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1 Introduction
Program preorders and equivalences are fundamental concepts in
the theory of programming languages since the very birth of the
discipline. Such notions are usually defined by means of relations
between program phrases aimed to order or identify programs
according to their observable behaviours, the latter being usually
defined by means of a primitive notion of observation such as ter-
mination to a given value. We refer to such relations as behavioural
relations. Well-known behavioural relations for higher-order func-
tional languages include the contextual preorder and contextual
equivalence [38], applicative (bi)similarity [1], and logical relations
[42].

Instead of asking when two programs e and e ′ are behaviourally
similar or equal, a more informative question may be asked, namely
howmuch (behaviourally) different e and e ′ are. That means that in-
stead of looking at relations relating programs with similar or equal
behaviours we look at relations assigning programs a numerical
value representing their behavioural distance, i.e. a numerical value
quantifying the observable differences between their behaviours.
The question of quantifying observable differences between pro-
grams turned out to be particularly interesting (and challenging)
for effectful higher-order languages, where ordinary qualitative
(i.e. boolean-valued) equivalences and preorders are too strong.
This is witnessed by recent results on behavioural pseudometrics
for probabilistic λ-calculi [12, 13] as well as results on semantics
of higher-order languages for differential privacy [17, 41]. In the
first case one soon realises that programs exhibiting a different
behaviour only with probability close to zero are fully discrimi-
nated by ordinary behavioural relations, whereas in the second
case relational reasoning does not provide any information on how
much behavioural differences between inputs affect behavioural
differences between outputs.

These problems can be naturally addressed by working with
quantitative relations capturing weakened notions of metric such
as generalised metrics [32] and pseudometrics [47]. It is then natural
to ask whether and to what extent ordinary behavioural relations
can be refined into quantitative relations still preserving their nice
properties. Although easy to formulate, answering such question
is far from trivial and requires major improvements in the current
theory of behavioural reasoning about programs.

This paper contributes to answering the above question, and it
does so by studying the quantitative refinement of Abramsky’s ap-
plicative similarity and bisimilarity [1] for higher-order languages
enriched with algebraic effects. Applicative similarity (resp. bisim-
ilarity) is a coinductively defined preorder (resp. equivalence) re-
lating programs that exhibit similar (resp. equal) extensional be-
haviours. Due to its coinductive nature and to its nice properties,

.

applicative (bi)similarity has been studied for a variety of calculi,
both pure and effectful. Notable examples are extensions to non-
deterministic [31] and probabilistic [11, 15] λ-calculi, and its more
recent extension [14] to λ-calculi with algebraic effects à la Plotkin
and Power [40]. In [14] an abstract notion of applicative similarity
is studied for an untyped λ-calculus enriched with a signature of
effect-triggering operation symbols. Operation symbols are inter-
preted as algebraic operations with respect to a monad T encap-
sulating the kind of effect such operations produce. Examples are
probabilistic choices with the (sub)distribution monad, and nonde-
terministic choices with the powerset monad. The main ingredient
used to extend Abramsky’s applicative similarity is the concept of
a relator [6, 48] for a monad T , i.e. an abstraction meant to capture
the possible ways a relation on a set X can be turned into a relation
on TX . That allows to define an abstract notion of effectful applica-
tive similarity parametric in a relator, and to prove an abstract
precongruence theorem stating the resulting notion of applicative
similarity is a compatible preorder.

The present work originated from the idea of generalising the
theory developed in [14] to relations taking values over arbitrary
quantitative domains (such as the real extended half-line [0,∞]
or the unit interval [0, 1]). Such generalisation requires three ma-
jor improvements in the current theory of effectful applicative
(bi)similarity:

1. The first improvement is to move from boolean-valued relations
to relations taking values on quantitative domains such as [0,∞]
or [0, 1] in such a way that restricting these domains to the two
element set {0, 1} (or {false, true}) makes the theory collapse
to the usual theory of applicative (bi)similarity. For that we
rely on Lawvere’s analysis [32] of generalised metric spaces
and preordered sets as enriched categories. Accordingly, we
replace boolean-valued relations with relations taking values
over quantales [43] (V, ≤, ⊗,k ), i.e. algebraic structures (notably
complete lattices equipped with a monoid structure) that play
the role of sets of abstract quantities. Examples of quantales
include the extended real half-line ([0,∞], ≥, 0,+) ordered by
the “greater or equal” relation ≥ and with monoid structure
given by addition (and its restriction to the unit interval [0, 1]),
and the extended real half-line ([0,∞], ≥, 0, max) with monoid
structure given by binary maximum (in place of addition), as
well as any complete Boolean and Heyting algebra. This allows
to develop an algebra of quantale-valued relations, V-relations
for short, which provides a general framework for studying both
behavioural relations and behavioural distances (for instance, an
equivalence V-relation instantiates to an ordinary equivalence
relation on the boolean quantale ({false, true}, ≤,∧, true), and
to a pseudometric on the quantale ([0,∞], ≥, 0,+)).

2. The second improvement is the generalisation of the notion of
relator to quantale-valued relators, i.e. relators acting on rela-
tions taking values over quantales. Perhaps surprisingly, such
generalisation is at the heart of the filed of monoidal topology
[25], a subfield of categorical topology aiming to unify ordered,
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metric, and topological spaces in categorical terms. Central to
the development of monoidal topology is the notion of V-relator
or V-lax extension of a monad T which, analogously to the no-
tion of relator, is a construction lifting V-relations on a set X to
V-relations on TX . Notable examples of V-relators are obtained
from the Hausdorff distance (for the powerset monad) and from
the Wasserstein-Kantorovich distance [49] (for the distribution
monad).

3. The third improvement (on which we will expand more in the
next paragraph) is the development of a compositional theory of
behavioural V-relations (and thus of behavioural distances). As
we are going to see, ensuring compositionality in an higher-order
setting is particularly challenging due to the ability of higher-
order programs to copy their input several times, a feature that
allows them to amplify distances between their inputs ad libitum.

The result is an abstract theory of behavioural V-relations that al-
lows to define notions of quantale-valued applicative similarity and
bisimilarity parametric in a quantale-valued relator. The notions
obtained generalise the existing notions of real-valued applicative
(bi)similarity and can be instantiated to concrete calculi to provide
new notions of applicative (bisimilarity) distance. A remarkable
example is the case of probabilistic λ-calculi, where to the best
of the author’s knowledge a (non-trivial) applicative distance for
a universal (i.e. Turing complete) probabilistic λ-calculus is still
lacking in the literature (but see Section 9).

The main theorem of this paper states that under suitable con-
ditions on monads and quantale-valued relators the abstract no-
tion of quantale-valued applicative similarity is a compatible—i.e.
compositional—reflexive and transitive V-relation. Under mild con-
ditions such result extends to quantale-valued applicative bisimilar-
ity, which is thus proved to be a compatible, reflexive, symmetric,
and transitive V-relation (i.e. a compatible pseudometric).

In addition to the concrete results obtained for quantale-valued
applicative (bi)similarity, the contribution of the present work also
relies on introducing and combining several notions and results
developed in different fields (such as monoidal topology, coalgebra,
and programming language theory) to build an abstract framework
for studying quantitative refinements of behavioural relations for
higher-order languages whose applications go beyond the present
study of applicative (bi)similarity.

Compositionality, distance amplification, and linear types
Once we have understood what is the behavioural distance δ (e , e ′)
(which, for the sake of this argument, we assume to be a non-
negative real number) between two programs e and e ′, it is natural
to ask if and how much such distance is modified when e and e ′ are
used inside a bigger program—i.e. a context—C[−]. Indeedwewould
like to reason about the distance δ (C[e],C[e ′]) compositionally, i.e.
in terms of the distance δ (e , e ′).

Compositionality is at the heart of relational reasoning about
program behaviours. Informally, compositionality states that obser-
vational indistinguishability is preserved by language constructors;
formally, a relation is compositional if it is compatible with all lan-
guage constructors, meaning that whenever two programs e and e ′
are related, then so are the bigger programs C[e] and C[e ′].

Analogous to the idea that compatible relations are preserved
by language constructors, we are tempted to define as compatible
those distances that are not increased by language constructors.

That is, we would like to say that a behavioural distance δ is com-
patible if the distance δ (C[e],C[e ′]) between C[e] and C[e ′] is
always bounded by the distance δ (e , e ′), no matter how C[−] uses
e and e ′. However, we soon realise that such proposal cannot work:
not only how C[−] uses e and e ′ matters, but also how much it
uses them does. This phenomenon, called distance amplification
[13], can be easily observed when dealing with probabilistic lan-
guages. Consider the following example for a probabilistic untyped
λ-calculus [15] taken from [13]. Let I be the identity combinator
and I ⊕ Ω be the program evaluating to I with probability 1

2 , and
diverging with probability 1

2 . Assuming we observe the probability
of convergence of a program, it speaks by itself that we would
expect the behavioural distance δ (I , I ⊕ Ω) between I and I ⊕ Ω to
be 1

2 . However, it is sufficient to consider a family {Cn[−]}n≥0 of
contexts that duplicate their input n-times1 to see that any such
context amplifies the observable distance between I and I ⊕ Ω:
as n grows, the probability of convergence of C[I ⊕ Ω] tends to
zero, whereas the one of C[I ] remains always equal to one. During
its evaluation, every time the context Cn evaluates its inputs the
detected distance between the latter is somehow accumulated to
the distances previously observed, thus exploiting the linear—in
opposition to classical—nature of the act of measuring. Such linear-
ity naturally reflects the monoidal closed structure of categories
of metric spaces, in opposition with the cartesian closed structure
characterising ‘classical’ (i.e. boolean-valued) observations.

The above example shows that if we want to reason composition-
ally about behavioural distances, then we have to accept that con-
texts can amplify distances, and thus we should take into account
the number of times a program accesses its input. More concretely,
our notion of compatibility allows a context C[−] using its input
s times to increase the distance δ (e , e ′) between e and e ′, but of
a factor at most s . That is, the distance δ (C[e],C[e ′]) should be
bounded by s · δ (e , e ′). Our main result states that quantale-valued
applicative (bi)similarity is compatible in this sense. This result
allows us to reason about behavioural distances compositionally,
so that we can e.g. conclude that the distance between I and I ⊕ Ω
is indeed 1

2 (Example 14).
Reasoning about the number of times programs use (or test)

their inputs requires a shift from ordinary languages to refined lan-
guages tracking information about the so-called program sensitivity
[17, 41]. The sensitivity of a program is the ‘law’ describing how
much behavioural differences in outputs are affected by behavioural
differences in inputs, and thus provides the abstraction needed to
handle distance amplification.

Our refined language is a generalisation of the language Fuzz
[17, 41], which we call V-Fuzz. Fuzz is a PCF-like language refin-
ing standard λ-calculi by means of a powerful linear type system
enriched with sensitivity-indexed ‘bang types’ that allow to track
program sensitivity. Despite being parametric with respect to an
arbitrary quantale, the main difference between V-Fuzz and Fuzz is
that the former is an effectful calculus parametric with respect to a
signature of (algebraic) operation symbols. This allows to consider
imperative, nondeterministic, and probabilistic versions of Fuzz, as
well as combinations thereof.

Structure of the work After having recalled some necessary
mathematical preliminaries, we introduce V-Fuzz and its monadic
1 For instance {(λx .(x I ) . . . (x I )︸          ︷︷          ︸

n

) (λy .[−]) }n≥0 .



operational semantics (Section 3). We then introduce (Section 4)
the machinery of V-relators showing how it can be successfully
instantiated on several examples. In Section 5 we define applicative
Γ-similarity, a V-relation generalising effectful applicative simi-
larity parametric with respect to aV-relator Γ, and prove it is a
reflexive and transitive V-relation whose kernel induces an abstract
notion of applicative similarity. Our main theorem states that under
suitable conditions on the V-relator Γ, applicative Γ-similarity is
compatible. Finally, in Section 7 we define the notion of applicative
Γ-bisimilarity and prove that under mild conditions such notion is a
compatible equivalence V-relation (viz. a compatible pseudometric).

2 Preliminaries
In this section we recall some basic definitions and results needed
in the rest of the paper. Unfortunately, there is no hope to be com-
prehensive, and thus we assume the reader to be familiar with
basic domain theory [2] (in particular we assume the notions of ω-
complete (pointed) partial order, ω-cppo for short, monotone, and
continuous functions), basic order theory [16], and basic category
theory [35]. In particular, for a monoidal category ⟨C, I , ⊗⟩ we as-
sume the reader to be familiar with the notion of strong Kleisli triple
[28, 35] T = ⟨T ,η,−∗⟩. We use the notation f ∗ : Z ⊗ TX → TY for
the strong Kleisli extension of f : Z ⊗ X → TY (and use the same
notation for the ordinary Kleisli lifting of f : X → TY , the latter
being essentially the subcase of −∗ for Z = I ) and reserve the letter
η to denote the unit of T. Oftentimes, we refer to a (strong) Kleisli
triples as a (strong) monad. We denote by CT the Kleisli category of
T. Finally, we recall that every monad on Set, the category of sets
and functions, is strong (with respect to the cartesian structure).

We also try to follow the notation used in the just mentioned
references. As a small difference, we denote by д · f the composition
of д with f rather than by д ◦ f .

2.1 Monads and Algebraic Effects
Following [40] we consider algebraic operations as sources of side
effects. Syntactically, algebraic operations are given via a signature
Σ consisting of a set of operation symbols (uninterpreted oper-
ations) together with their arity (i.e. their number of operands).
Semantically, operation symbols are interpreted as algebraic opera-
tions on strong monads on Set. To any n-ary operation symbol op ∈
Σ and any set X we associate a map opX : (TX )n → TX (so that we
equipTX with a Σ-algebra structure) such that f ∗ is a parametrised
Σ-algebra (homo)morphis, for any f : Z × X → TY . Concretely,
we require opY ( f ∗ (z,x1), . . . , f ∗ (z,x1)) = f ∗ (z,opX (x1, . . . ,xn ))
to hold for all z ∈ Z ,xi ∈ TY .

We also use monads to give operational semantics to V-Fuzz [14].
Intuitively, a program e evaluates to amonadic value v ∈ TV , where
V denotes the set of values. For instance, a nondeterministic pro-
gram evaluates to a set of values, whereas a probabilistic program
evaluates to a (sub)distribution of values. Due to the presence of
non-terminating programs the evaluation of a term is defined as the
limit of its “finite evaluations”, and thus we need monads to carry
a suitable domain structure. Recall that any category C is ω-cppo-
enriched if the hom-set C(X ,Y ) carries an ω-cppo-structure, for all
objects X ,Y , and composition is continuous. A (strong) monad T is
ω-cppo-enriched if CT is. In particular, in Set that means that we
have an ω-cppo ⟨TX ,⊑X ,⊥X ⟩ for any set X . In particular, ω-cppo-
enrichment of T gives the following equalities for д,дn : X → TY

and f , fn : Y → TZ arrows in C:

(
⊔
n<ω

fn )
∗ · д =

⊔
n<ω

f ∗n · д,

f ∗ · (
⊔
n<ω

дn ) =
⊔
n<ω

( f ∗ · дn ).

Since V-Fuzz is a call-by-value language, we also require the equal-
ity f ∗ (z,⊥X ) = ⊥Y , for f : Z ⊗ X → TY .

Finally, we say that T is Σ-continuous if satisfies the above condi-
tions and operations opX : (TX )n → TX are continuous, meaning
that for all ω-chains c1, . . . , cn in TX we have:

opX (
⊔

c1, . . . ,
⊔

cn ) =
⊔

opX (c1, . . . , cn ).

The reader can consult[14, 40] for more details.

Example 1. The following are Σ-continuous monads:
1. The partiality monad (−)⊥ mapping a set X to X⊥ ≜ X + {⊥X }.

We giveX⊥ anω-cppo structure via ⊑X defined by x ⊑X y if and
only if x = ⊥X or x = y . We equip the function space X → Y⊥
with the pointwise order induced by ⊑.

2. The powerset monad mapping a set to its powerset. The unit
maps an element x to {x }, whereas f ∗ : Z × P (X ) → P (Y ) is
defined by f ∗ (z, X ) ≜

⋃
x ∈X f (z,x ), for f : Z × X → P (Y ),

X ⊆ X , and z ∈ Z . We give P (X ) an ω-cppo structure via subset
inclusion ⊆ and order the function space X → P (Y ) with the
pointwise order induced by ⊆. Finally, we consider the signature
Σ = {⊕} consisting of a single binary operation symbol for pure
nondeterministic choice and interpret it as set-theoretic union.

3. The discrete subdistribution monad D≤1 mapping a set X to
D (X⊥), where D denotes the discrete full distribution monad.
The unit of D maps an element x to the Dirac distribution |x⟩
on it, whereas the strong Kleisli extension f ∗ : Z × DX → DY

of f : Z × X → DY is defined by f ∗ (z, µ ) (y) ≜
∑
x ∈X µ (x ) ·

f (z,x ) (y). OnD (X⊥), define the order ⊑X by µ ⊑X ν if and only
if ∀x ∈ X . µ (x ) ≤ ν (x ) holds. The pair (D (X⊥),⊑X ) forms an
ω-cppo, with bottom element given by the Dirac distribution on
⊥X (the distribution modelling the always zero subdistribution).
Theω-cppo structure lifts to function spaces pointwisely. Finally,
consider the signature Σ ≜ {⊕p | p ∈ Q, 0 < p < 1} whose
interpretation on the subdistribution monad is defined by (µ ⊕p
ν ) (x ) ≜ p · µ (x ) + (1 − p) · ν (x ). Restricting to p ≜ 1

2 we obtain
fair probabilistic choice ⊕.

