following

definition gives an answer to this question, in the particular case of probabilistic strategies

on the game B.

◮ Definition 11. Let f be a strategy on the game O
p
⊸ B. For every b ∈ B, we define the

probability of observing b when executing f as follows:

Pr(f ⇓n b) =
∑

(b1,...,bk)∈Bk

with (?B·?Op ·b1...?Op ·bk·b)∈fn

1

2k
.

Parametrized games and probabilistic strategies can be themselves seen as a category

whose morphisms (from the game G to the game H) are pairs in the form (q, f), where f is a

strategy in O
q
⊸ (G ⊸ H). This category can be proved to be symmetric monoidal closed,

although cartesian closure fails: duplication is not available in its full generality, but only in

bounded form, which, we conjecture, is enough to get the structure of a bounded exponential

situation [6].

Given a probabilistic strategy f on G (i.e. a strategy on O
q
⊸ G) and p ∈ Pol, we

indicate as !pf the strategy in which p(n) copies of f are played, but in which randomness

is resolved just once and for all, i.e. !pf is the naturally defined strategy on O
q
⊸!pG in

which the q(n) random bits are all queried for at the beginning of the play, after the first

opponent move.

3.4 On the Expressive Power of Probabilistic Strategies

A few words about the expressive power of probabilistic strategies – seen as a model of higher-

order randomized computation – are now in order. For trivial reasons, every probabilistic

strategy for the game S[ι] ⊸ L[p] can be precisely simulated by a probabilistic Turing machine
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!q(S[r] ⊸ B) ⊸ S[p]

O ?S[p]

P (1, ?B)

O (1, ?S[r])

P (1, s1)

O (1, t1)

...

P (m, ?B)

O (m, ?S[r])

P (m, sm)

O (m, tm)

P v

Figure 2 Plays (of Maximal Length) for the game !q(S[r] ⊸ B) ⊸ S[p].

working in polynomial time. Conversely, every such machine can be turned into a probabilistic

strategy for the aforementioned game, once p is chosen as a sufficiently large polynomial.

Similarly, behind any probabilistic strategy for the game S[ι] ⊸!q(L[p] ⊸ L[r]) ⊸ L[s]

there is an probabilistic oracle Turing machine working in polynomial time. The converse

statement, however, can be proved only assuming the oracle with which the machine interacts

to produce outputs polynomially related (in size) to the inputs.

More generally, the intrinsic restriction parametrized games impose on the length of any

interaction indeed poses some limitations as to what strategies can do, and in particular to how

they can interact with the environment. This implies that our framework is fundamentally

inadequate as a characterization of, say, the basic feasible functionals [9]. We claim, however,

that cryptography most often deals with situations in which, even if some of the parties

can be computationally unbounded, the length of the interaction between them, but also

the size of the exchanged messages, are polynomially bounded. The interested reader is

invited to take a look at, e.g., the cryptographic experiments in [24]. Even in interactive

proofs, in which no restrictions is put on complexity of the prover, the amount and size of

the exchanged messages is by definition polynomially bounded.

4 The (In)feasibility of Higher-Order Cryptography

In this section, we give both negative and positive results about the possibility of defining a

deterministic polytime strategy for the game S[ι] ⊸!q(S[r] ⊸ B) ⊸ S[p] which could serve

to authenticate functions. When r is linear, this is impossible, as proved in Section 4.2 below.

When, instead, r is logarithmic (and q is at least linear), a positive result can be given, see

Section 4.3.

But how would a strategy for the game !q(S[r] ⊸ B) ⊸ S[p] look like? Plays for this

game are in Figure 2. A strategy for such a game is required to determine the value of the

query si+1 ∈ S[r(n)] based on t1, . . . , ti ∈ B. Moreover, based on t1, . . . , tm (where m ≤ q(n)),

the strategy should be able to produce the value v ∈ S[p(n)]. Strictly speaking, the strategy

should also be able to respond to a situation in which the opponent directly replies to a
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move (i, ?B) by way of a truth value (i, ti), without querying the argument. This is however

a signal that the agent with which the strategy is interacting represents a constant function,

and we will not consider it in the following.

The way we will prove deterministic authentication impossible when r is linear consists

in showing that since q is polynomially bounded (thus negligibly smaller than the number

of possible queries of type S[r] any function is allowed to make to its argument), there are

many argument functions S[r(n)]→ B which are indistinguishable, and would thus receive

the same tag. In the following, we prove that the (relatively few) coordinates on which the

argument function is queried can even be efficiently determined.