4. The partial global state monad G⊥ is obtained from the partiality
monad and the global state monad; it maps a set X to (S ×
X )X⊥ . The global state monad G maps a set X to (S × X )S . Since
ultimately a location stores a bit we take S ≜ {0, 1}L , where
L is a set of (public) location names. We can give an ω-cppo
structure to G⊥X by extending the order of point 1 pointwise.
We consider the signature ΣL ≜ {get, setℓ:=0, setℓ:=1 | ℓ ∈ L}
and interpret operations in ΣL on G as follows:

setℓ:=0 ( f ) (b) ≜ f (b[ℓ := 0]),

setℓ:=1 ( f ) (b) ≜ f (b[ℓ := 1]),

get( f ,д) (b) ≜



f (b) if b = 0,
д(b) if b = 1,

where for b ∈ S , b[ℓ := x](ℓ) ≜ x and b[ℓ := x](ℓ′) ≜ b (ℓ′), for
ℓ′ , ℓ.
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2.2 Relations, Metrics, and Quantales
We now recall basic notions on quantales [43] and quantale-valued
relations (V-relations) along the lines of [32]. The reader is referred
to the monograph [25] for an introduction.

Definition 1. A (unital) quantale (V, ≤, ⊗,k ), V for short, consists
of a monoid (V, ⊗,k ) and a sup-lattice (V, ≤) satisfying the following
distributivity laws:

b ⊗
∨
i ∈I

ai =
∨
i ∈I

(b ⊗ ai ), (
∨
i ∈I

ai ) ⊗ b =
∨
i ∈I

(ai ⊗ b).

The element k is called unit, whereas ⊗ is called multiplication of
the quantale. Given quantales V,W, a quantale lax morphism is a
monotone map h : V→W satisfying the following inequalities:

ℓ ≤ h(k ), h(a) ⊗ h(b) ≤ h(a ⊗ b),

where ℓ is the unit of W.

It is easy to see that ⊗ is monotone in both arguments. We denote
top and bottom elements of a quantale by yand y, respectively.
Moreover, we say that a quantale is commutative if its underlying
monoid is, and it is non-trivial if k , y. Finally, we observe that
for any a ∈ V, the map a ⊗ (−) : V → V has a right adjoint
a � (−) : V→ V which is uniquely determined by:

a ⊗ b ≤ c ⇐⇒ b ≤ a � c .

From now on we tacitly assume quantales to be commutative and
non-trivial.

Example 2. The following are examples of quantales:
1. The boolean quantale (2, ≤,∧, true) where 2 = {true, false} and

false ≤ true.
2. The extended real half-line ([0,∞], ≥,+, 0) ordered by the “greater

or equal” relation ≥ and extended2 addition as monoid multipli-
cation. We refer to such quantale as the Lawvere quantale. Note
that in the Lawvere quantale the bottom element is∞, the top
element is 0, whereas infimum and supremum are defined as sup
and inf, respectively. Notice also that� is truncated subtraction.

3. Replacing addition with maximum in the Lawevere quantale
we obtain the ultrametric Lawvere quantale ([0,∞], ≥, max, 0),
which has been used to study generalised ultrametric spaces [44]
(note that in the ultrametric Lawvere quantale monoid multipli-
cation and binary meet coincide).

4. Restricting the Lawvere quantale to the unit interval we obtain
the unit interval quantale ([0, 1], ≥,+, 0), where + stands for
truncated addition.

5. A left continuous triangular norm (t-norm for short) is a binary
operator ∗ : [0, 1] × [0, 1] → [0, 1] that induces a quantale
structure over the complete lattice ([0, 1], ≤) in such a way that
the quantale is commutative. Examples t-norms are:
a. The product t-norm: x ∗p y ≜ x · y.
b. The Łukasiewicz t-norm: x ∗l y ≜ max{x + y − 1, 0}.
c. The Gödel t-norm: x ∗д y ≜ min{x ,y}.

In all quantales of Example 2 the unit k coincide the top element
(i.e. k = y). Quantales with such property are called integral quan-
tales, and are particularly well-behaved. For instance, in an integral
quantale a ⊗ b is a lower bound of a and b (and thus a ⊗ ⊥ = ⊥,
for any a ∈ V). From now on we tacitly assume quantales to be
integral.
2We extend ordinary as follows: x +∞ ≜ ∞ ≜ ∞ + x .

V-relations The notion of V-relation, for a quantale V, provides
an abstraction of the notion relation that subsumes both the qualitative—
boolean valued—and the quantitative—real valued—notion of rela-
tion, aswell as the associated notions of equivalence and (pseudo)metric.
Moreover, sets and V-relations form a category which, thanks to the
quantale structure of V, behaves essentially like Rel, the category of
sets and relations. That allows to develop an algebra of V-relations
on the same line of the usual algebra of relations.

Formally, for a quantale V, a V-relation α : X +→ Y between
sets X and Y is a function α : X × Y → V. For any set X we can
define the identity V-relation idX : X +→ X mapping diagonal
elements (x ,x ) to k , and all other elements to y. Moreover, for V-
relations α : X +→ Y and β : Y +→ Z , we can define the composition
β · α : X +→ Z by the so-called ‘matrix multiplication formula’:

(β · α ) (x , z) ≜
∨
y∈Y

α (x ,y) ⊗ β (y, z).

Composition of V-relations is associative, and id is the unit of com-
position. As a consequence, we have that sets and V-relations form
a category, called V-Rel. V-Rel is a monoidal category with unit
given by the one-element set and tensor product given by cartesian
product of sets with α ⊗ β : X ×Y +→ X ′×Y ′ defined pointwise, for
α : X +→ X ′ and β : Y → Y ′. Moreover, for all setsX ,Y , the hom-set
V-Rel(X ,Y ) inherits a complete lattice structure from V according
to the pointwise order. Actually, the whole quantale structure of V
is inherited, in the sense that V-Rel is a quantaloid [25]. In particu-
lar, for all V-relations α : X +→ Y , βi : Y +→ Z (i ∈ I ), and γ : Z +→W
we have the following distributivity laws:

γ · (
∨
i ∈I

βi ) =
∨
i ∈I

(γ · βi ), (
∨
i ∈I

βi ) · α =
∨
i ∈I

(βi · α ).

There is a bijection −◦ : V-Rel(X ,Y ) → V-Rel(Y ,X ) that maps
each V-relation α to its dual α◦ defined by α◦ (y,x ) ≜ α (x ,y). It
is straightforward to see that −◦ is monotone (i.e. α ≤ β implies
α◦ ≤ β◦), idempotent (i.e. (α◦)◦ = α ), and preserves the identity
relation (i.e. id◦ = id). Moreover, since V is commutative we also
have the equality (β · α )◦ = α◦ · β◦.

Finally, we define the graph functor G from Set to V-Rel acting
as the identity on sets and mapping each function f to its graph
(so that G ( f ) (x ,y) is equal to k if y = f (x ), and y otherwise). It
is easy to see that since V is non-trivial G is faithful. In light of
this observation we will use the notation f : X → Y in place of
G ( f ) : X +→ Y in V-Rel.

A direct application of the definition of composition gives the
equality:

(д◦ · α · f ) (x ,w ) = α ( f (x ),д(w ))

for f : X → Y , α : Y +→ Z , and д : W → Z . Moreover, it is useful
to keep in mind the following adjunction rules [25] (for α , β ,γ
V-relations, and f ,д functions with appropriate source and target):

д · α ≤ β ⇐⇒ α ≤ д◦ · β ,
β · f ◦ ≤ γ ⇐⇒ β ≤ γ · f .

The above inequalities turned out to be useful in making point-
free calculations with V-relations. In particular, we can use lax
commutative diagrams of the form



X

≤

f //

α_
��

Z

β_
��

Y д
//W

as diagrammatic representation for the inequation д · α ≤ β · f . By
adjunction rules, the latter is equivalent to α ≤ д◦ · β · f , which
pointwisely gives the following generalised non-expansiveness
condition3: ∀(x ,y) ∈ X × Y . α (x ,y) ≤ β ( f (x ),д(y)).

Among V-relations we are interested in those generalising equiv-
alences and pseudometrics.

Definition 2. A V-relation α : X +→ X is reflexive if idX ≤ α ,
transitive if α · α ≤ α , and symmetric if α ≤ α◦.

Pointwisely, reflexivity, transitivity, and symmetry give the fol-
lowing inequalities:

k ≤ α (x ,x ), α (x ,y) ⊗ α (y, z) ≤ α (x , z), α (x ,y) ≤ α (y,x ),

for all x ,y, z ∈ X . We call a reflexive and transitive V-relation a
V-preorder or generalised metric [7, 32], and a reflexive, symmetric,
and transitive V-relation a V-equivalence or pseudometric.

Example 3. 1. We see that 2-Rel is the ordinary category Rel
of sets and relations. Moreover, instantiating reflexivity and
transitivity on the boolean quantale, we recover the usual notion
of preorder. If we additionally require symmetry, then we obtain
the usual notion of equivalence relation.

2. On the Lawvere quantale transitivity gives:

inf
y
α (x ,y) + α (y, z) ≥ α (x , z),

which means α (x , z) ≤ α (x ,y) + α (y, z), for any y ∈ X . That is,
in the Lawvere quantale transitivity gives exactly the triangle
inequality. Similarly, reflexivity gives 0 ≥ α (x ,x ), i.e. α (x ,x ) = 0.
If additionally α is symmetric, then we recover the usual notion
of pseudometric [47].

3. Analogously to point 2, if we consider the ultrametric Lawvere
quantale, we recover the ultrametric variants of the above no-
tions.

Digression 1 (V-categories). Lawvere introduced generalised met-
ric spaces in his seminal paper [32] as pairs (X ,α ) consisting of a set
X and a generalised metric α : X +→ X over the Lawvere quantale.
Generalising from the Lawvere quantale to an arbitrary quantale
V we obtain the so-called V-categories [25]. In fact, a V-category
(X ,α ) is nothing but a category enriched over V regarded as a
bicomplete monoidal category. The notion of V-enriched functor
precisely instantiates as non-expansive map between V-categories,
so that one can consider the category V-Cat of V-categories and
V-functors. The category V-Cat has a rich structure. In particular, it
is monoidal closed category. Given V-categories (X ,α ), (Y , β ), their
exponential (YX , [α , β]) is defined by

[α , β]( f ,д) ≜
∧
x ∈X

β ( f (x ),д(x ))

(cf. with the usual, real-valued, sup-metric on function spaces),
whereas their tensor product (X × Y ,α ⊗ β ) is defined pointwise.
3Taking f = д generalised non-expansiveness expresses monotonicity of f in the
boolean quantale, and non-expansiveness of f in the Lawvere quantale and its variants
(recall that when we instantiate V as e.g. the Lawvere quantale we have to reverse
inequalities).

Although in this work we will not work with V-categories (we
will essentially work in V-Rel), it is sometimes useful to think in
terms of V-categories for ‘semantical intuitions’.

Operations For a signature Σ, we need to specify how operations
in Σ interact with V-relations (e.g. how they modify distances), and
thus how they interact with quantales.

Definition 3. Let Σ be a signature. A Σ-quantale is a quantale V
equipped with monotone operations opV : Vn → V, for each n-ary
operation op ∈ Σ, satisfying the following inequalities:

k ≤ opV (k , . . . ,k ),
opV (a1, . . . ,an ) ⊗ opV (b1, . . . ,bn ) ≤ opV (a1 ⊗ b1, . . . ,an ⊗ bn ).

Example 4. Both in the Lawvere quantale and in the unit inter-
val quantale we can interpret operations ⊕p from Example 1 as
probabilistic choices: x ⊕p y ≜ p · x + (1 − p) · y. In general, for a
quantale V we can interpret opV (a1, . . . ,an ) both as a1 ⊗ . . . ⊗ an
and a1 ∧ . . . ∧ an .

Change of Base Functors We model sensitivity of a program
as a function giving the ‘law’ describing how distances between
inputs are modified by the program. The notion of change of base
functor provides a mathematical abstraction to model the concept
of sensitivity with respect to an arbitrary quantale.

Definition 4. A change of base functor [25], CBF for short, between
quantales V,W is a lax quantale morphismh : V→W (see Definition
1). If V = W we speak of change of base endofunctors (CBEs, for
short), and denote them by s , r . . .. Clearly, every CBE s is also a CBF.

The action h ◦ α of a CBF h : V→W on a V-relation α : X +→ Y
is defined by h ◦ α (x ,y) ≜ h(α (x ,y)) (to improve readability we
omit brackets). Note that since V is integral, CBFs preserve the unit.

Example 5. 1. Extended4 real-valued multiplication c · −, for c ∈
[0,∞], is a CBE on the Lawvere quantale. Functions c · − act as
CBEs also on the unit interval quantale (where multiplication is
meant to be truncated).

2. Both in the Lawvere quantale and in the unit interval quantale,
polynomials P such that P (0) = 0 are CBEs.

3. Define CBEs n,∞ : V→ V, for n < ω by 0(a) ≜ k , (n + 1) (a) ≜
a ⊗n(a), and∞(a) ≜ y. Note that 1 acts as the identity function.

Finally, we observe that the action of CBFs on a V-relation obeys
the following laws:

(h · h′) (α ) = h ◦ (h′ ◦ α ),
(h ◦ α ) · (h ◦ β ) ≤ h ◦ (α · β ).

Digression 2. We saw that V-categories generalise the notions of
metric space and ordered set, and that the notion of V-functor gen-
eralises the notions of monotone and non-expansive function. How-
ever, when dealing with metric spaces besides non-expansive func-
tions, a prominent role is played by Lipshitz continuous functions.
Given metric spaces (X ,dX ) and (Y ,dY ), a function f : X → Y is
called c-continuous, for c ∈ R≥0 if the inequation c · dX (x ,x ′) ≥
dY ( f (x ), f (x ′)) holds, for all x ,x ′ ∈ X . Example 5 shows that multi-
plication c · − by a real number c is a change of base endofunctor on
the Lawvere quantale, meaning that using CBEs we can generalise
the notion of Lipshitz-continuity to V-categories. In fact, easy cal-
culations show that for any V-category (X ,α ) and any CBE s on V,
4We extend real-valued multiplication by: 0 · ∞ ≜ 0 ≜ ∞ · 0,∞ · x ≜ ∞ ≜ x · ∞.
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(X , s ◦ α ) is a V-category. In particular, we can define s-continuous
functions from (X ,α ) to (Y , β ) as V-functors from (X , s ◦ α ) to
(Y , β ). That is, we say that a function f : X → Y is s-continuous if
s ◦ α (x ,x ′) ≤ β ( f (x ), f (x ′)) holds, for all x ,x ′ ∈ X .

We conclude this section with the following result on the algebra
of CBEs.

Lemma 1. Let V be a Σ-quantale. CBEs are closed under the follow-
ing operations (where op ∈ Σ):

(s ⊗ r ) (a) ≜ s (a) ⊗ r (a),

(r · s ) (a) ≜ r (s (a)),
(s ∧ r ) (a) = s (a) ∧ s (b),

opV (s1, . . . , sn ) (a) ≜ opV (s1 (a), . . . , sn (a)).

3 The V-fuzz Language
As already observed in the introduction, when dealing with be-
havioural V-relations a crucial parameter in amplification phenom-
ena is program sensitivity. To deal with such parameter we intro-
duce V-fuzz, a higher-order effectful language generalising Fuzz
[17]. As Fuzz, V-Fuzz is characterised by a powerful type system
inspired by bounded linear logic [21] giving syntactic information
on program sensitivity.

Syntax V-fuzz is a fine-grained call-by-value [34] linear λ-calculus
with finite sum and recursive types. In particular, we make a formal
distinction between values and computations (which we simply
refer to as terms), and use syntactic primitives to returning values
(val ) and sequentially compose computations (via a let-in construc-
tor). The syntax of V-Fuzz is parametrised over a signature Σ of
operation symbols, a Σ-quantale V, and a family Π of CBEs. From
now on we assume Σ, V, and Π to be fixed. Moreover, we assume Π
to contain at least CBEs n,∞ in Example 5 and to be closed under
operations in Lemma 1. Types, values, and terms of V-Fuzz are
defined in Figure 1, where t denotes a type variable, I is a finite set
(whose elements are denoted by ı̂, ȷ̂, . . .), and s is in Π.

σ ::= t |
∑

i ∈I
σi | σ ⊸ σ | µt .σ | !sσ .

v ::= x | λx .e | ⟨ı̂,v⟩ | fold v | !v .
e ::= val v | vv | case v of {⟨i ,x⟩ → ei } | let x = e in e

| case v of {!x → e} | case v of {fold x → e} | op(e , . . . , e ).

Figure 1. Types, values, and terms of V-Fuzz.

Free and bound variables in terms and values are defined as usual.
We work with equivalence classes of terms modulo renaming and
tacitly assume conventions on bindings. Moreover, we denote by
w[v/x] and e[x := v] the value and term obtained by capture-
avoiding substitution of the value v for x inw and e , respectively
(see [14] for details).

Similar conventions hold for types. In particular, we denote by
σ [τ/t] the result of capture-avoiding substitution of type τ for the
type variable t in σ . Finally, we write 0 for the empty sum type, 1
for 0 ⊸ 0, and nat for µt .1 + t . We denote the numeral n by n.

V-Fuzz type system is essentially based on judgments of the
form x1 :s1 σ1, . . . ,xn :sn σn ⊢ e : σ , where s1, . . . , sn are CBEs.

s ≤ 1
Γ,x :s σ ⊢v x : σ

Γ1 ⊢ e1 : σ · · · Γn ⊢ en : σ
opV (Γ1, . . . , Γn ) ⊢ op(e1, . . . , en ) : σ

Γ,x :1 σ ⊢ e : τ
Γ ⊢v λx .e : σ ⊸ τ

Γ ⊢v v : σ ⊸ τ ∆ ⊢v w : σ
Γ ⊗ ∆ ⊢ vw : τ

Γ ⊢v v : σı̂
Γ ⊢v ⟨ı̂,v⟩ :

∑
i ∈I σi

Γ ⊢v v :
∑
i ∈I σi ∆,x :s σi ⊢ ei : τ (∀i ∈ I )

s · Γ ⊗ ∆ ⊢ case v of {⟨i ,x⟩ → ei } : τ

Γ ⊢v v : σ
Γ ⊢ val v : σ

Γ ⊢ e : σ ∆,x :s σ ⊢ f : τ
(s ∧ 1) · Γ ⊗ ∆ ⊢ let x = e in f : τ

Γ ⊢v v : σ
s · Γ ⊢v !v : !sσ

Γ ⊢v v : !rσ ∆,x :s ·r σ ⊢ e : τ
s · Γ ⊗ ∆ ⊢ case v of {!x → e} : τ

Γ ⊢v v : σ [µt .σ/t]
Γ ⊢v fold v : µt .σ

Γ ⊢v v : µt .σ ∆,x :s σ [µt .σ/t] ⊢ e : τ
s · Γ ⊗ ∆ ⊢ case v of {fold x → e} : τ

Figure 2. Typing rules.