4.1 Efficiently Determining Influential Variables

A key step towards proving our negative result comes from the theory of influential variables

in decision trees. In this section, we are going to give some preliminary definitions about it,

without any aim at being comprehensive (see, e.g., [29]).

From now on, metavariables like N , M , L stand for natural number unrelated to the

security parameter, unless otherwise specified. Given a natural number N ∈ N, [N ] denotes

the set {1, . . . , N}. Whenever j ∈ [N ], ej ∈ S[N ] is the binary string which is everywhere 0

except on the j-th component, in which it is 1.

◮ Definition 12 (Variance and Influence). For every distribution D over S[N ], and F : S[N ]→

B, we write VarD(F ) for the value E(F (D)2)− E(F (D))2 = Prx,y∼D(F (x) 6= F (y)), called

the variance of F under D. For every distribution D over S[N ], F : S[N ]→ B, and j ∈ [N ],

we define the influence of j on F under D, written Inf
j
D(F ), as Prx∼D[F (x) 6= F (x⊕ ej)].

The quantity Inf
j
D(F ) measures how much, on the average, changing the j-th input to F

influences its output. If F does not depend too much on the j-th input, then Inf
j
D(F ) is

close to 0, while it is close to 1 when switching the j-th input has a strong effect on the

output.

◮ Example 13. Let PARITYN : S[N ]→ B be the parity function on N bits. It holds that

Inf
j
D(PARITYN ) = Pr

x∼D
[PARITYN (x) 6= PARITYN (x⊕ ej)]

=
∑

x

D(x) · |PARITYN (x)− PARITYN (x⊕ ej)| =
∑

x

D(x) = 1.

This indeed matches the intuition: changing any one coordinate makes the output to change,

independently on the distribution from which the input is drawn.

If F : A→ S[L], and t ∈ [L], we define Ft : A→ B to be the function that on input x ∈ A

outputs the t-th bit of F (x). The kind of distributions over S[N ] we will be mainly interested

at are the so-called semi-uniform ones, namely those in which some of the N bits have

a fixed value, while the others take all possible values with equal probability. It is thus

natural to deal with them by way of partial functions. For every partial function g : [N ]→ B

we define Dom(g) ⊆ [N ] to be the set of inputs on which g is defined, and Ug to be the

uniform distribution of x over S[N ] conditioned on xj = g(j) for every j ∈ Dom(g), i.e., the

distribution defined as follows:

Ug(x) =

{

1
2N−|Dom(g)| if xj = g(j) for every j ∈ Dom(g);

0 otherwise.
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0 1 0 0 11 1 0

1

2 2

3 3 3 3

Figure 3 A Decision Tree for PARITY3.

If a distribution D can be written as Ug, where g : [N ]→ B, we say that D is an Dom(g)-

distribution, or a semi-uniform distribution. Given a distribution D : S[N ]→ R[0,1], some

index j ∈ [N ] and a bit b ∈ B, the expression D[j ← b] stands for the conditioning of D

to the fact that the j-th boolean argument is b. Note that if D is an S-distribution and

j ∈ [N ] \ S, then D[j ← b] is an S ∪ {j}-distribution.

A crucial concept in the following is that of a decision tree, which is a model of computation

for boolean functions in which the interactive aspects are put upfront, while the merely

computational aspects are somehow abstracted away.

◮ Definition 14 (Decision Tree). Given a function F , a decision tree T for F is a finite

ordered binary tree whose internal nodes are labelled with an index i ∈ [N ], whose leaves are

labelled with a bit b ∈ B, and such that whenever a path ending in a leaf labelled with b is

consistent with x ∈ S[N ], it holds that F (x) = b. The depth of any decision tree T is defined

the same as that of any tree.

◮ Example 15. An example of a decision tree that computes the function PARITY3 : S[3]→

B defined in Example 13 can be found in Figure 3.

The following result, which is an easy corollary of some well-known results in the literature

(i.e. Corollary 1.2 from [29]), put the variance and the influence in relation whenever the

underlying function can be computed by way of a decision tree of limited depth.

◮ Lemma 16. Suppose that F is computable by a decision tree of depth at most q and

g : [N ]→ B is a partial function. Then there exists j ∈ [N ] \Dom(g) such that

Inf
j
Ug

(F ) ≥
VarUg (F )

q .