The informal meaning of such judgment is that on input xi (i ≤ n),
the term e has sensitivity si . That is, e amplifies the (behavioural)
distance between two input values vi ,wi of at most a factor si ;
symbolically, si ◦ α (vi ,wi ) ≤ α (e[xi := vi ], e[xi := wi ])

An environment Γ is a sequence x1 :s1 σ1, . . . ,xn :sn σn of dis-
tinct identifiers with associated closed types and CBEs (we denote
the empty environment by ∅). We can lift operations on CBEs in
Lemma 1 to environments as follows:

r · Γ = x1 :r ·s1 σ1, . . . ,xn :r ·sn σn ,
Γ ⊗ ∆ = x1 :s1⊗r1 σ1, . . . ,xn :sn ⊗rn σn ,

opV (Γ
1, . . . , Γm ) = x1 :opV (s1

1 ,...,sm1 ) σ1, . . . ,xn :opV (s1
n ,...,smn ) σn ,

for Γ = x1 :s1 σ1, . . . ,xn :sn σn , ∆ = x1 :r1 σ1, . . . ,xn :rn σn , and
Γi = x1 :s i1 σ1, . . . ,xn :s in σn . Note that the above operations are
defined for environments having the same structure (i.e. differing
only on CBEs). This is not a real restriction since we can always
add the missing identifiers y :k σ , where k is the constant function
returning the unit of the quantale (but see [41]).

The type system for V-Fuzz is defined in Figure 2. The system is
based on two kinds of judgment (exploiting the fine-grained style
of the calculus): judgments of the form Γ ⊢v v : σ for values and
judgments of the form Γ ⊢ e : σ for terms. We denote byVσ and
Λσ for the set of closed values and terms of type σ , respectively.
Sometimes we also use the notation ΛΓ⊢σ for the set {e ∈ Λ | Γ ⊢
e : σ } (and similarity for values).

Example 6. 1. Instantiating V-Fuzz with Σ ≜ ∅, the Lawvere
quantale, and CBEs Π = {c · − | c ∈ [0,∞]} we obtain the origi-
nal Fuzz [41] (provided we add a basic type for real numbers).
We can also add nondeterminism via a binary nondeterminism
choice operation ⊕.

2. We define the language P-Fuzz as the instantiation of V-Fuzz
with a fair probabilistic choice operation ⊕, the unit interval
quantale ([0, 1], ≥,+, 0), and CBEs Π = {c · − | c ∈ [0,∞]} (as
usual we are actually referring to truncated multiplication). We
interpret ⊕ in [0, 1] as in Example 4.

3. We can add global states to P-Fuzz enriching P-Fuzz’s signature
with operations in ΣL from Example 1.



Typing rules for V-Fuzz are similar to those of Fuzz (e.g. in the
variable rule we require s ≤ 1, meaning that the open value x can
access x at least once) with the exception of the rule for sequencing
where we apply sensitivity s ∧ 1 to the environment Γ even if the
sensitivity of x in f is s . Consider the following instance of the
sequencing rule on the Lawvere quantale:

x :1 σ ⊢ e : σ y :0 σ ⊢ f : τ
x :max(0,1) ·1 σ ⊢ let y = e in f : τ

where f is a closed term of type τ and thus we can assume it
to have sensitivity 0 on all variables. According to our informal
intuition, e has sensitivity 1 on input x , meaning that (i ) e can
possibly detect (behavioural) differences between input valuesv ,w ,
and (ii ) e cannot amplify their behavioural distance of a factor
bigger than 1. Formally, point (ii ) states that we have the inequality
α (v ,w ) ≥ α (e[x := v], e[x := w]), where α denotes a suitable
behavioural [0, 1]-relation. On the contrary, f is closed term and
thus has sensitivity 0 on any input, meaning that it cannot detect
any observable difference between input values. In particular, for
all values v ,w we have α ( f [y := v], f [y := w]) = α ( f , f ) = 0
(provided that α is reflexive). Replacing max(0, 1) with 0 in the
above rule (i.e. s ∧ 1 with s in the general case) would allow to infer
the judgment x :0 σ ⊢ let y = e in f : τ , and thus to conclude
α (let y = e[x := v] in f , let y = e[x := w] in f ) = 0. The latter
equality is unsound as evaluating let y = e[x := v] in f (resp.
let y = e[x := w] in f ) requires to first evaluate e[x := v] (resp.
e[x := w]) thus making observable differences between v and w
detectable (see also Section 5 for a formal explanation).

Example 7. For every type σ we have the term I ≜ val (λx .val x )
of type σ ⊸ σ as well as the purely divergent divergent term
Ω ≜ ω!(fold ω) of type σ , where ω ∈ Λ!∞ (µt .!∞t⊸σ )⊸σ is defined
by: ω ≜ λx .case x of {!y → case y of {fold z → z!(fold z)}}.

Beforemoving to the operational semantics ofV-Fuzz, we remark
that the syntactic distinction between terms and values gives the
following equalities.

Lemma 2. The following equalities hold:

Vσ⊸τ = {λx .e | x :1 σ ⊢ e : τ },

V∑i∈I σi =⋃
ı̂∈I

{⟨ı̂,v⟩ | v ∈ Vσı̂ },

V!sσ = {!v | v ∈ Vσ }.

Operational Semantics We give V-Fuzz monadic operational
(notably evaluation) semantics in the style of [14]. Let T = ⟨T ,η,−∗⟩
be a Σ-continuous monad. Operational semantics is defined by
means of an evaluation function | − |σ indexed over closed types,
associating to any term in Λσ a monadic value in TVσ . The eval-
uation function | − |σ is itself defined by means of the family of
functions {| − |σn }n<ω defined in Figure 3. Indeed | − |σn is a function
fromVσ to TVσ .

Let us expand on the definition of |let x = e in f |σn+1. Since
let x = e in f ∈ Λσ , there must be derivable judgments ∅ ⊢ e : τ
and x :s τ ⊢ f : σ . As a consequence, for any v ∈ Vτ , we have
| f [x := v]|σn ∈ TVσ . This induces a function | f [x := −]|τ ,σ

n from
Vτ to TVσ whose Kleisli extension can be applied to |e |τn ∈ TVτ .

Finally, it is easy to see that ( |e |n )n<ω forms an ω-chain inTVσ
(see Appendix A.1 for a proof of the following result).

Lemma 3. For any e ∈ Λσ , we have |e |σn ⊑Vσ |e |
σ
n+1, for any n ≥ 0.

|e |σ0 ≜ ⊥Vσ

|val v |σn+1 ≜ ηVσ (v )

|(λx .e )v |σn+1 ≜ |e[x := v]|σn
|case ⟨ı̂,v⟩ of {⟨i ,x⟩ → ei }|

σ
n+1 ≜ |eı̂ [x := v]|σn

|case (fold v ) of {fold x → e}|σn+1 ≜ |e[x := v]|σn
|case !v of {!x → e}|σn+1 ≜ |e[x := v]|σn

|let x = e in f |σn+1 ≜ ( | f [x := −]|τ ,σ
n )∗ |e |τn

|op(e1, . . . , ek ) |σn+1 ≜ opVσ ( |e1 |
σ
n , . . . , |ek |σn )

Figure 3. Approximation evaluation semantics.

As a consequence, we can define | − |σ : Λσ → TVσ by

|e |σ ≜
⊔

n<ω
|e |σn .

In order to improve readability we oftentimes omit type super-
scripts in |e |σ . We also notice that because op is continuous and T
is ω-cppo-enriched, | − |σ is itself continuous.

Proposition 1. The following equations hold:

|val v | = η(v ),
|(λx .e )v | = |e[x := v]|,

|case ⟨ı̂,v⟩ of {⟨i ,x⟩ → ei }| = |eı̂ [x := v]|,
|case (fold v ) of {fold x → e}| = |e[x := v]|,

|case !v of {!x → e}| = |e[x := v]|,
|let x = e in f | = | f [x := −]|∗ ( |e |),
|op(e1, . . . , ek ) | = opVσ ( |e1 |, . . . , |ek |).

4 V-relators and V-relation Lifting
In [14] the abstract theory of relators [6, 48] has been used to
define notions of applicative (bi)similarity for an untyped λ-calculus
enriched with algebraic operations. Intuitively, a relator Γ for a set
endofunctorT is an abstraction meant to capture the possible ways
a relation on a set X can be turned (or lifted) into a relation on
TX . Relators allow to abstractly express the idea that bisimilar
programs, when executed, exhibit the same observable behaviour
(i.e. they produce the same effects) and evaluate to bisimilar values.
In particular, whenever two programs e and e ′ are related by a
(bi)simulation R, then the results |e | and |e ′ | of their evaluation
must be related by ΓR. The latter relation ranging over monadic
values, it takes into account the visible effects of executing e and
e ′, such effects being encapsulated via T .

The notion of V-relator [25] is somehow the ‘quantitative’ gen-
eralisation of the concept of a relator. Analogously to ordinary
relators, V-relators for a set endofunctor T are abstractions meant
to capture the possible ways a V-relation on a set X can be (nicely)
turned into a V-relation on TX , and thus provide ways to lift a
behavioural distance between programs to a (behavioural) distance
between monadic values. On a formal level, we say that a V-relator
extends T from Set to V-Rel, laxly5.

5Relators are also known as lax extensions [23, 25].
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Definition 5. For a set endofucunctor T a V-relator for T is a map-
ping (α : X +→ Y ) 7→ (Γα : TX +→ TY ) satisfying conditions
(V-rel 1)-(V-rel 4). We say that Γ is conversive if it additionally satis-
fies condition (V-rel 5).

1TX ≤ Γ(1X ), (V-rel 1)
Γβ · Γα ≤ Γ(β · α ), (V-rel 2)

T f ≤ Γ f , (T f )◦ ≤ Γ f ◦, (V-rel 3)
α ≤ β =⇒ Γα ≤ Γβ , (V-rel 4)
Γ(α◦) = (Γα )◦. (V-rel 5)

Conditions (V-rel 1), (V-rel 2), and (V-rel 4) are rather standard.
Condition (V-rel 3), which actually consists of two conditions, states
that V-relators behave in the expected way on functions. It is imme-
diate to see that when instantiated with V = 2, the above definition
gives the usual notion of relator, with some minor differences. In
[14] and [33] a kernel preservation condition is required in place of
(V-rel 3). Such condition is also known as stability in [27]. Stability
requires the equality

Γ(д◦ · α · f ) = (Tд)◦ · Γα ·T f

to hold. It is easy to see that a V-relator always satisfies stability.
Notice also that stability gives the following implication:

α ≤ д◦ · β · f =⇒ Γα ≤ (Tд)◦ · Γβ ·T f ,

which can be diagrammatically expressed as:

X

≤

f //

α_
��

Z

β_
��

Y д
//W

=⇒

TX

≤

T f //

Γα_
��

TZ

Γβ_
��

TY
Tд
// TW

.

Finally, we observe that any V-relator Γ for T induces an en-
domap TΓ on V-Rel that acts as T on sets and as Γ as V-relation.
It is easy to check that conditions in Definition 5 makes TΓ a lax
endofunctor.

Before giving examples of V-relators it is useful to observe that
the collection V-relators is closed under specific operations.

Proposition 2. Let T ,U be set endofunctors. Then:
1. If Γ and ∆ are V-relators forT andU , respectively, then ∆ ·Γ defined

by (∆ · Γ)α ≜ ∆Γα is a V-relator forUT .
2. If {Γ}i ∈I is a family of V-relators for T , then

∧
i ∈I Γi defined by

(
∧
i ∈I Γi )α ≜

∧
i ∈I Γiα is a V-relator for T .

3. If Γ is a V-relator for T , then Γ◦ defined by Γ◦α ≜ (Γα◦)◦ is a
V-relator for T .

4. For any V-relator Γ, Γ ∧ Γ◦ is the greatest conversive V-relator
smaller than Γ.

Proof. See Appendix A.2. □

Example 8. Let us consider the monads in Example 1 regarded as
functors.
1. For the partiality functor (−)⊥ define the V-relator (−)⊥ by:

α⊥ (x ,y) ≜ α (x ,y), α⊥ (⊥X , y ) ≜ k , α⊥ (x ,⊥Y ) = y,

where x ∈ X ,y ∈ Y , y ∈ Y⊥, and α : X +→ Y . The V-relation
α⊥ generalises the usual notion of simulation for partial compu-
tations. Similarly, α⊥⊥ ≜ α⊥ ∧ ((α◦)⊥)

◦ generalises the usual
notion of bisimulation for partial computation.

2. For the powerset functor P define the V-relator H (called Haus-
dorff lifting) and its conversive counterpart H s ≜ H ∧ H◦ by
Hα (X , Y ) ≜

∧
x ∈X
∨
y∈Y α (x ,y). If we instantiate V as the Law-

vere quantale, then H s gives the usual Hausdorff lifting of dis-
tances on a set X to distances on PX , whereas for V = 2 we
recover the usual notion of (bi)simulation for unlabelled transi-
tion systems.

3. For the full distribution functor D we define a [0, 1]-relator
(with respect to the unit interval quantale) using the so-called
Wasserstein-Kantorovich lifting [49]. For µ ∈ D (X ),ν ∈ D (Y ),
the set Ω(µ,ν ) of couplings of µ and ν is the set of joint dis-
tributions ω ∈ D (X × Y ) such that µ =

∑
y∈Y ω (−,y) and

ν =
∑
x ∈X ω (x ,−). For a [0, 1]-relation α : X +→ Y define:

Wα (µ,ν ) ≜ infω ∈Ω(µ ,ν )
∑

x ,y
α (x ,y) · ω (x ,y).

Wα (µ,ν ) attains its infimum and has a dual characterisation.

Proposition 3. Let µ ∈ D (X ),ν ∈ D (Y ) be countable distribu-
tions and α : X +→ Y be a [0, 1]-relation. Then:

Wα (µ,ν ) = min{
∑

x ,y
α (x ,y) · ω (x ,y) | ω ∈ Ω(µ,ν )}

= max{
∑

x
ax · µ (x ) +

∑
y
by · ν (y)

| ax + by ≤ α (x ,y),ax ,by bounded},

where ax ,by bounded means that there exist ā, b̄ ∈ R such that
∀x . ax ≤ ā, and ∀y. by ≤ b̄.

The above proposition (see Appendix A.3 for a proof) is a direct
consequence of the Duality Theorem for countable transporta-
tion problems [29] (Theorem 2.1 and 2.2). Using Proposition 3
we can show thatW indeed defines a [0, 1]-relator (but see Di-
gression 3). Finally, we can compose the Wasserstein liftingW
with the V-relator (−)⊥ of point 1 obtaining the (non-conversive)
[0, 1]-relatorW⊥ for the countable subdistribution functor D≤1.

Digression 3 (BuildingV-relators). Most of theV-relators in Exam-
ple 8 can be obtained using a general abstract construction refining
the so-called Barr extension of a functor [30]. Recall that any rela-
tion R : X +→ Y (i.e. a 2-relation R : X ×Y → 2) can be equivalently
presented as a subset of X × Y via its graph GR . This allows to
express R as π2 · π◦1 (in Rel), where π1 : GR → X , π2 : GR → Y
are the usual projection functions.

Definition 6. Let T be an endofunctor on Set and R : X +→ Y be a
a relation. The Barr extension T of T to Rel is defined by:

TR ≜ Tπ2 · (Tπ1)
◦,

where R = π2 · π◦1 . Pointwise, T is defined by:

x TR y ⇐⇒ ∃w ∈ TGR . (Tπ1 (w ) = x , Tπ2 (w ) = y ),

where x ∈ TX and y = TY

In general, T is not a 2-relator, but it is so if T preserves weak
pullback diagrams [30] (or, equivalently, if T satisfies the Beck-
Chevalley condition [25]). Such condition is satisfied by all functors
we have considered so far in our examples.

Definition 6 crucially relies on the double nature of a relation,
which can be viewed both as an arrow in Rel and as an object
in Set. This is no longer the case for a V-relation, and thus it is
not clear how to define the Barr extension of a functor T from Set
to V-Rel. However, the Barr extension of T can be characterised



in an alternative way if we assume T to preserves weak pullback
diagrams (although the reader can see [24, 36] for more general
conditions). Let ξ : T2 → 2 be the map defined by ξ (x ) = true if
and only if x ∈ T {true}, where T {true} is the image of the map Tι
for the inclusion ι : {true} → 2. That is, ξ (x ) = true if and only
if there exists an element y ∈ T {true} such that Tι (y ) = x . Note
that this makes sense since T preserves monomorphisms (recall
that we can describe monomorphism as weak pullbacks) and thus
Tι : T {true} → T2 is a monomorphism. We can now characterise
TR without mentioning the graph of R:

TR (x , y ) = true ⇐⇒ ∃w ∈ T (X × Y ).




Tπ1 (w ) = x ,
Tπ2 (w ) = y ,
ξ ·TR (w ) = true.

Since the existential quantification is nothing but the joint of the
boolean quantale 2, the above characterisation of T can be turned
into a definition of an extension of T to V-Rel parametric with
respect to a map ξ : TV→ V.

Definition 7. For a set endofunctorT and a map ξ : TV→ V define
the V-Barr extension T ξ of T to V-Rel with respect to ξ as follows:

T ξ α (x , y ) ≜
∨

w ∈Ω(x ,y )
ξ ·Tα (w ),

for x ∈ TX , y ∈ TY , where the set Ω(x , y ) of generalised couplings of
x , y is defined by:

Ω(x , y ) ≜ {w ∈ T (X × Y ) | Tπ1 (w ) = x , Tπ2 (w ) = y }.

Example 9. 1. Taking ξ : PV → V defined by ξ (X ) ≜
∧

X we
recover the Hausdorff lifting H s .

2. Taking expectation function ξ : D[0, 1] → [0, 1] defined by
ξ (µ ) ≜

∑
x x · µ (x ) we recover Wasserstein liftingW .

Using the map ξ : TV → V we can define an extension of T
to V-Rel. However, such extension is in general not a V-relators.
Nonetheless, undermild conditions on ξ and assumingT to preserve
weak pullback, it is possible to show that T ξ is indeed a V-relator.
The following proposition has been proved in [9, 24] (a similar
result for real-valued pseudometric spaces has been proved in [4, 5],
where an additional extension still parametric over ξ is also studied).

Proposition 4. Let T be functor preserving weak pullbacks and
ξ : TV→ V be a map such that:
1. ξ respect quantale multiplication:

T (V × V)

≤

T ⊗ //

⟨ξ ·T π1 ,ξ ·T π2⟩

��

TV

ξ .
��

V × V
⊗

// V

2. ξ respects the unit of the quantale:

T 1

≤

Tk //

!
��

TV

ξ .
��

1
k
// V

3. ξ respects the order of the quantale. That is, the map φ 7→ ξ ·Tφ,
for φ : X → V, is monotone.

Then T ξ is a conversive V-relator.

It is straightforward to check that the expectation function in
Example 9 satisfies the above three conditions. By Proposition 4
it follows that the Wasserstein lifting gives indeed a [0, 1]-relator,
and thus so does its composition with the [0, 1]-relator (−)⊥.

The extensionT ξ gives a somehow canonical conversive V-relator
and thus provides away to build canonical (applicative)V-bisimulations.
However, T ξ being intrinsically conversive it is not a good candi-
date to build V-simulations. For most of the examples considered we
can get around the problem considering (T ξ )⊥ (as we do with e.g.
W⊥). Nonetheless, it is desirable to have a general notion of exten-
sion characterising notions of V-simulations. That has been done
for ordinary relations in e.g. [27, 33] for functors T inducing a suit-
able order ≤X on TX and considering the relator T ≤ ≜≤− ·T · ≤−.
Proving thatT ≤ gives indeed a relator requiresT to satisfy specific
conditions. For instance, in [33] it is proved that ifT satisfies a suit-
able form of weak-pullback preservation (which takes into account
the order induced by T ), then T ≤ is indeed a relator. This suggests
to consider functors T inducing a suitable V-relation αX on TX

and thus to study if, and under which conditions, α− ·T ξ · α− is a
V-relator. This proposal has not been investigated in the context
of the present work but it definitely constitutes a topic for future
research.

V-relators for Strong Monads In previous paragraph we saw
that a V-relator extends a functor from Set to V-Rel laxly. Since
we model effects through strong monads it seems more natural to
require V-relators to extend strong monads from Set to V-Rel laxly.

The reason behind such requirement can be intuitively under-
stood as follows. Recall that by Proposition 1 we have (for readabil-
ity we omit types) |let x = e in f | = | f [x := −]|∗ |e |. This operation
can be described using the so called bind function

≫= : (X → TY ) ×TX → TY ,

so that we have |let x = e in f | = | f [x := −]| ≫= |e |. Now, let
f ,д : X → Y be functions, α : X +→ X , β : Y +→ Y be V relations,
and Γ be a V-relator for T . Considering the compound V relation
[α , Γβ]⊗ Γα (see Digression 1) and ignoring issues about sensitivity,
it is then natural to require ≫= to be non-expansive. That is, we
require the inequality

[α , Γβ]( f ,д) ⊗ Γα (x , y ) ≤ Γβ ( f ≫= x ,д ≫= y )

i.e. ∧
x ∈X

Γβ ( f (x ),д(x )) ⊗ Γα (x , y ) ≤ Γβ ( f ≫= x ,д ≫= y ).

Informally, we are requiring the behavioural distance between
sequential compositions of programs to be bounded by the be-
havioural distances between their components (this is of course a
too strong requirement, but at this point it should be clear to the
reader that it is sufficient to require ≫= to be Lipshitz continuous
rather than non-expansive). Since ≫= is nothing but the strong
Kleisli extension apply∗ of the application function apply : (X →
TY ) ×X → TY defined by apply( f ,x ) ≜ f (x ), what we need to do
is indeed to extend strong monads from Set to V-Rel (laxly).

Definition 8. Let T = ⟨T ,η,−∗⟩ be a strong monad on Set, and
Γ be a V-relator for T (regarded as a functor). We say that Γ is an
L-continuous6 V-relator for T if it satisfies the following conditions

6 Instantiating V as the Lawvere quantale, we see that condition (L-Strong lax bind)
is requiring Lipshitz continuity of multiplication and strength of T.
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for any CBE s ≤ 1.

α ≤ η◦Y · Γα · ηX , (Lax unit)
γ ⊗ (s ◦ α ) ≤ д◦ · Γβ · f =⇒ γ ⊗ (s ◦ Γα ) ≤ (д∗)◦ · Γβ · f ∗,

(L-Strong lax bind)

The condition s ≤ 1 reflects the presence of s ∧ 1 in the typing
rule for sequencing. Also notice that by taking s ≜ 1, conditions
(Lax unit) and (L-Strong lax bind) are equivalent to requiring unit,
multiplication, and strength of T to be non-expansive.

Example 10. It is easy to check that V-relators for the partiality
and the powerset monads satisfy conditions in Definition 8. Us-
ing Proposition 3 it is possible to show that also the Wasserstein
lifting(s)W andW⊥ do, although this is less trivial (see Appendix
A.3).

Finally, if T is Σ-continuous we require V-relators for T to be
compatible with the Σ-continuous structure.

Definition 9. Let T be a Σ-continuous monad, V be a Σ-quantale,
and Γ be a V-relator for T. We say that Γ is Σ-compatible and induc-
tive if the following inequalities hold:

opV (Γα (u1, y1), . . . Γα (un , yn )) ≤ Γα (opX (u1, . . . , un ),opY (y1, . . . , yn )),
k ≤ Γα (⊥X , y ),∧

n
Γα (xn , y ) ≤ Γα (

⊔
n

xn , y ).

for any ω-chain (xn )n<ω and elements u1, . . . , un in TX , elements
y , y1, . . . , yn ∈ TY , n-ary operation symbol op ∈ Σ, and V-relation
α : X +→ Y .

In particular, if Γ is inductive and a ≤ Γα (xn , y )) holds for any
n < ω, then a ≤ Γα (

⊔
n<ω xn , y ).

Example 11. Easy calculations show that (−)⊥ andH are inductive
and Σ-compatible. Using results from [49] and [8] (Lemma 5.2) it is
possible to show thatW⊥ is inductive, the relevant inequality being

W⊥α (sup
n
µn ,ν ) ≤ sup

n
W⊥α (µn ,ν ).

Proving Σ-compatibility ofW andW⊥ amounts to prove

Γα (µ1 ⊕p ν1, µ2 ⊕p ν2) ≤ Γα (µ1, µ2) ⊕p Γα (ν1,ν2),

which is straightforward.

From V-relators to 2-relators Before applying the abstract the-
ory of V-relators to V-Fuzz we show how a V-relator induces a
canonical 2-relator (this will be useful in the next section). Consider
the maps:

φ : V→ 2 ψ : 2→ V
k 7→ true, a 7→ false true→ k , false→ y

We immediately see that φ andψ are CBFs and that φ is the right
adjoint ofψ . We associate to every V-relation α its kernel 2-relation
φ ◦ α and to any 2-relation R the V-relation ψ ◦ R. Similarly, we
can associate to each V-relator Γ the 2-relator ∆ΓR ≜ φ ◦ Γ(ψ ◦ R ).
Moreover, since φ is the right adjoint ofψ we have the inequalities:

ψ ◦ ∆ΓR ≤ Γ(ψ ◦ R )

∆Γ (φ ◦ α ) ≤ φ ◦ Γα .

Finally, we say that Γ is compatible with φ if ∆Γ (φ ◦ α ) = φ ◦ Γα
holds for any α : X +→ Y .

Example 12. 1. For the V-relator (−)⊥ and R : X +→ Y we have
∆⊥R (x , y ) = true if and only if x ∈ X , y ∈ Y and R (x , y ) = true,
or x = ⊥. That is,∆⊥ gives the usual simulation relator for ‘effect-
free’ λ-calculi. An easy calculation shows that ∆⊥ (φ◦α ) = φ◦α⊥.
Replacing (−)⊥ with (−)⊥⊥ we recover the bisimulation relator
for ‘effect-free’ λ-calculi.

2. For the V-relator H and R : X +→ Y we have:

∆HR (X , Y ) = true ⇐⇒ ∀x ∈ X . ∃y ∈ Y . R (x ,y) = true.

Therefore, ∆H gives the usual notion of simulation for nondeter-
ministic systems. Proving compatibility with φ, i.e. ∆H (φ ◦ α ) =
φ ◦ Hα , is straightforward. A similar argument holds for H s .

3. Consider the Wasserstein liftingW and observe that we have
∆W R (µ,ν ) = true if and only if the following holds:

∃ω ∈ Ω(µ,ν ). ∀x ,y. ω (x ,y) > 0 =⇒ R (x ,y) = true.

We have thus recovered the usual notion of probabilistic relation
lifting via couplings [30]. Moreover, if φ ◦Wα (µ,ν ) = true, then
Wα (µ,ν ) = 0, meaning that there exists a coupling ω ∈ Ω(µ,ν )
such that

∑
x ,y ω (x ,y) · α (x ,y) = 0. In particular, if ω (x ,y) > 0,

then α (x ,y) = 0 i.e. (φ ◦α ) (x ,y) = true. That is,W is compatible
with φ. From point 1 it follows thatW⊥ is compatible with φ as
well.

We conclude this section with the following auxiliary lemma
(whose proof is given in Appendix A.3), which will be useful to
prove that the kernel of applicative distances are suitable applicative
(bi)simulations.

Lemma 4. Let Γ be V-relator compatible with φ. Then the following
hold:

X

≤

f //

α_
��

TZ

Γβ_
��

Y д
// TW

=⇒

X

≤

f //

φ◦α_
��

TZ

∆Γ (φ◦β )_
��

Y д
// TW

,

X

≤

f //

R_
��

TZ

∆ΓS
_
��

Y д
// TW

=⇒

X

≤

f //

ψ ◦R_
��

TZ

Γ(ψ ◦S)_
��

Y д
// TW

.

5 Behavioural V-relations
In this section we extend the relational theory developed in e.g.
[22, 31] for higher-order functional languages to V-relations for V-
Fuzz. Following [39] we refer to such relations as λ-term V-relations.
Among such V-relations we define applicative Γ-similarity, the gen-
eralisation of Abramsky’s applicative similarity to both algebraic
effects and V-relations, and prove that under suitable conditions it
is compatible generalised metric. We postpone the study of applica-
tive Γ-bisimilarity to Section 7. As usual we assume a signature
Σ, a Σ-quantale V, a collection of CBEs Π (according to Section 3),
and a Σ-continuous (strong) monad T to be fixed. We also assume
V-relators to satisfy all requirements given in Section 4.

Definition 10. A closed λ-term V-relation α = (αΛ,αV ) associates
to each closed type σ , binary V-relations αVσ ,αΛ

σ on closed values and
terms inhabiting it, respectively.



Since the syntactic shape of expressions determines whether we
are dealing with terms or values, oftentimes we will write ασ (e , f )
(resp. ασ (v ,w )) in place of αΛ

σ (e , f ) (resp. αVσ (v ,w )).
In order to be able to work with open terms we introduce the

notion of open λ-term V-relation.

Definition 11. An open λ-term V-relation α associates to each
(term) sequent Γ ⊢ σ a V-relation Γ ⊢ α (−,−) : σ on terms inhabiting
it, and to each value sequent Γ ⊢v σ a V-relation Γ ⊢v α (−,−) : σ on
values inhabiting it. We require open λ-term V-relations to be closed
under weakening, i.e. for any environment ∆ we require:

(Γ ⊢ α (e , f ) : σ ) ≤ (Γ ⊗ ∆ ⊢ α (e , f ) : σ ),
(Γ ⊢v α (v ,w ) : σ ) ≤ (Γ ⊗ ∆ ⊢v α (v ,w ) : σ ).

As for closed λ-term V-relations, we will often write Γ ⊢ α (v ,w ) :
σ in place of Γ ⊢v α (v ,w ) : σ and simply refer to open λ-term V-
relations as λ-termV-relations (whenever relevant wewill explicitly
mention whether we are dealing with open or closed λ-term V-
relations).

Example 13. Both the discrete and the indiscrete V-relations are
open λ-term V-relations. The discrete λ-term V-relation is defined
by:

Γ ⊢ disc(e , e ) : σ ≜ k , Γ ⊢ disc(e , f ) : σ ≜ ⊥,
(and similarly for values), whereas the indiscrete λ-term V-relation
is defined by

Γ ⊢ indisc(e , f ) : σ ≜ k

(and similarly for values).

We notice that the collection of open λ-term V-relations carries
a complete lattice structure (with respect to the pointwise order),
meaning that we can define λ-term V-relation both inductively and
coinductively.

We can always extend a closed λ-term V-relation α = (αΛ,αV )
to an open one.

Definition 12. Let Γ ≜ x1 :s1 σ1, . . . ,xn :sn σn be an environment.
For values v⃗ ≜ v1, . . . ,vn we write v⃗ : Γ if for any i ≤ n, ∅ ⊢v vi : σi
holds. Given a closed λ-term V-relation α = (αΛ,αV ) we define its
open extension αo as follows7:

Γ ⊢ αo (e , f ) : τ ≜
∧

v⃗ :Γ
αΛ
τ (e[x⃗ := v⃗], f [x⃗ := v⃗])

Γ ⊢v αo (v ,w ) : τ ≜
∧

ū :Γ
αVτ (v[u⃗/x⃗],w[u⃗/x⃗]).

We now define applicative Γ-similarity.

Definition 13. Let Γ be a V-relator and α = (αΛ,αV ) be a closed λ-
termV-relation. Define the closed λ-termV-relation [α] = ([α]Λ, [α]V )
as follows:

[α]Λσ (e , f ) ≜ ΓαVσ ( |e |, | f |),

[α]Vσ⊸τ (v ,w ) ≜
∧

u ∈Vσ
αΛ
τ (vu,wu),

[α]V∑
i∈I σi

(⟨ı̂,v⟩, ⟨ı̂,w⟩) ≜ αVσı̂ (v ,w ),

[α]V∑
i∈I σi

(⟨ı̂,v⟩, ⟨ ȷ̂,w⟩) ≜ y,

[α]µt .σ (fold v , foldw ) ≜ ασ [µt .σ /t ] (v ,w ),

[α]!sσ (!v , !w ) ≜ (s ◦ ασ ) (v ,w ).

7The superscript is the letter ‘o’ (for open), and should not be confused with ◦ which
we use for the map −◦ sending a V-relation to its dual.

(notice that the definition of [α]V is by case analysis on ∅ ⊢v v ,w : σ ).
A λ-term V-relation α is an applicative Γ-simulation if α ≤ [α].

The clause for σ ⊸ τ generalises the usual applicative clause,
whereas the clause for !sσ ‘scale’ αVσ by s . It is easy to see that the
above definition induces a map α 7→ [α] on the complete lattice of
closed λ-term V-relations. Moreover, such map is monotone since
both Γ and CBEs are.

Definition 14. Define applicative Γ-similarity δ as the greatest fixed
point of α 7→ [α]. That is, δ is the greatest (closed) λ-term V-relation
satisfying the equation α = [α] (such greatest solution exists by the
Knaster-Tarski Theorem).

Applicative Γ-similarity comes with an associated coinduction
principle: for any closed λ-term V-relation α , if α ≤ [α], then α ≤ δ .

Example 14. Instantiating Definition 14 with the Wasserstein
liftingW⊥ we obtain the quantitative analogue of probabilistic ap-
plicative similarity [15] for P-Fuzz. In particular, for two terms
e , f ∈ Λσ , δ (e , f ) is (for readability we omit subscripts):

min
ω ∈Ω( |e |, |f |)

∑
v ,w ∈V

ω (v ,w ) · δV (v ,w ) +
∑
v ∈V

ω (v ,⊥) · δV⊥ (v ,⊥)

+
∑
w ∈V

ω (⊥,w ) · δV⊥ (⊥,w ) + ω (⊥,⊥) · δV⊥ (⊥,⊥).

The above formula can be simplified observing that we have
δV⊥ (⊥,⊥) = 0, δV⊥ (v ,⊥) = 1, and δV⊥ (⊥,w ) = 0 by very definition
of δ⊥. We immediately notice that δ is adequate in the following
sense: for all terms e , f ∈ Λσ we have the inequality∑

|e | −
∑
| f | ≤ δΛ (e , f ),

where
∑
|e | is the probability of convergence of e , i.e.

∑
v ∈V |e |(v ),

and subtraction is actually truncated subtraction.
Let us now consider terms I , Ω ∈ Λσ⊸σ of Example 7. We

claim that δΛ (I , I ⊕ Ω) = 1
2 . By adequacy we immediately see that

1
2 ≤ δ

Λ (I , I ⊕ Ω). We prove δΛ (I , I ⊕ Ω) ≤ 1
2 . Let v ≜ λx .val x and

consider the coupling ω defined by:

ω (v ,v ) =
1
2

, ω (v ,⊥) =
1
2

and zero for the rest. Indeed ω is a coupling of |I | and |I ⊕ Ω |.
Moreover, by very definition of δ andW⊥ we have:

δΛ (I , I ⊕ Ω) ≤ ω (v ,v ) · δV (v ,v ) + ω (v ,⊥).

The right hand side of the above inequality gives exactly 1
2 , provided

that δV (v ,v ) = 0. This indeed holds in full generality.

Proposition 5. Applicative Γ-similarity δ is a reflexive and transi-
tive λ-term V-relation.

Proof sketch. The proof is by coinduction, showing that both the
identity λ-term V-relation and δ · δ are applicative Γ-simulations.
A formal proof is given in Appendix A.3. □

In light of Example 12 we can look at the kernel of δ and recover
well-known notions of (relational) applicative similarity (properly
generalised to V-Fuzz).