Every decision tree T makes on any input a certain number of queries, which of course

can be different for different inputs. If D is a distribution, S is a subset of [N ] and T is a

decision tree, we define ∆D,S(T ) as the expectation over x ∼ D of the number of queries that

T makes on input x outside of S, which is said to be the average query complexity of T on D

and S. The following result relates the query complexity before and after the underlying

semi-uniform distribution is updated: if we fix the value of a variable, then the average query

complexity goes down (on the average) by at least the variable’s influence:

◮ Lemma 17. For every decision tree T computing a function F , S ⊆ [N ], j ∈ [N ] \ S, and

S-distribution D, it holds that

1
2 ∆D[j←0],S∪{j}(T ) + 1

2 ∆D[j←1],S∪{j}(T ) ≤ ∆D,S(T )− Inf
j
D(F ).

By somehow iterating over Lemma 17, we can get the following result, which states that fixing

enough coordinates, the variance can be made arbitrarily low, and that those coordinates

can be efficiently determined:
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◮ Theorem 18. For every F : S[N ]→ S[L] such that for every t ∈ [L], Ft is computable by

a decision tree of depth at most Q, and every ε > 0, there exist a natural number m ≤ LQ2/ε

and a partial function g : [N ]→ B where |Dom(g)| ≤ m such that VarUg
(Ft) ≤ ε for every

t ∈ {1, . . . , L}. Moreover, there is a polytime randomized algorithm A that on input F , δ > 0,

and ε > 0, makes at most O(LN) · poly(Q/(δε)) queries to F and outputs such a partial

function g with |Dom(g)| ≤ O((LQ2)/(εδ)) with probability at least 1− δ.

Proof. We here give the main ingredients of the proof, referring to [3] for a more detailed

account. The algorithm A proceeds by iteratively fixing new coordinates between the N

many ones the function F depends on, stopping when the variance of all the functions Ft on

the obtained semi-uniform distribution falls significantly below ε. The next coordinate to

be fixed is chosen by estimating, using statistical methods, the influence of all the possible

coordinates. Using similar methods, A can also estimate accurately the variance, and stop

when enough coordinates are fixed. The role of Lemma 16 is to guarantee that if the variance

is not too low, an influential variable can always be found, while the one of Lemma 17 consists

in guaranteeing that a bounded number of iterations is enough. ◭

4.2 On the Impossibility of Authenticating Functions

Theorem 18 tells us that for every first-order boolean function which can be computed by

a decision tree of low depth, there exist relatively few of its coordinates that, once fixed,

determine the function’s output with very high probability. If N is exponentially larger than

Q, in particular, there is no hope for such a function to be a secure message authentication

code. In this section, we aim at proving the aforementioned claim. In order to do it, we

build a third-order randomized algorithm, which will be shown to fit into our game-theoretic

framework.

More specifically, we are concerned with the cryptographic properties of strategies for

the parametrized game SOFq,r,p =!q(S[r] ⊸ B) ⊸ S[p] and, in particular, with the case in

which r is the identity ι, i.e. we are considering the game LINSOFq,p = SOFq,ι,p. Any such

strategy, when deterministic, can be seen as computing a family of functions {Fn}n∈N where

Fn : (S[n]→ B)→ S[p(n)]. How could we fit all this into the hypotheses of Theorem 18?

The definitions of variance, influence, and decision tree can be easily generalised to

functions in the form F : (S[N ]→ B)→ S[M ]. Of course the underlying distribution D must

be a distribution over functions S[N ] → B. The parameter N can be fixed in such a way

that n < N < 2n, where n is the security parameter. For simplicity we will choose N to be a

power of 2, which hence divides 2n.

◮ Definition 19 (Extensions). For every x ∈ S[N ], we define the extension of x, denoted

by fx as the function fx : S[n] → B such that for every i ∈ [2n] (identifying S[n] with the

numbers {0, . . . , 2n − 1} in the natural way), it holds that fx(i) = x⌊i/N⌋+1. That is, fx is

the function that outputs x1 on the first 2n/N inputs, outputs x2 on the second 2n/N inputs,

and so on and so forth. Given a distribution D over S[N ], a distribution over functions

S[n]→ B can be formed in the natural way as fD.

We will also make use of the following slight variation on the classic notion of Hamming

distance: define H(·, ·) to be the so-called normalized Hamming distance. In fact, we overload

the symbol H and use it for both strings in S[N ] and functions in S[n] → X for some set

X. That is, if x, y ∈ {0, 1}N then H(x, y) = Prj∈[N ][xj 6= yj ] while if f , g ∈ S[n]→ X then

H(f , g) = Pri∈S[n][f(i) 6= g(i)].
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Finally, the following ground game will be useful in the following as a way to represent

partial functions as ground objects. The game T[q] is a slight variation on S[q] in which the

returned string is in the ternary alphabet {0, 1,⊥}. Any strategy for T[q] can thus be seen

as representing a (family of) partial functions from [q(n)] to B.

◮ Theorem 20. For every ε, δ > 0, there is a polytime probabilistic strategy infvarε,δ on the

game !s(LINSOFq,p) ⊸ T[t] such that for every deterministic strategy f on LINSOFq,p com-

puting {Fn}n∈N, the composition (!sf); infvarε,δ, with probability at least 1− δ, computes some

functions gn : [t(n)]→ B such that VarfUgn
(Fn) ≤ ε and |Dom(gn)| ≤ O(p(n)q2(n)/(δǫ)).

Proof. This is a corollary to Theorem 18, since the functions Fn can be seen as first-order

functions, and can thus be queried on functions in the form fx (see Definition 19), where

x ∈ S[N ], and N is appropriately chosen so as to be significantly smaller than 2n. Since Fn

is computed by f, it can be computed by a decision tree having depth q(n). Please refer

to [3] for a more detailed proof. ◭

Remarkably, the strategy infvarε,δ infers the “influential variables” of f without looking at

how the latter queries its argument function, something which would anyway be available in

the history of the interaction. This is reminiscent of innocence [23], a key concept in game

semantics. We can now state the main result of this section.

◮ Theorem 21. For every δ there is a polytime probabilistic strategy collδ on a game

!s(LINSOFq,p) ⊸ (S[ι] ⊸ B)⊗ (S[ι] ⊸ B) such that for every deterministic strategy f on

LINSOFq,p computing {Fn}n∈N, the composition (!sf); collδ, with probability at least 1− δ,

computes two function families g, h with gn, hn : S[n]→ B such that

1. H(gn, hn) ≥ 0.1 for every n.

2. Fn(gn) = Fn(hn) for every n.

3. For every function f on which collδ queries its argument, it holds that H(f , gn) ≥ 0.1

and H(f , hn) ≥ 0.1.

Proof. The strategy collδ can be easily built from infvarε,δ: the former calls the latter, and

then draws two strings independently at random from Ukn
, where kn is the function the

latter produces in output, and obtaining x, y. The two required outputs are thus fx and fy,

and have all the required properties. ◭

This shows that collδ finds a collision for Fn as a pair of functions that are different from

each other (and in fact significantly different in Hamming distance) but for which Fn outputs

the same value, and hence F cannot be a collision-resistant hash function. Moreover, because

the functions are far from those queried, this means that Fn cannot be a secure message

authentication code either, since by querying Fn on gn, the adversary can predict the value

of the tag on hn.

4.3 A Positive Result on Higher-Order Pseudorandomness

We conclude this paper by giving a positive result. More specifically, we prove that pseudor-

andomness can indeed be attained at second order, but at a high price, namely by switching

to the type LOGSOFp = SOF ι,⌊lg⌋,p. This indeed has the same structure of LINSOFq,p,

but the argument function takes in input strings of logarithmic size rather than linear size.

Moreover, the argument function can be accessed a linear number of times, which is enough

to query it on every possible coordinate.

The fact that a strategy on LOGSOFp can query its argument on every possible coordinate

renders the attacks described in the previous section unfeasible. Actually, LOGSOFp can

be seen as an interactive variation of the game S[ι] ⊸ S[p], for which pseudorandomness is
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!ι+1(L[ι] ⊸ S[w]) ⊸ !ι(S[⌊lg⌋] ⊸ B) ⊸ S[p])

O ?S[p]

...
P (i, ?S[w])

O (i, ?L[ι])

P (i, (z1 · · · zi−1)

O (i, ji))

P (i, ?B)

O (i, ?S[⌊lg⌋])

P (i, α(ji, {j1, . . . , ji−1})

O (i, zi)
...