Proposition 6. Define applicative ∆Γ-similarity ⪯ by instantiating
Definition 13 with the 2-relator ∆Γ and replacing the clause for types
of the form !sσ as follows: !v R!sσ !w implies (φ · s ·ψ ) ◦ Rσ (v ,w ).
Then the kernel φ ◦ δ of δ coincide with ⪯.
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Proof sketch. By coinduction (and using Lemma 4) one shows that
φ ◦δ is an applicative ∆Γ-simulation and thatψ◦ ⪯ is an applicative
Γ-simulation. A detailed proof is given in Appendix A.3. □

Note that if Rσ (v ,w ) holds, then so does (φ · s ·ψ ) ◦ Rσ (v ,w ),
but the vice-versa does not necessarily hold. For instance, taking
s ≜ 0 we see that

(φ · 0 ·ψ ) ◦ Rσ (v ,w ) = φ (0(ψ (false))) = φ (0 · ∞) = φ (0) = true,

which essentially means we identify distinguishable values if they
are not used. Nonetheless, the reader should notice that the encod-
ing of a ‘standard’ λ-calculus Λ in V-Fuzz can be obtained via the
usual encoding of Λ in its linear refinement [37] which corresponds
to the fragment of V-Fuzz based on CBEs 1 and∞, thus avoiding
the above undesired result.

Finally, we introduce the notion of compatibility which captures
a form of Lipshitz-continuity with respect to V-Fuzz constructors.
It is useful to follow [31] and define compatibility via the notion of
compatible refinement.

Definition 15. The compatible refinement α̂ of an open λ-term
V-relation α is defined by:

(Γ ⊢ α̂ (e , f ) : σ ) ≜
∨
{a | Γ |= a ≤ α̂ (e , f ) : σ },

(Γ ⊢v α̂ (v ,w ) : σ ) ≜
∨
{a | Γ |=v a ≤ α̂ (v ,w ) : σ },

where judgments Γ |= a ≤ α̂ (e , f ) : σ and Γ |=v a ≤ α̂ (v ,w ) : σ are
inductively defined for a ∈ V, Γ ⊢ e , f : σ , and Γ ⊢v v ,w : σ by rules
in Figure 4. We say that α is compatible if α̂ ≤ α .

It is easy to see that if α is compatible, then it satisfies inequalities
in Figure 5. Actually, α is compatible precisely if it satisfies the
inequalities in Figure 5.

Notice that in the clause for sequential composition the presence
of s ∧ 1, instead of s , ensures that for terms like e ≜ let x = I in 0
and e ′ ≜ let x = Ω in 0, the distance α (e , e ′) is determined before
sequencing (which captures the idea that although 0 will not ‘use’
any input, I and Ω will be still evaluated, thus producing observable
differences between e and e ′). In fact, if we replace s ∧ 1 with s ,
then by taking s ≜ 0 compatibility would imply α (e , e ′) = k , which
is clearly unsound.

In order to make applicative Γ-similarity a useful tool, we need
it to allow compositional reasoning about programs. Formally, that
amount to prove that applicative Γ-similarity is compatible.

6 Howe’s Method
To prove compatibility of applicative Γ-similarity we design a gen-
eralisition of the so-called Howe’s method [26] combining and
extending ideas from [12] and [14]. We start by defining the no-
tion of Howe’s extension, a construction extending a λ-term V-open
relation to a compatible and substitutive λ-term V-relation.

Definition 16 (Howe’s extension (1)). The Howe’s extension αH

of an open λ-term V-relation α is defined as the least solution to the
equation β = α · β̂ .

It is easy to see that compatible refinement −̂ is monotone, and
thus so is the map Φα defined by Φα (β ) ≜ α · β̂ . As a consequence,
we can defineαH as the least fixed point ofΦα . Since open extension
−o is monotone as well, we can define the Howe’s extension of a
closed λ-term V-relation α as (αo )H .

It is also useful to spell out the above definition.

Definition 17 (Howe’s extension (2)). The Howe’s extension αH

of an open λ-term V-relation α is defined by:

(Γ ⊢ αH (e , f ) : σ ) ≜
∨
{a | Γ |= a ≤ αH (e , f ) : σ },

(Γ ⊢v αH (v ,w ) : σ ) ≜
∨
{a | Γ |=v a ≤ αH (v ,w ) : σ },

where judgments Γ |= a ≤ αH (e , f ) : σ and Γ |=v a ≤ αH (v ,w ) : σ
are inductively defined for a ∈ V, Γ ⊢ e , f : σ , and Γ ⊢v v ,w : σ by
rules in Figure 6.

The next lemma (whose proof is given in Appendix A.4) is useful
for proving properties of Howe’s extension. It states that αH attains
its value via the rules in Figure 6.

Lemma 5. The following hold:
1. Given well-typed values Γ ⊢v v ,w : σ , let

A ≜ {a | Γ |=v a ≤ αH (v ,w ) : σ }

be non-empty. Then Γ |=v
∨
A ≤ αH (v ,w ) is derivable.

2. Given well-typed terms Γ ⊢ e , f : σ , let

A ≜ {a | Γ |=c a ≤ αH (e , f ) : σ }

be non-empty. Then Γ |=c
∨
A ≤ αH (e , f ) is derivable.

It is easy to see that Definition 16 and 17 gives the same λ-term
V-relation. In particular, for an open λ-term V-relation α , αH is the
least compatible open λ-term V-relation satisfying the inequality
α · β ≤ β .

The following are standard results on Howe’s extension. Proofs
are straightforward but tedious (they closely resemble their rela-
tional counterparts), and thus are omitted.

Lemma 6. Let α be a reflexive and transitive open λ-term V-relation.
Then the following hold:
1. αH is reflexive.
2. α ≤ αH .
3. α · αH ≤ αH .
4. αH is compatible.

We refer to property 1 as pseudo-transitivity. In particular, by
very definition of V-relator we also have Γα · ΓαH ≤ ΓαH . We
refer to the latter property as Γ-pseudo-transitivity. Notice that
Proposition 5 implies that (δo )H is compatible and bigger than δo .

Finally, Howe’s extension enjoys another remarkable property,
namely substitutivity.

Definition 18. An open λ-term V-relation α is value substitutive if
for all well-typed values Γ,x :s σ ⊢v v ,w : τ , ∅ ⊢v u : σ , and terms
Γ,x :s σ ⊢ e , f : τ we have:

(Γ,x :s σ ⊢v α (v ,w ) : τ ) ≤ (Γ ⊢ α (v[u/x],w[u/x]) : τ ),
(Γ,x :s σ ⊢ α (e , f ) : τ ) ≤ (Γ ⊢ α (e[x := u], f [x := u]) : τ ).

Lemma 7 (Substitutivity). Let α be a value substitutive λ-term V-
preorder. For all values, Γ,x :s σ ⊢v u, z : τ and ∅ ⊢ v ,w : σ , and
terms Γ,x :s σ ⊢ e , f : τ , let a ≜ ∅ ⊢v αH (v ,w ) : σ . Then:

(Γ,x :s σ ⊢v αH (u, z) : τ ) ⊗ s (a) ≤ Γ ⊢v αH (u[v/x], z[w/x]) : τ ,

(Γ,x :s σ ⊢ αH (e , f ) : τ ) ⊗ s (a) ≤ Γ ⊢ αH (e[x := v], f [x := w]) : τ .

Proof. See Appendix A.4. □



Γ,x :s σ |= k ≤ α̂ (x ,x ) : σ
a1 ≤ Γ1 ⊢ α (e1, f1) : σ · · · an ≤ Γn ⊢ α (en , fn ) : σ

opV (Γ1, . . . , Γn ) |= opV (a1, . . . ,an ) ≤ α̂ (op(e1, . . . , en ), op(e1, . . . , en )) : σ

a ≤ Γ,x :1 σ ⊢ α (e , f ) : τ
Γ |=v a ≤ α̂ (λx .e , λx .f ) : σ ⊸ τ

a ≤ Γ ⊢v α (v ,v ′) : σ ⊸ τ b ≤ ∆ ⊢v α (w ,w ′) : σ
Γ ⊗ ∆ |= a ⊗ b ≤ α̂ (vw ,v ′w ′) : τ

a ≤ Γ ⊢v α (v ,w ) : σı̂
Γ |=v a ≤ α̂ (⟨ı̂,v⟩, ⟨ı̂,w⟩) :

∑
i ∈I σi

a ≤ Γ ⊢v α (⟨ı̂,v⟩, ⟨ı̂,w⟩) :
∑
i ∈I σi bi ≤ ∆,x :si σi ⊢≤ α (ei , fi ) : τ (∀i ∈ I )

s · Γ ⊗ ∆ |= s (a) ⊗ bı̂ ≤ α̂ (case ⟨ı̂,v⟩ of {⟨i ,x⟩ → ei }, case ⟨ı̂,w⟩ of {⟨i ,x⟩ → fi }) : τ

a ≤ Γ ⊢v α (v ,w ) : σ
Γ |= a ≤ α̂ (val v , valw ) : σ

a ≤ Γ ⊢ α (e , e ′) : σ b ≤ ∆,x :s σ ⊢ α ( f ′, f ′) : τ
(s ∧ 1) · Γ ⊗ ∆ |= (s ∧ 1) (a) ⊗ b ≤ α̂ (let x = e in f , let x = e ′ in f ′) : τ

a ≤ Γ |= α (v ,w ) : σ
s · Γ |=v s (a) ≤ α (!v , !w ) : !sσ

a ≤ Γ ⊢v α (v ,w ) : !rσ b ≤ ∆,x :s ·r σ ⊢ α (e , f ) : τ
s · Γ ⊗ ∆ |= s (a) ⊗ b ≤ α̂ (case v of {!x → e}, casew of {!x → f }) : τ

aΓ ⊢v α (v ,w ) : σ [µt .σ/t]
Γ |=v a ≤ α̂ (fold v , foldw ) : µt .σ

a ≤ Γ ⊢v α (v ,w ) : µt .σ b ≤ ∆,x :s σ [µt .σ/t] ⊢ b ≤ α (e , f ) : τ
s · Γ ⊗ ∆ |= s (a) ⊗ b ≤ α̂ (case v of {fold x → e}, casew of {fold x → f }) : τ

Figure 4. Compatible refinement.

k ≤ (Γ ⊢v α (x ,x ) : σ )
Γ,x :1 σ ⊢ α (e , f ) : τ ≤ Γ ⊢v α (λx .e , λx .f ) : σ ⊸ τ

(Γ ⊢v α (v ,v ′) : σ ⊸ τ ) ⊗ (∆ ⊢v α (w ,w ′) : σ ) ≤ (Γ ⊗ ∆ ⊢ α (vw ,v ′w ′) : τ )

Γ ⊢v α (v ,w ) : σı̂ ≤ Γ ⊢v α (⟨ı̂,v⟩, ⟨ı̂,w⟩) :
∑

i ∈I
σi

s ◦ (Γ ⊢v α (⟨ı̂,v⟩, ⟨ı̂,w⟩) :
∑

i ∈I
σi ) ⊗ (∆,x :s σ ⊢ α (eı̂ , fı̂ ) : τ ) ≤ s · Γ ⊗ ∆ ⊢ α (case ⟨ı̂,v⟩ of {⟨i ,x⟩ → ei }, case ⟨ı̂,w⟩ of {⟨i ,x⟩ → fi }) : τ

Γ ⊢v α (v ,w ) : σ ≤ Γ ⊢ α (val v , valw ) : σ

(s ∧ 1) ◦ (Γ ⊢ α (e , e ′) : σ ) ⊗ (∆,x :s σ ⊢ α ( f , f ′) : τ ) ≤ (s ∧ 1) · Γ ⊗ ∆ ⊢ α (let x = e in f , let x = e ′ in f ′) : τ
s ◦ (Γ ⊢v α (v ,w ) : σ ) ≤ s · Γ ⊢v α (!v , !w ) : !sσ

s ◦ (Γ ⊢v α (v ,w ) : !rσ ) ⊗ (∆,x :s ·r σ ⊢ α (e , f ) : τ ) ≤ s · Γ ⊗ ∆ ⊢ α (case v of {!x → e}, casew of {!x → f }) : τ
Γ ⊢v α (v ,w ) : σ [µt .σ/t] ≤ Γ ⊢v α (fold v , foldw ) : µt .σ

s ◦ (Γ ⊢v α (v ,w ) : µt .σ ) ⊗ (∆,x :s σ [µt .σ/t] ⊢ α (e , f ) : τ ) ≤ s · Γ ⊗ ∆ ⊢ α (case v of {fold x → e}, casew of {fold x → f }) : τ
opV (Γ1 ⊢ α (e1, f1) : σ , . . . , Γn ⊢ α (en , fn ) : σ ) ≤ opV (Γ1, . . . , Γn ) ⊢ α (op(e1, . . . , en ), op( f1, . . . , fn )) : σ

Figure 5. Compatibility clauses.

Notice that the open extension of any closed λ-term V-relation
is value-substitutive. We can prove the main result of the Howe’s
method, the the so-called Key Lemma. The latter states the Howe’s
extension of applicative Γ-similarity (restricted to closed terms/values)
is an applicative Γ-simulation. By coinduction, we can conclude
that δ and δH (restricted to closed terms/values) coincide, meaning
that the former is compatible.

Lemma 8 (Key Lemma). Let α be a reflexive and transitive applica-
tive Γ-simulation. Then the Howe’s extension of α restricted to closed
terms/values in an applicative Γ-simulation.

Proof sketch. The proof is non-trivial and a detailed account is given
in Appendix A.4. Let us write αH for the Howe’s extension of α
restricted to closed terms/values. By induction on n one shows
that for any n ≥ 0, (αH )Λσ (e , f ) ≤ Γ(αH )Vσ ( |e |n , | f |) holds for all
terms e , f ∈ Λσ . Since Γ is inductive, the above inequality indeed
gives the thesis. The base case follows again by inductivity of Γ,
whereas the inductive step requires a case analysis on the structure

of e . The crucial case is sequencing, where we rely on condition
(L-Strong lax bind). □

From the Key Lemma it directly follows our main result.

Theorem 9 (Compatibility). Applicative Γ-similarity is compatible.

Proof. We have to prove that δo is compatible. By Lemma 6 we
know that δo ≤ (δo )H and that (δo )H is compatible. Therefore,
to conclude the thesis it is sufficient to prove (δo )H ≤ δo . The
Key Lemma implies that the restriction on closed terms/values of
(δo )H is an applicative Γ-simulation, and thus smaller or equal
than δ . We can thus show that for all Γ ⊢ e , e ′ : σ , the inequality
Γ ⊢ (δo )H (e , e ′) : σ ≤ Γ ⊢ δo (e , e ′) : σ holds. In fact, since (δo )H is
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a ≤ Γ,x :s σ ⊢v α (x ,w ) : σ
Γ,x :s σ |= a ≤ αH (x ,w ) : σ

(H-var)

Γ,x :1 σ |= a ≤ αH (e ,д) : τ c ≤ Γ ⊢ α (λx .д, f ) : σ ⊸ τ

Γ |= a ⊗ c ≤ αH (λx .e , f ) : σ ⊸ τ
(H-abs)

Γ |= a ≤ αH (v ,v ′) : σ ⊸ τ ∆ |= b ≤ αH (w ,w ′) : σ c ≤ Γ ⊗ ∆ ⊢ α (v ′w ′, f ) : τ
Γ ⊗ ∆ |= a ⊗ b ⊗ c ≤ αH (vw , f ) : τ

(H-app)

Γ |=v a ≤ αH (v ,w ) : σı̂ b ≤ Γ ⊢v α (⟨ı̂,w⟩,u) :
∑
i ∈I σi

Γ |=v a ⊗ b ≤ α (⟨ı̂,v⟩,u) :
∑
i ∈I σi

(H-inj)

Γ |=v a ≤ αH (⟨ı̂,v⟩, ⟨ı̂,w⟩) :
∑
i ∈I σi ∀i ∈ I . ∆,x :s σi |= bi ≤ αH (ei , fi ) : τ c ≤ s · Γ ⊗ ∆ ⊢ α (case ⟨ı̂,w⟩ of {⟨i ,x⟩ → fi },д) : τ
s · Γ ⊗ ∆ |= s (a) ⊗ bı̂ ⊗ c ≤ α

H (case ⟨ı̂,v⟩ of {⟨i ,x⟩ → ei },д) : τ
(H-sum-cases)

Γ |= a ≤ αH (v ,w ) : σ c ≤ Γ ⊢ α (valw , f ) : σ
Γ |= a ⊗ c ≤ αH (val v , f ) : σ

(H-val)

Γ |= a ≤ αH (e ,д) : σ ∆,x :s σ |= b ≤ αH (e ′,д′) : τ c ≤ (s ∧ 1) · Γ ⊗ ∆ ⊢ α (let x = д in д′, f ) : τ
(s ∧ 1) · Γ ⊗ ∆ |= (s ∧ 1) (a) ⊗ b ⊗ c ≤ αH (let x = e in e ′, f ) : τ

(H-let)

Γ |= a ≤ αH (v ,w ) : σ c ≤ s · Γ ⊢ α (!w , z) : !sσ
s · Γ |= s (a) ⊗ c ≤ αH (!v , z) : !sσ

(H-bang)

Γ |= a ≤ αH (v ,w ) : !rσ ∆,x :s ·r σ |= b ≤ αH (e ,д) : τ c ≤ s · Γ ⊗ ∆ ⊢ α (casew of {!x → д}, f ) : τ
s · Γ ⊗ ∆ |= s (a) ⊗ b ⊗ c ≤ αH (case v of {!x → e}, f ) : τ

(H-bang-cases)

Γ |= a ≤ αH (v ,w ) : µt .σ ∆,x :s σ [µt .σ/t] |= b ≤ αH (e ,д) : τ c ≤ s · Γ ⊗ ∆ ⊢ α (casew of {fold x → д}, f ) : τ
s · Γ ⊗ ∆ |= s (a) ⊗ b ⊗ c ≤ αH (case v of {fold x → e}, f ) : τ

(H-fold-cases)

Γ |= a ≤ αH (v ,w ) : σ [µt .σ/t] c ≤ Γ ⊢ α (foldw , z) : µt .σ
Γ |= a ⊗ c ≤ αH (fold v , z) : µt .σ

(H-fold)

∀i ≤ n. Γi |= ai ≤ α
H (ei ,дi ) : σ c ≤ opV (Γ1. . . . , Γn ) ⊢ α (op(д1, . . . ,дn ), f ) : σ

opV (Γ1, . . . , Γn ) |= opV (a1, . . . ,an ) ⊗ c ≤ αH (op(e1, . . . , en ), f ) : σ
(H-op)

Figure 6. Howe’s extension.

substitutive and thus value substitutive8 we have:

Γ ⊢ (δo )H (e , e ) : σ ≤
∧
v̄ :Γ
∅ ⊢ (δo )H (e[x̄ := v̄], e ′[x̄ := v̄]) : σ

≤
∧
v̄
δΛ
σ (e[x̄ := v̄], e ′[x̄ := v̄])

= Γ ⊢ δo (e , e ′) : σ .