P (n, ?S[w])

O (n, ?L[ι])

P (n, (z1 · · · zn))

O (n, v)

P β(v)

Figure 4 Plays in fo2so.

well known to be attainable starting from standard cryptographic assumptions [19]: simply,

instead of taking in input the whole string at once, it queries it bit by bit, in a certain order.

A random strategy of that type, then, would be one that, using the notation from Figure 2,

Given t1, . . . , ti ∈ B, returns a string si+1 uniformly chosen at random from S[r(n)] −

{s1, . . . , si}, this for every i < q(n).

Moreover, based on t1, . . . , tr(n), it produces a string v chosen uniformly at random from

S[p(n)].

Please notice that this random strategy can be considered as a random functional in

(S[r(n)] → B) → S[p(n)] only if r(n) is logarithmic, because this way the final result v is

allowed to depend on the value of the input function in all possible coordinates. The process

of generating such a random strategy uniformly can be seen1 as a probabilistic strategy

randsof. We are now ready to formally define pseudorandom functions:

◮ Definition 22 (Second-Order Pseudorandom Function). A deterministic polytime strategy f

on S[ι] ⊸ LOGSOFp is said to be pseudorandom iff for every probabilistic polytime strategy

A on !sLOGSOFp ⊸ B there is a negligible function ε : N→ R[0,1] such that

|Pr(!s(multι; f);A ⇓n 1)− Pr(!srandsof;A ⇓n 1)| ≤ ε(n).

The way we build a pseudorandom function consists in constructing a deterministic

polytime strategy fo2so for the game !ι+1(L[ι] ⊸ S[w]) ⊸ LOGSOFp, where w ∈ Pol is

such that w ≥ ⌊lg⌋ and w ≥ p. The strategy is represented in Figure 4. The function α

interprets its first argument (a string in S[w(n)]), as an element of S[⌊lg⌋(n)] distinct from

those it takes as second argument, and distributing the probabilities uniformly. The function

β, instead, possibly discards some bits of the input and produces a possibly shorter string.

1 the strategy at hand would, strictly speaking, need exponentially many random bits, which are not
allowed in our model; this could be accomodated without any major problem.
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The way the strategy fo2so is defined makes the composition f; fo2so statistically very

close to the random strategy whenever f is chosen uniformly at random among the strategies

for the parametric game L[ι] ⊸ S[w]. This allows us to prove the following:

◮ Theorem 23. Let F : {0, 1}n × {0, 1}≤n → {0, 1}w(n) be a pseudorandom function and let

fF be the deterministic polytime strategy for the game S[ι] ⊸!ι+1(L[ι] ⊸ S[w]) obtained from

F . Then, fF ; fo2so is second-order pseudorandom.

5 Related Work

Game semantics and the geometry of interaction are among the best-studied program semantic

frameworks (see, e.g. [17, 2, 23]), and can also be seen as computational models, given their

operational flavor. This is particularly apparent in the work on abstract machines [10, 14],

but also in the so-called geometry of synthesis [15]. In this paper, we are particularly

interested in the latter use of game semantics, and take it as the underlying computational

model. The definition of our game model has been strongly inspired by works by Hyland [22]

and Wolverson [32], the main novelties being parametrization and the bounded exponential

construction, which together allow us to account for efficient randomized higher-order

computations of the kinds used in cryptography. As a consequence, our definition of an

acceptable strategy is more permissive than the ones from so-called AJM games [2] and

HO games [23], the former being history-free, the latter essentially relying on so-called

justification pointers.

This is certainly not the first paper in which cryptography is generalized to computational

models beyond the one of first-order functions. One should of course cite Canetti’s universally

composable security [7], but also Mitchell et al.’s framework, the latter based on process

algebras [28]. None of them deals with security properties of higher-order functions, though.

A precursor of the aforementioned work [27] deals with first-order probabilistic polynomial

time by way of oracles in an higher-order calculus, but lacks any claim about how probabilistic

polynomial time would look like for genuinely higher-order functions.

Various ways to generalize the so-called formal model [12] to higher-order computation

have been proposed. As an example, this is what Sumii and Pierce [30] do with their system

of logical relations, which is shown to guarantee a form of non-interference. Similarly for

Bhargavan et al.’s type system [4] in which cryptographic primitives are seen as libraries for

the language F#. All this is is however fundamentally different from what we do here, namely

extending the so-called computational model to higher-order computation: randomized

behaviours and time-bounds are abstracted away.
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