A similar argument holds for values. □

It is worth noticing that from our results directly follow the
following generalisation of Reed’s and Pierce’s metric preservation
[17, 41].

Corollary 1 (Metric Preservation (cf. [17])). For any environment
Γ ≜ x1 :s1 σ , . . . ,xn :sn σ , values v̄ , w̄ : Γ, and Γ ⊢ e : σ we have:

s1 ◦δ
V

σ1 (v1,w1) ⊗ · · · ⊗ sn ◦δ
V

σn (vn ,wn ) ≤ δ
Λ
σ (e[x⃗ := v⃗], e[x⃗ := w⃗]).

Having proved that applicative Γ-similarity is a compatible gen-
eralised metric, we now move to applicative Γ-bisimilarity.
8Notice that in Definition 18 we substitute closed values (in terms and values) meaning
that simultaneous substitution and sequential substitution coincide. In particular, value
substitution implies e.g.

(Γ ⊢ α (e , f ′) : τ ) ≤
∧
v̄ :Γ

αΛ
τ (e[x̄ := v̄], f [x̄ := v̄]).

.

7 Applicative Γ-bisimilarity
In previous section we proved that applicative Γ-similarity is a com-
patible generalised metric. However, in the context of programming
language semantics it is often desirable to work with equivalence V-
relations—i.e. pseudometrics. In this section we discuss two natural
behavioural pseudometrics: applicative Γ-bisimilarity and two-way
applicative Γ-similarity. We prove that under suitable conditions
on CBEs (which are met by all examples we have considered so far)
both applicative Γ-bisimilarity and two-way applicative Γ-similarity
are compatible pseudometrics (V-equivalences). Proving compatibil-
ity of the latter is straightforward. However, proving compatibility
of applicative Γ-bisimilarity is not trivial and requires a variation
of the so-called transitive closure trick [26, 31, 39] based on ideas in
[46].

Before entering formalities, let us remark that so far we have
mostly workedwith inequation and inequalities. That was fine since
we have been interested in non-symmetric V-relations. However,
for symmetric V-relations inequalities seem not to be powerful
enough, and often plain equalities are needed in order to make
proofs work. For that reason in the rest of this section we assume
CBFs to be monotone monoid (homo)morphism. That is, we modify



Definition 4 requiring the equalities:

h(k ) = ℓ, h(a ⊗ b) = h(a) ⊗ h(b).

Note that we do not require CBEs to be join-preserving (i.e. continu-
ous).We also require operationsopV to be quantale (homo)morphism,
i.e. to preserves unit, tensor, and joins. It is easy to see that the new
requirements are met by all examples considered so far. We start
with two-way applicative Γ-similarity.

Proposition 7. For a V-relator Γ define two-way applicative Γ-
similarity as δ ⊗ δ◦. Then two-way applicative Γ-similarity is a
compatible V-equivalence.

Proof sketch. Clearly δ ⊗ δ◦ is symmetric. Moreover, since CBEs
are monoid (homo)morphism it is also compatible. □

We now move to the more interesting case of applicative Γ-
bisimilarity. In light of Example 8 we give the following definition.

Definition 19. Recall Proposition 2. Define applicative Γ-bisimilarity
γ as applicative (Γ ∧ Γ◦)-similarity.

Proposition 5 implies that γ is reflexive and transitive. Moreover,
if CBEs preserve binary meet (a condition satisfied by all our ex-
amples), i.e. s (a) ∧ s (b) = s (a ∧ b) for any CBE s in Π, then γ is
also symmetric, ad thus a pseudometric. Finally we observe that
γ is the greatest λ-term V-relation α such that both α and α◦ are
applicative Γ-simulation.

Proving compatibility of γ is not straightforward, and requires
a variation of the so-called transitive closure trick [39]. First of all
we notice that we cannot apply the Key Lemma on γ since Γ ∧ Γ◦

being conversive is, in general, not inductive. To overcome this
problem, we follow [46] and characterise applicative Γ-bisimilarity
differently.

Proposition 8. Let Γ be a V-relator. Define the λ-term V-relation
γ ′ as follows:

γ ′ ≜
∨
{α | α◦ = α , α ≤ [α]}.

Then:
1. γ ′ is a symmetric applicative Γ-simulation, and therefore the

largest such λ-term V-relation.
2. γ ′ coincide with applicative (Γ ∧ Γ◦)-similarity γ .

Proof. See Appendix A.5. □

Lemma 8 allows to apply the Key Lemma onγ , thus showing that
γH is compatible. However, the Howe’s extension is an intrinsically
asymmetrical construction (cf. pseudo-transitivity) and there is little
hope to prove symmetry of γH (which would imply compatibility
of γ ). Nevertheless, we observe that for a suitable class of CBEs
the transitive closure (γH )T of γH is a symmetric, compatible, Γ-
simulation (and thus smaller than γ ).

Definition 20. We say that a CBE s is finitely continuous, if s , ∞
implies s (

∨
A) =

∨
{s (a) | a ∈ A}, for any set A ⊆ V.

Example 15. All concrete CBEs considered in previous examples
are finitely continuous. Moreover, it is easy to prove the all CBEs de-
fined from the CBEs n,∞ of Example 5 using operations in Lemma
1 are finitely continuous9 provided that opV (a1, . . . ,⊥, . . . ,an ) = ⊥
(which is the case for most of the concrete operations we consid-
ered).
9Recall that since a is integral we have the inequality a ⊗ ⊥ = ⊥ for any a ∈ V.

The following is the central result of our argument (see Appendix
A.5 for a proof).

Lemma 10. Assume CBEs in Π to be finitely continuous. Define
the transitive closure αT of a V-relation α as αT ≜

∨
n α

(n) , where
α (0) ≜ id , and α (n+1) ≜ α (n) · α .
1. Let α be a reflexive and transitive λ-term V-relation. Then (αH )T

is compatible.
2. Let α be an reflexive, symmetric, and transitive open λ-term

V-relation. Then (αH )T is symmetric.

Finally, we can prove that applicative Γ-bisimilarity is compati-
ble.

Theorem 11. If any CBE in Π is finitely continuous, then applicative
Γ-bisimilarity is compatible.

Proof. From Lemma 10 we know that (γH )T is compatible. There-
fore it is sufficient to prove ((γ )H )T = γ . One inequality follows
from Lemma 6 as follows: γ ≤ γH ≤ (γ )T . For the other inequality
we rely on the coinduction proof principle associated with γ . As a
consequence, it is sufficient to prove that ((γ )H )T is a symmetric
applicative Γ-simulation. Symmetry is given by Lemma 10. From
Key Lemma we know that γH is an applicative Γ-simulation. Since
the identity λ-term V-relation is a applicative Γ-simulation and that
the composition ofapplicative Γ-simulations is itself an applicative
Γ-simulation (see the proof of Proposition 5) we see that (γH )T is
itself an applicative Γ-simulation. □

Finally, we notice that all concrete CBEs considered in this work
are finitely continuous. We can then rely on Theorem 11 to come
up with concrete notions of compatible applicative Γ-bisimilarity.
Notably, we obtain compatible pseudometrics for Fuzz10 and P-
Fuzz.

8 Further Developments
In Section 6 we proved that applicative Γ-similarity is a compatible
V-peorder (i.e. a compatible generalised metric), whereas in Section
7 we proved that applicative Γ-bisimilarity (and two-way similarity)
is a compatible V-equivalence (i.e. a compatible pseudometric) In
this last section we shortly sketch a couple of further considerations
on the results obtained in this work.

Contextual distances An issue that has not been touched con-
cerns the quantitative counterpart of contextual preorder and con-
textual equivalence. Recently [12, 13] define a contextual distance
δctx for probabilistic λ-calculi as:

δctx (e , f ) ≜ sup
C

|
∑
|C[e]| −

∑
|C[f ]| |,

for contexts and terms of appropriate types. Taking into account
sensitivity, and thus moving to P-Fuzz, such distance could be
refined as

δctx (e , f ) ≜ sup
C

|
∑
|C[e]| −

∑
|C[f ]| |

nC
,

where nC is the sensitivity of C. Here some design choices are
mandatory in order to deal with division by zero and infinity. Two
immediate observations are that we would like

|
∑
|C[e]| −

∑
|C[f ]| |

nC
10 Formally, we should extend our definitions adding a basic type for real numbers
and primitives for arithmetical operations, but that is straightforward.
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to be 0 if nC = 0 and that

|
∑
|C[e]| −

∑
|C[f ]| |

nC
= 0

if nC = ∞. That means that we can restrict contexts to range over
those with sensitivity different from 0 and∞. In particular, exclud-
ing the latter means that we are considering finitely continuous
CBEs. This observation (together with the fact that division is the
right adjoint of multiplication) suggests a possible generalisation
of the contextual distance to arbitrary quantales.

Informally, fixed a λ-term V-relation (i.e. a ground observation)
αo we can define the contextual distance αctxo between two (appro-
priate) terms e , e ′ as:

αctxo (e , e ′) ≜
∧
C

s∗ (αo (C[e],C[e ′])),

where C ranges over contexts11 with sensitivity s , and the latter is
finitely continuous and different from∞. We should also exclude
the constantly k change of base functor. The map s∗ is defined as
the right adjoint of s which exists since s preserves arbitrary joints
(see Proposition 7.34 in [16]).

Another possibility is to defineαctx as the largest compatible and
adequate V-relation, where adequacy is defined via the V-relation
αo . However, proving that such V-relation exists in general seems to
be far from trivial. These difficulties seem to suggest that contrary
to what happens when dealing with ordinary relations, a notion of
contextual V-preorder/equivalence appears to be less natural than
the notion of applicative Γ-(bi)similarity.

Combining Effects Our last observation concerns the applicabil-
ity of the framework developed. In fact, all examples considered
in this paper deal with calculi with just one kind of effects (e.g.
probabilistic nondeterminism). However, we can apply the theory
developed to combined effects as well. We illustrate this possibil-
ity by sketching how to add global states to P-Fuzz. Recall that
the global state monad G is defined by GX ≜ (S × X )S where
S = {0, 1}L for a set of (public) location names L. Such monad
comes together with operation symbols for reading and writing
locations: Σ = {get, setℓ:=0, setℓ:=1 | ℓ ∈ L}. The intended se-
mantics of get(e , f ) is to read the content of ℓ and to continue as
e if the content is 0, otherwise continue as f . Dually, setℓ:=0 (e )

11 Give a formal definition of V-Fuzz/ requires some (tedious) work. In fact, contexts
should be terms with a hole [−] to be filled in with another term of appropriate type.
However, due to the fine-grained nature of V-Fuzz, we defined substitution of values
only. Therefore, what we should do is to define a grammar and a notion of substitution
for contexts. Moreover, we should also design a type system for contexts keeping track
of sensitivities (see e.g. [10] for the relational case). This is a tedious exercise but can
be done without difficulties. Here we simply notice that it is possible to ‘simulate’
contexts as follows. Let ∅ ⊢v ∗ : unit be the unit value. Suppose we want to come up
with a (closed) context C[−] of type τ and sensitivity s taking as input terms of type
σ . For that we consider the term (for readability we annotate the lambda):

λy : !sunit ⊸ σ .case y of {!x → C[y∗]}

where y is a fresh variable. To substitute a term e of type σ in C we first thunk it to
λ.e ∈ unit ⊸ σ and then consider:

(λy : !sunit ⊸ σ .case y of {!x → C[y∗]}) (!λ.e )

It is immediate to see that |(λy .case y of {!x → C[y∗]}) (!λ.e ) | captures |C[e] |
(although the expression has not been defined). Moreover, an easy calculation shows
that for any compatible λ-term V-relation α , and for all terms e , e ′ of type σ we have:

s ◦ ασ (e , e ′)
≤ ατ ((λy .case y of {!x → C[y∗]}) (!λ.e ), (λy .case y of {!x → C[y∗]}) (!λ.e ′)).

(resp. setℓ:=1 (e )) stores the bit 0 (resp. 1) in the location ℓ and then
continues as e (see Example 1).

Our combination of global stores and probabilistic computations
is based on the monad GpX = (D⊥ (S × X ))S . The unit η of the
monad is defined by η(x ) (b) = |⟨b,x⟩⟩, whereas the strong Kleisli
extension h♯ of h : Z × X → (D⊥ (S × Y ))

S is defined as follows:
first we uncurry h (and apply some canonical isomorphisms) to
obtain the function

hu : Z × (S × X ) → D⊥ (S × Y ).

We then define h♯ by

h♯ (z,m) (b) = h∗u (z,m(b)),

where h∗u : Z × D⊥ (S × X ) → D⊥ (S × Y ) is the strong Klesli
extension of hu with respect to D⊥. Easy calculations show that
the triple ⟨Gp ,η,−♯⟩ is indeed a strong Kleisli triple.

We now define a [0, 1]-relator Γ for Gp . Given α : X +→ Y , define

Γα (m,n) = supb ∈SW⊥ (idS + α ) (m(b),n(b)).

Notice that (idS + α ) (⟨b,x⟩, ⟨b ′,x ′⟩) = 1 if b , b ′ and α (x ,x ′)
otherwise. It is relatively easy to prove that Γ satisfies conditions in
Section 4. As an illustrative example we prove the following result.

Lemma 12. The [0, 1]-relator Γ satisfies condition (Strong lax bind):

Z × X

≥

h //

γ+α_

��

GpX

Γβ_
��

Z ′ × X ′
h′
// GpY ′

=⇒

Z × GpX

≥

h♯
//

γ+Γα_
��

GpY

Γβ ._
��

Z ′ × GpX
′

h′♯
// GpY ′

Proof. Let us call (1) and (2) the right-hand side and left-hand side
of the above implication, respectively. Moreover, we write αS , βS
for idS + α , idS + β , respectively. Then:

(1) =⇒

Z × (S × X )

≥

fu //

γ+αS_
��

D⊥ (S × Y )

W⊥βS_
��

W × (S ×U ) дu
// D⊥ (S ×V )

=⇒

Z × D⊥ (S × X )

≥

f ∗u //

γ+W⊥αS_
��

D⊥ (S × Y )

W⊥βS_
��

W × D⊥ (S ×U )
д∗u
// D⊥ (S ×V )

=⇒ (2).

□

By Theorem 9 we thus obtain a notion of applicative Γ-similarity
which is a compatible generalised metric. Since CBEs in P-Fuzz
are finitely continuous we can also apply results from Section 7 to
obtain a compatible pseudometric.

9 Related Work
Several works have been done in the past years on quantitative
(metric) reasoning in the context of programming language seman-
tics. In particular, several authors have used (cartesian) categories
of ultrametric spaces as a foundation for denotational semantics
of both concurrent [3, 18] and sequential programming languages



[19]. A different approach is investigated in [17] where a denota-
tional semantics combining ordinary metric spaces and domains is
given to pure (i.e. without effects) Fuzz. The main theorem of [17]
is a denotational version of the so-called metric preservation [41]
(whose original proof requires the introduction of a suitable step-
indexed metric logical relation). Our Corollary 1 is the operational
counterpart of such result generalised to arbitrary algebraic effects.

A different, although deeply related, line of research has been re-
cently proposed in [12, 13] where coinductive, operationally-based
distances have been studied for probabilistic λ-calculi. In particular,
in [12] a notion of applicative distance based on the Wasserstein
lifting is proposed for a probabilistic affine λ-calculus. Restricting
to affine programs only makes the calculus strongly normalising
and remove copying capabilities of programs by construction. In
this way programs cannot amplify distances between their inputs
and therefore are forced to behave as non-expansive functions.
This limitation is overcame in [13], where a coinductive notion
of distance is proposed for a full linear λ-calculus, and distance
trivialisation phenomena are studied in depth. The price to pay for
such generality is that the distance proposed is not applicative, but
a trace distance somehow resembling environmental bisimilarity
[45].

10 Conclusion
In this work we have introduced an abstract framework for study-
ing quantale-valued behavioural relations for higher-order effectful
languages. Such framework has been instantiated to define the
quantitative refinements of Abramsky’s applicative similarity and
bisimilarity for V-Fuzz, a universal λ-calculus with a linear type
system tracking program sensitivity enriched with algebraic effects.
Our main theorems state that under suitable conditions the quanti-
tative notions of applicative similarity and bisimilarity obtained are
a compatible generealised metric and pseudometric, respectively.
These results can be instantiated to obtain compatible pseudomet-
rics for several concrete calculi.

A future research direction is to study how the abstract frame-
work developed can be used to investigate quantitative refinements
of behavioural relations different from applicative (bi)similarity.
In particular, investigating contextual distances (see [20] for some
preliminary observations), denotationally-based distances (along
the lines of [17]), and distances based on suitable logical relations
(such as the one in [41]) are interesting topics for further research.
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A Appendix: Technical Development
This appendix provides proofs of propositions and lemmas stated
in the main body of this paper.

A.1 Proofs of Section 3
Lemma 3. For any e ∈ Λσ , we have |e |σn ⊑Vσ |e |

σ
n+1, for any n ≥ 0.

Proof. By induction on n. We show the case for sequential compo-
sition. We have to prove |let x = e in f |n+1 ⊑ |let x = e in f |n+2
(for readability we omit subscripts). By definition of | − |n we have:

|let x = e in f |n+1 = | f [x := −]|∗n ( |e |n ),
|let x = e in f |n+2 = | f [x := −]|∗n+1 ( |e |n+1).

By induction hypothesis, for any closed value v of the appropriate
type we have the inequality | f [x := v]|n ⊑ | f [x := v]|n+1, from
which follows | f [x := −]|n ⊑ | f [x := −]|n+1. By ω-cppo enrich-
ment the latter implies | f [x := −]|∗n ⊑ | f [x := −]|∗n+1. Finally,
by induction hypothesis we have |e |n ⊑ |e |n+1, so that we can
conclude the thesis as follows12:

| f [x := −]|∗n ( |e |n ) ⊑ | f [x := −]|∗n+1 ( |e |n ) ⊑ | f [x := −]|∗n+1 ( |e |n+1).

□

A.2 Proofs of Section 4
Proposition 2. Let T ,U be set endofunctors. Then:

1. If Γ and ∆ are V-relators forT andU , respectively, then ∆ ·Γ defined
by (∆ · Γ)α ≜ ∆Γα is a V-relator forUT .

2. If {Γ}i ∈I is a family of V-relators for T , then
∧
i ∈I Γi defined by

(
∧
i ∈I Γi )α ≜

∧
i ∈I Γiα is a V-relator for T .

3. If Γ is a V-relator for T , then Γ◦ defined by Γ◦α ≜ (Γα◦)◦ is a
V-relator for T .

4. For any V-relator Γ, Γ ∧ Γ◦ is the greatest conversive V-relator
smaller than Γ.

Proof. The proof consists of a number of straightforward calcu-
lations. As an example, we show that

∧
i ∈I Γi in point 2 satisfies

condition (V-rel 2). Concretely, we have to prove∧
i ∈I

Γiβ ·
∧
i ∈I

Γiα ≤
∧
i ∈I

Γi (β · α ).

For that it is sufficient to prove that for any j ∈ I we have:∧
i ∈I

Γiβ ·
∧
i ∈I

Γiα ≤ Γj (β · α ).

Observe that we have
∧
i ∈I Γiβ ≤ Γjβ and

∧
i ∈I Γiα ≤ Γjα , so that

by monotonicity of composition (recall that V-Rel is a quantaloid)
we infer

∧
i ∈I Γiβ ·

∧
i ∈I Γiα ≤ Γjβ · Γjα . The thesis now follows

from (V-rel 2). □

12Note that by ω-cppo-enrichment f ∗ is monotone, for any f : X → TY . Let
t ,u : Z → TX with t ⊑ u , i.e. u =

⊔
{t ,u }. Then:

f ∗ · u = f ∗ ·
⊔
{t ,u } =

⊔
{f ∗ · t , f ∗ · u }

holds, i.e. f ∗ · t ⊑ f ∗ · u . This specialises to usual pointwise monotonicity, by taking
t ,u : 1→ TX .



Proposition 3. Let µ ∈ D (X ),ν ∈ D (Y ) be countable distributions
and α : X +→ Y be a [0, 1]-relation. Then:

Wα (µ,ν ) = min{
∑

x ,y
α (x ,y) · ω (x ,y) | ω ∈ Ω(µ,ν )}

= max{
∑

x
ax · µ (x ) +

∑
y
by · ν (y)

| ax + by ≤ α (x ,y),ax ,by bounded},

where ax ,by bounded means that there exist ā, b̄ ∈ R such that
∀x . ax ≤ ā, and ∀y. by ≤ b̄.

Proof. The proof is a direct consequence of the following duality
theorem for countable transportation problems [29].

Fact 1. Let i , j, . . . range over natural numbers. Let mi ,nj , ci j be
non-negative real number, for all i , j. Define

M ≜ inf {
∑
i ,j

ci jxi j | xi j ≥ 0,
∑
j
xi j =mi ,

∑
i
xi j = nj , }

M∗ ≜ sup{
∑
i
miai +

∑
j
njbj | ai + bj ≤ ci j ,ai ,bj bounded}.

where ai ,bj bounded means that there exist ā, b̄ ∈ R such that ai ≤ ā,
and bj ≤ b̄, for all i , j. Then the following hold:
1. M = M∗.
2. The linear problem P induced byM has optimal solution.
3. The linear problem P∗ induced byM∗ has optimal solution.

Now, we first of all notice that Γα (µ,ν ) is nothing but

inf {
∑
x ,y

α (x ,y) · ω (x ,y)

| ω (x ,y) ≥ 0,
∑
y
ω (x ,y) = µ (x ),

∑
x
ω (x ,y) = ν (y)}.

In fact,ω (x ,y) ≥ 0,
∑
y ω (x ,y) = µ (x ) and

∑
x ω (x ,y) = ν (y) imply

ω ∈ D (X ×Y ). Moreover, since α is a [0, 1]-relation, α (x ,y) ∈ [0, 1]
(recall that Fact 1 requires ci j to be a non-negative real number).
We conclude the thesis by Fact 1. In particular, it follows that there
exists ω ∈ Ω(µ,ν ) such that:

Wα (µ,ν ) =
∑
x ,y

α (x ,y) · ω (x ,y).

Since α (x ,y),ω (x ,y) ∈ [0, 1] we have α (x ,y) · ω (x ,y) ≤ ω (x ,y),
for all x ,y. It follows

0 ≤
∑
x ,y

α (x ,y) · ω (x ,y) ≤
∑
x ,y

ω (x ,y) = 1

so thatWα is indeed a [0, 1]-relation. □

Proposition 9. Wasserstein liftingW satisfies conditions in Defini-
tion 8.

Proof. We start by showing thatW satisfies condition (Lax unit).
Let |x⟩ denotes the Dirac distribution on x . We have to show that
for any z ∈ X ,w ∈ Y , α (z,w ) ≥ Wα ( |z⟩, |w⟩) holds. By duality
(Proposition 3) we have:

Wα ( |z⟩, |w⟩) = max{
∑
x

ax ·|z⟩(x )+
∑
y

by ·|w⟩(y) | ax+by ≤ α (x ,y)},

where ax ,by are bounded. Clearly Wα ( |z⟩, |w⟩) = ax + by , for
suitable x ∈ X and y ∈ Y . Since ax + by ≤ α (x ,y) we are done.

We now observe that condition (L-Strong lax bind) can actually
be split in two different conditions:

Γ(s ◦ α ) = s ◦ Γα , (L-dist)
γ ⊗ (s ◦ α ) ≤ д◦ · Γβ · f =⇒ γ ⊗ (s ◦ Γα ) ≤ (д∗)◦ · Γβ · f ∗,

(Strong lax bind)

where s ≤ 1. In particular, we can write condition (Strong lax bind)
as follows:

Z × X

≤

f //

γ ⊗α_
��

TY

Γβ_
��

Z ′ × X ′ д
// TY ′

=⇒

Z ×TX

≤

f ∗ //

γ ⊗Γα_
��

TY

Γβ ._
��

Z ′ ×TX ′
д∗
// TY ′

(notice that the latter, together with condition (Lax unit), is equiv-
alent to stating non-expansiveness of unit, multiplication, and
strength of T).

Proving thatW satisfies condition (L-dist) is straightforward. We
prove it satisfies condition (Strong lax bind). Concretely, we have
to prove the following implication:

U × X

≥

f //

γ+α_
��

DZ

W β_
��

V × Y д
// DW

=⇒

U × DX

≥

f ∗ //

γ+Wα_
��

DZ

W β ._
��

V × DY
д∗
// DW

We show that for any u ∈ U ,v ∈ V , µ ∈ DX ,ν ∈ DY we have:

Wβ ( f ∗ (u, µ ),д∗ (v ,ν )) ≤ γ (u,v ) +Wα (µ,ν ).

(note that in the right hand side of the above equations we can
assume without loss of generality to have ordinary addition in place
of a truncated sum). By very definition of strong Kleisli extension
we have:

f ∗ (u, µ ) (z) =
∑
x
µ (x ) · f (u,x ) (z),

д∗ (v ,ν ) (w ) =
∑
y
ν (y) · д(v ,y) (w ).

LetM ≜Wβ ( f ∗ (u, µ ),д∗ (v ,ν )). By duality we have:

M = max{
∑
z

az ·
∑
x
µ (x ) · f (u,x ) (z)

+
∑
w

bw ·
∑
y
ν (y) · д(v ,y) (w )

| az + bw ≤ β (z,w )},

where az and bw are bounded. By Proposition 3 there exists an
ω ∈ Ω(µ,ν ) such thatWα (µ,ν ) =

∑
x ,y ω (x ,y) · α (x ,y). We have

to prove:

M ≤ γ (u,v ) +
∑
x ,y

ω (x ,y) · α (x ,y).

From ω ∈ Ω(µ,ν ) we obtain µ (x ) =
∑
y ω (x ,y), ν (y) =

∑
x ω (x ,y).

We apply the above equalities toM , obtaining (for readability we
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omit the constraint az + bw ≤ β (z,w )):

M = max{
∑
z

az ·
∑
x
µ (x ) · f (u,x ) (z)

+
∑
w

bw ·
∑
y
ν (y) · д(v ,y) (w )}

= max{
∑
z

az ·
∑
x ,y

ω (x ,y) · f (u,x ) (z)

+
∑
w

bw ·
∑
x ,y

ω (x ,y) · д(v ,y) (w )}

= max{
∑
x ,y

ω (x ,y) (
∑
z

az · f (u,x ) (z)

+
∑
w

bw · д(v ,y) (w ))}

=
∑
x ,y

ω (x ,y) ·max{
∑
z

az · f (u,x ) (z)

+
∑
w

bw · д(v ,y) (w )}

=
∑
x ,y

ω (x ,y) ·Wβ ( f (u,x ),д(v ,y)).

We are now in position to use our hypothesis, namely the inequality:

Wβ ( f (u,x ),д(v ,y)) ≤ γ (u,v ) + α ( f (u,x ),д(v ,y))

(note that the hypothesis we have is actually stronger, since it gives
an inequality for truncated addition). We conclude:

M ≤
∑
x ,y

ω (x ,y) · (γ (u,v ) + α (x ,y))

=
∑
x ,y

ω (x ,y) · γ (u,v ) +
∑
x ,y

ω (x ,y) · α (x ,y)

= γ (u,v ) +
∑
x ,y

ω (x ,y) · α (x ,y)

(where in the last equality we used the fact that ω (x ,y) ∈ Ω(µ,ν )
implies

∑
x ,y ω (x ,y) = 1). We are done. □

Proposition 10. Wasserstein liftingW⊥ satisfy conditions in Defi-
nition 8.

Proof. Showing thatW⊥ satisfies conditions (Lax unit) and (L-dist)
is straightforward (but notice that for the latter we need the hy-
pothesis s ≤ 1). We prove it satisfies condition (Strong lax bind)
as well. First of all define for f : U × X → D (Y⊥) the map
f ⊥ : U × X⊥ → D (Y⊥) by:

f ⊥ (u,⊥X ) ≜ |⊥Y ⟩,

f ⊥ (u,x ) ≜ f (u,x ).

We see that the Kleisli extension f ∗ with respect to the subdistri-
bution monad D≤1 of f : U × X → D (Y⊥) is equal to f ⊥♯ , where
−♯ denotes the (strong) Kleisli extension with respect to the (full)
distribution monad. Moreover, we have the following implication:

U × X

≥

f //

γ+α_
��

DZ⊥

W⊥β_
��

V × Y д
// DW⊥

=⇒

U × X⊥

≥

f ⊥ //

γ+α⊥_
��

DZ⊥

W⊥β ._
��

V × Y⊥
д⊥
// DW⊥

ProvingW⊥ ( f ⊥ (u, x ),д⊥ (v , y )) ≤ γ (u,v )+α⊥ (x , y ) is trivial except
if x = ⊥, meaning that f ⊥ (u, x ) = |⊥Z ⟩. In that case we observe
that for any distribution ν ∈ D (Y⊥) and [0, 1]-relation α : X +→ Y
we haveW⊥ ( |⊥X ⟩,ν ) = 0. Consider an expression of the form∑

(x ,y )∈X⊥×Y⊥

ω (x , y ) · α⊥ (x , y ),

where ω ∈ Ω( |⊥X ⟩,ν ). We can expand such expression as:∑
(x ,y )∈X×Y

ω (x ,y) · α⊥ (x ,y) +
∑
x ∈X

ω (x ,⊥Y ) · α⊥ (x ,⊥Y )+∑
y∈Y

ω (⊥X ,y) · α⊥ (⊥X ,y) + ω (⊥X ,⊥Y ) · α⊥ (⊥X ,⊥Y ).

By very definition of α⊥ the latter reduces to:∑
(x ,y )∈X×Y

ω (x ,y) · α (x ,y) +
∑
x ∈X

ω (x ,⊥Y ).

Since ω ∈ Ω( |⊥X ⟩,ν ) we have
∑

y ∈Y⊥ ω (x , y ) = |⊥X ⟩(x ), meaning
that for any x ∈ X and y ∈ Y⊥, ω (x , y ) = 0. We can conclude
W⊥ ( |⊥X ⟩,ν ) = 0.

Finally, sinceW⊥ satisfies condition (Strong lax bind) we can
infer the desired thesis as follows:

γ + α ≥ д◦ ·W⊥β · f =⇒ γ + α⊥ ≥ (д⊥)◦ ·W⊥β · f
⊥

⇐⇒ γ + α⊥ ≥ (д⊥)◦ ·Wβ⊥ · f
⊥

=⇒ γ +Wα⊥ ≥ (д⊥
♯
)◦ ·Wβ⊥ · f

⊥♯

⇐⇒ γ +W⊥α ≥ (д∗)◦ ·W⊥β · f
∗.

□

A.3 Proofs of Section 5
Lemma 13. For all subdistributions µ ∈ D (X⊥) and ν ∈ D (Y⊥),
and [0, 1]-relation (with respect to the unit interval quantale) α : X +→

Y , we have: ∑
µ −
∑

ν ≤W⊥α (µ,ν ),

where
∑
µ denotes the ‘probability of convergence’ of µ defined by∑

µ ≜
∑
x ∈X µ (x ) (and similarity for ν ), and − denotes truncated

subtraction.

Proof. We have:

W⊥α (µ,ν ) = max{
∑
x

ax · µ (x ) + a⊥X · µ (⊥X )

+
∑
y

by · ν (y) + b⊥Y · ν (⊥Y )},

where ax ,a⊥X ,by ,b⊥Y are bounded and satisfy the following con-
straints (already simplified according to the definition of α⊥):

ax + by ≤ α (x ,y), a⊥X + by ≤ 0,
ax + b⊥Y ≤ 1, a⊥X + b⊥Y ≤ 0.

Choosing ax ≜ 1, by ≜ −1, a⊥X ≜ b⊥Y ≜ 0 we obtain the desired
inequality. □

Proposition 5. Applicative Γ-similarity δ is a reflexive and transi-
tive λ-term V-relation.

Proof. The proof is by coinduction. Let us show that δ is transitive,
i.e. that δ ·δ ≤ δ .We prove that the λ-termV-relation (δΛ·δΛ,δV ·δV )
is an applicative Γ-simulation. We split the proof into five cases:



1. We show that for all terms e , f ∈ Λσ we have:∨
д∈Λσ

δΛ
σ (e ,д) ⊗ δΛ

σ (д, f ) ≤ Γ(δVσ · δ
V

σ ) ( |e |, | f |).

By (V-rel 2) it is sufficient to prove:∨
д∈Λσ

δΛ
σ (e ,д) ⊗ δΛ

σ (д, f ) ≤
∨

V ∈TVσ

ΓδVσ ( |e |, V ) ⊗ ΓδVσ (V , | f |).

For anyд ∈ Λσ instantiateV as |д |. Since δΛ
σ (e ,д) ≤ ΓδVσ ( |e |, |д |)

and δΛ
σ (д, f ) ≤ ΓδVσ ( |д |, | f |), we are done by very definition of

δ .
2. We prove that

(δVσ⊸τ · δ
V

σ⊸τ ) (v ,w ) ≤
∧

u ∈Vσ

(δΛ
τ · δ

Λ
τ ) (vu,wu)

holds for all values v ,w ∈ Vσ⊸τ . For that it is sufficient to
prove that for any u ∈ Vσ and for any z ∈ Vσ⊸τ there exists a
term e ∈ Λτ such that:

δVσ⊸τ (v , z) ⊗ δVσ⊸τ (z,w ) ≤ δΛ
τ (vu, e ) ⊗ δΛ

τ (e ,wu).

By very definition of δVσ⊸τ we have:

δVσ⊸τ (v , z) ⊗ δVσ⊸τ (z,w )

≤
∧

u′∈Vσ

δΛ
τ (vu

′, zu ′) ⊗
∧

u′∈Vσ

δΛ
τ (zu

′,wu ′)

≤ δΛ
τ (vu, zu) ⊗ δΛ

τ (zu,wu),

so that it is sufficient to instantiate e as zu.
3. We prove that

(δV∑
i∈I σi

· δV∑
i∈I σi

) (⟨ı̂,v⟩, ⟨ ȷ̂,u⟩) ≤ y,

(δV∑
i∈I σi

· δV∑
i∈I σi

) (⟨ı̂,v⟩, ⟨ı̂,w⟩) ≤ (δVσı̂ · δ
V

σı̂ ) (v ,w ),

hold for all v ,w ∈ Vσı̂ and u ∈ Vσ ȷ̂ , with ı̂ , ȷ̂. We have

(δV∑
i∈I σi

· δV∑
i∈I σi

) (⟨ı̂,v⟩, ⟨ ȷ̂,u⟩)

=
∨

⟨ℓ̂,z⟩∈V∑i∈I σi
δV∑

i∈I σi
(⟨ı̂,v⟩, ⟨ℓ̂, z⟩) ⊗ δV∑

i∈I σi
(⟨ℓ̂, z⟩, ⟨ ȷ̂,w⟩).

Since ı̂ , ȷ̂ at least one among ı̂ , ℓ̂ and ℓ̂ , ȷ̂ holds, for any
⟨ℓ̂, z⟩ ∈ V∑i∈I σi . As a consequence, by very definition of δ , the
right hand side of the above inequality is equal to something of
the form y ⊗ a, which is itself equal to y. To prove the second
inequality, we have to show that for any ⟨ı̂,u⟩ ∈ V∑i∈I σi there
exists z ∈ Vσı̂ such that

δV∑
i∈I σi

(⟨ı̂,v⟩, ⟨ı̂,u⟩) ⊗ δV∑
i∈I σi

(⟨ı̂,u⟩, ⟨ı̂,w⟩)

≤ δVσı̂ (v , z) ⊗ δVσı̂ (z,w ).

Notice that for a value ⟨ ȷ̂,u⟩ ∈ V∑i∈I σi with ȷ̂ , ı̂ we would
have, by very definition of δ , δV∑

i∈I σi
(⟨ı̂,v⟩, ⟨ ȷ̂,u⟩) = y, and

thus we would be trivially done. Proving the above inequality is
straightforward: simply instantiate z as u and observe that by
definition of δ we have

δV∑
i∈I σi

(⟨ı̂,v⟩, ⟨ı̂,u⟩) ≤ δVσı̂ (v ,u),

δV∑
i∈I σi

(⟨ı̂,u⟩, ⟨ı̂,w⟩) ≤ δVσı̂ (u,w ).

4. The case for µt .σ follows the same pattern of the above one.

5. We prove:

(δV!sσ · δ
V

!sσ ) (!v , !w ) ≤ s ◦ (δVσ · δ
V

σ ) (v ,w ).

For that we notice that for every !u ∈ !sσ we have:

δV!sσ (!v , !u) ⊗ δV!sσ (!u, !w ) ≤ (s ◦ δVσ ) (v ,u) ⊗ (s ◦ δVσ ) (u,w )

≤ ((s ◦ δVσ ) · (s ◦ δ
V

σ )) (v ,w )

≤ s ◦ (δVσ · δ
V

σ ) (v ,w ).

□

Proposition 6. Define applicative ∆Γ-similarity ⪯ by instantiating
Definition 13 with the 2-relator ∆Γ and replacing the clause for types
of the form !sσ as follows: !v R!sσ !w implies (φ · s ·ψ ) ◦ Rσ (v ,w ).
Then the kernel φ ◦ δ of δ coincide with ⪯.

Proof. The proof is by coinduction. We start proving that φ ◦δ is an
applicative ∆Γ-simulation. Since δΛ

σ (e , f ) ≤ ΓδVσ ( |e |, | f |) holds for
all terms e , f ∈ Λσ , we can apply Lemma 4 and infer the inequality
φ ◦ δΛ

σ (e , f ) ≤ ∆Γ (φ ◦ δ
V
σ ) ( |e |, | f |). Let us now move to the value

clauses.
1. We prove that for all values v ,w ∈ Vσ⊸τ we have:

φ ◦ δVσ⊸τ (v ,w ) ≤
∧

u ∈Vσ

φ ◦ δΛ
τ (vu,wu).

Suppose φ ◦ δVσ⊸τ (v ,w ) = true, so that δVσ⊸τ (v ,w ) = k . We
show that φ ◦δΛ

τ (vu,wu) = true holds for any u ∈ Vσ . By very
definition of applicative Γ-similarity, δVσ⊸τ (v ,w ) = k implies∧
u ∈Vσ δ

Λ
τ (vu,wu) = k . Since V is integral (i.e. k = y), we

must have δΛ
τ (vu,wu) = k (and thus φ ◦ δΛ

τ (vu,wu) = true) for
any u ∈ Vσ .

2. Clauses for sum and recursive types are straightforward.
3. We show that for all values !v , !w ∈ V!sσ ,φ◦δ

V

!sσ (!v , !w ) = true
implies (φ · s ·ψ ) ◦ (φ ◦ δVσ ) (v ,w ) = true. By algebra of CBFs
we have:

(φ · s ·ψ ) ◦ (φ ◦ δVσ ) = (φ · s ·ψ · φ) ◦ δVσ

= (φ · s ) ◦ δVσ

= φ ◦ (s ◦ δVσ ).

Since φ ◦ δV!sσ (!v , !w ) = true, and thus δV!sσ (!v , !w ) = k , by
very definition of δ we infer s ◦ δVσ (v ,w ) = k . We conclude
(φ ◦ (s ◦ δVσ )) (v ,w ) = true.

We now prove by coinduction (ψ ◦ ⪯) ≤ δ , from which follows
((φ ·ψ ) ◦ ⪯) ⊆ (φ ◦ δ ) and thus ⪯ ⊆ (φ ◦ δ ). The clause for terms
directly follows from Lemma 4. The clauses for values follow the
same structure of the previous part of the proof. We show the case
for values of type !sσ . Suppose ψ ◦ ⪯V!σ σ (!v , !w ) = k to hold
(otherwise we are trivially done), meaning that !v ⪯V!σ σ !w holds
as well. As a consequence, we have ((φ · s ·ψ ) ◦ ⪯Vσ ) (v ,w ) = true,
and thus s ◦ (ψ ◦ ⪯Vσ ) (v ,w ) = k . □

A.4 Howe’s Method
Lemma 5. The following hold:
1. Given well-typed values Γ ⊢v v ,w : σ , let

A ≜ {a | Γ |=v a ≤ αH (v ,w ) : σ }

be non-empty. Then Γ |=v
∨
A ≤ αH (v ,w ) is derivable.



Quantitative Behavioural Reasoning for Higher-order Effectful Programs

2. Given well-typed terms Γ ⊢ e , f : σ , let

A ≜ {a | Γ |=c a ≤ αH (e , f ) : σ }

be non-empty. Then Γ |=c
∨
A ≤ αH (e , f ) is derivable.

Proof sketch. We simultaneously prove statements 1 and 2 by induc-
tion on (v , e ). We show a couple of cases as illustrative examples:
1. Suppose

A ≜ {a | Γ |=v a ≤ αH (x ,w ) : σ }
to be non-empty. If the judgment Γ |=v a ≤ αH (x ,w ) : σ is
provable, then it must be the conclusion of an instance of rule
(H-var) from the premise:

a ≤ (∆,x :s σ ⊢v α (x ,w ) : σ ),

so that Γ = ∆,x :s σ . As a consequence, we see that the set A is
just {a | a ≤ (∆,x :s σ ⊢v α (x ,w ) : σ )}. In particular, we have
∆,x :s σ ⊢v α (x ,w ) : σ =

∨
A ∈ A.

2. Suppose

A ≜ {a | Γ |= a ≤ αH (let x = e in f ,д) : τ }

to be non-empty. That means there exists a ∈ V such that
Γ |= a ≤ αH (let x = e in f ,д) : τ is derivable. The latter
judgment must be the conclusion of an instance of rule (H-let)
from premisses:

Σ |= b ≤ αH (e , e ′) : σ ,

∆,x :s σ |= c ≤ αH ( f , f ′) : τ ,

d ≤ (s ∧ 1) · Σ ⊗ ∆ ⊢ α (let x = e ′ in f ′,д) : τ ,

so that Γ = (s ∧ 1) · Σ⊗∆ and a = (s ∧ 1) (b) ⊗ c ⊗d . In particular,
the sets

B = {b | Σ |= b ≤ αH (e , e ′) : σ },

C = {c | ∆,x :s σ |= c ≤ αH ( f , f ′) : τ },

are non-empty. By induction hypothesis we have
∨

B ∈ B and∨
C ∈ C . Letd = (s∧1) ·Σ⊗∆ ⊢ α (let x = e ′ in f ′,д) : τ . We can

now apply rule (H-let) obtaining (s ∧ 1)
( ∨

B
)
⊗
( ∨

C
)
⊗d ∈ A.

To see that the latter is actually
∨
A it is sufficient to show that

for any a ∈ A we have a ≤ (s ∧ 1)
( ∨

B
)
⊗
( ∨

C
)
⊗ d . But any

a ∈ A (with a , y) is of the form (s ∧ 1) (b) ⊗ c ⊗ d for b ∈ B,
c ∈ C , and d ≤ d . We are done since both (s ∧ 1) and ⊗ are
monotone.

□

It is now easy to show that the above definition of Howe’s ex-
tension coincide with the one of Definition 16. In particular, for an
open λ-term V-relation α , αH is the least compatible open λ-term
V-relation satisfying the inequality α · β ≤ β .

The following are standard results on Howe’s extension. Proofs
are straightforward but tedious (they closely resemble their rela-
tional counterparts), and thus are omitted.

Lemma 7 (Substitutivity). Let α be a value substitutive λ-term V-
preorder. For all values, Γ,x :s σ ⊢v u, z : τ and ∅ ⊢ v ,w : σ , and
terms Γ,x :s σ ⊢ e , f : τ , let a ≜ ∅ ⊢v αH (v ,w ) : σ . Then:

(Γ,x :s σ ⊢v αH (u, z) : τ ) ⊗ s (a) ≤ Γ ⊢v αH (u[v/x], z[w/x]) : τ ,

(Γ,x :s σ ⊢ αH (e , f ) : τ ) ⊗ s (a) ≤ Γ ⊢ αH (e[x := v], f [x := w]) : τ .

Proof. We simultaneously prove the following statements.

(i) For any a ∈ V if Γ,x :s σ |= a ≤ αH (e , f ) : τ is derivable,
then a ⊗ s (a) ≤ Γ ⊢ αH (e[x := v], f [x := w]) : τ holds.

(ii) For any a ∈ V if Γ,x :s σ |=v a ≤ αH (u, z) : τ is derivable,
then a ⊗ s (a) ≤ Γ ⊢ αH (u[v/x], z[w/x]) : τ holds.

The proof is by induction on the derivation of the judgments:

J ≜ Γ,x :s σ |= a ≤ αH (e , f ) : τ ,

J ′ ≜ Γ,x :s σ |=v a ≤ αH (u, z) : τ .

1. Suppose J ′ has been inferred via an instance of rule (H-var).
We have two subcases to consider.
1.1 J ′ has been inferred via an instance of rule (H-var) from
premisses:

a ≤ Γ,x :s σ ⊢v α (x ,u) : σ
Γ,x :s σ |=v a ≤ αH (x ,u) : σ

(H-var),

so that s ≤ 1 and J ′ is Γ,x :s σ |=v a ≤ αH (x ,u) : σ . We have
to prove a ⊗ s ◦ (∅ ⊢v αH (v ,w )) ≤ Γ ⊢v αH (v ,u[w/x]) : σ .
Since α is value substitutive, from Γ,x :s σ |=v a ≤ αH (x ,u) :
σ we infer a ≤ Γ ⊢v α (w ,u[w/x]) : σ . Moreover, since αH is
an open λ-term V-relation (and thus closed under weakening),
we have ∅ ⊢v αH (v ,w ) : σ ≤ Γ ⊢v αH (v ,w ) : σ . We can now
conclude the thesis as follows:

a ⊗ s (a) ≤ (Γ ⊢v αH (v ,w ) : σ ) ⊗ s ◦ (Γ ⊢v α (w ,u[w/x]) : σ )

≤ (Γ ⊢v αH (v ,w ) : σ ) ⊗ (Γ ⊢v α (w ,u[w/x]) : σ )
[ since s ≤ 1 ]

≤ Γ ⊢v αH (v ,u[w/x]) : σ
[ by pseudo-transitivity ].

1.2 J ′ has been inferred via an instance of rule (H-var) from
premisses:

a ≤ Γ,y :r τ ,x :s σ ⊢v α (y,u) : τ
Γ,y :r τ ,x :s σ |=v a ≤ αH (y,u) : τ

(H-var)

so that J ′ is Γ,y :r τ ,x :s σ |=v a ≤ αH (y,u) : τ . We have to
prove a ⊗ s ◦ (∅ ⊢v αH (v ,w )) ≤ Γ,y :r τ ⊢v αH (y,u[w/x]) : τ .
As V is integral and α is value-substitutive, we have:

a ⊗ s ◦ (∅ ⊢v αH (v ,w )) ≤ a ≤ Γ,y :r τ ⊢v α (y,u[w/x]).

Since α ≤ αH we are done.
2. Suppose J has been inferred via an instance of rule (H-let) from

premisses:

Γ,x :s σ |= a ≤ αH (e , e ′) : σ ′, (1)

∆,x :r σ ,y :p σ ′ |= b ≤ αH ( f , f ′) : τ , (2)

c ≤ (p ∧ 1) · (Γ,x :s σ ) ⊗ (∆,x :r σ ) ⊢ αH (let y = e ′ in f ′,д) : τ .
(3)

so that J is:

(p ∧ 1) · Γ ⊗ ∆,x :(p∧1) ·s⊗r σ |= (p ∧ 1) (a) ⊗ b ⊗ c

≤ αH (let y = e in f ,д) : τ .

We have to prove:

(p ∧ 1) (s (a)) ⊗ r (a) ⊗ (p ∧ 1) (a) ⊗ b ⊗ c ≤ (p ∧ 1) · Γ ⊗ ∆

⊢ αH (let y = e[x := v] in f [x := v],д[x := w]) : τ .



We apply the induction hypothesis on (1) and (2) obtaining:

s (a) ⊗ a ≤ Γ ⊢ αH (e[x := v], e ′[x := w]) : σ ′, (4)

r (a) ⊗ b ≤ ∆,y :p σ ′ ⊢ αH ( f [x := v], f [x := w]) : τ . (5)

From (4) and (5) by compatibility of αH (and lax equations of
change of base functors) we infer:

(p ∧ 1) (s (a)) ⊗ (p ∧ 1) (a) ⊗ r (a) ⊗ b ≤ (p ∧ 1) · Γ ⊗ ∆

⊢ αH (let y = e[x := v] in f [x := a],

let y = e ′[x := w] in f ′[x := w]) : τ . (6)

Finally, since α is value-substitutive, from (3) we obtain:

c ≤ (p ∧ 1) · Γ ⊗ ∆ ⊢ αH (let y = e ′[x := w] in f ′[x := w],д) : τ ,

and thus conclude the thesis from the latter and (6) by pseudo-
transitivity.

3. Suppose J has been inferred via an instance of rule (H-op) from
premisses (as usual we write x⃗i for items x1, . . . ,xn ):

∀i . Γi ,x :si σ |= ai ≤ α
H (ei , e ′i ) : τ , (7)

b ≤ opV (Γ⃗i ),x :opV (s⃗i ) σ ⊢ α (op(e⃗
′
i ), f ) : τ , (8)

so that J is

opV (Γ⃗i ),x :opV (s⃗i ) σ |= opV (a⃗i ) ⊗ b ≤ α
H (op(e⃗i ), f ) : τ .

We have to prove

opV (
−−−→
si (a)) ⊗ opV (a⃗i ) ⊗ b

≤ opV (Γ⃗i ) ⊢ α
H (
−−−−−−−−→
ei [x := v], f [x := w]) : τ .

We apply the induction hypothesis on (7) obtaining:

∀i . s (a) ⊗ ai ≤ Γi ⊢ α
H (ei [x := v], e ′i [x := w]) : τ . (9)

Monotonicity of opV on (9) followed by compatibility gives:

opV (
−−−−−−−−→
si (a) ⊗ ai )

≤ opV (Γ⃗i ) ⊢ α
H (op(

−−−−−−−−→
ei [x := v]), op(

−−−−−−−−−→
e ′i [x := w])). (10)

Finally, as α is value-substitutive, from (8) we obtain:

b ≤ opV (Γ⃗i ), ⊢ α (op(
−−−−−−−−−→
e ′i [x := w]) f [x := w]) : τ .

The latter together with (5) implies

opV (
−−−−−−−−→
si (a) ⊗ ai ) ⊗ b ≤ opV (Γ⃗i ) ⊢ α

H (op(
−−−−−−−−→
ei [x := v]), f [x := w])

by pseudo-transitivity. We conclude the thesis as Definition 3
entails:

opV (
−−−→
si (a)) ⊗ opV (a⃗i ) ≤ opV (

−−−−−−−−→
si (a) ⊗ ai ).

The remaining cases follow the same pattern. □

Lemma 8 (Key Lemma). Let α be a reflexive and transitive applica-
tive Γ-simulation. Then the Howe’s extension of α restricted to closed
terms/values in an applicative Γ-simulation.

Proof. Let us write αH for the Howe’s extension of α restricted
to closed terms/values. It is easy to see that αH satisfies the sim-
ulation clauses for values. For instance, we prove the inequation
αH

!sσ (!v , !w ) ≤ s◦αH
σ (v ,w ), where for readability we omit values su-

perscript in α and αH . It is sufficient to show that for any a ∈ V such
that J ≜ ∅ |= a ≤ αH (!v , !w ) : !sσ is derivable, the inequation
a ≤ s ◦ αH

σ (v ,w ) holds. The judgment J must have been inferred

via an instance of rule (H-bang), so that without loss of generality
we can assume a = s (b) ⊗ α!sσ (!u, !w ), with ∅ |= b ≤ αH (v ,u) : σ
derivable, for some value u. We conclude the thesis as follows:

a ≤ s ◦ αH
σ (v ,u) ⊗ α!sσ (!u, !w )

≤ s ◦ αH
σ (v ,u) ⊗ s ◦ ασ (u,w )

[α is an applicative Γ-simulation]

≤ s ◦ (αH
σ (v ,u) ⊗ ασ (u,w ))

≤ s ◦ (ασ · α
H
σ ) (v ,w )

≤ s ◦ αH
σ (v ,w )

[pseudo-transitivity]

The crucial part of the proof is to show that αH satisfies the
clause for terms. We prove that for any n ≥ 0,

(αH )Λσ (e , f ) ≤ Γ(αH )Vσ ( |e |n , | f |)

holds for all terms e , f ∈ Λσ . Since Γ is inductive the above inequal-
ity gives the thesis as follows:

(αH
σ )

Λ (e , f ) ≤
∧
n

Γ(αH
σ )
V ( |e |n , | f |)

≤ Γ(αH
σ )
V (
⊔
n
|e |n , | f |)

= Γ(αH
σ )
V ( |e |, | f |).

The proof is by induction on n with a case analysis on the term
structure in the inductive case. For readability we simply write α
in place of αΛ and αV . Moreover, to avoid confusion it is useful
to explicitly distinguishing between (ordinary) Kleisli extension
and strong Kleisli extension. Given a monoidal category ⟨C, I , ⊗⟩,
we denote by f ∗ : Z ⊗ TX → TY the strong Kleisli extension of
f : Z ⊗ X → TY and by д† : TX → TY the Kleisli extension
of д : X → TY . The latter can be defined in terms of the former
as д† ≜ (д · λX )∗ · λ−1

TX , where λX : I ⊗ X
�
−→ X is the natural

isomorphism given by the monoidal structure of C. Note that, in
particular, д† · λTX = (д · λX )∗.
1. We have to prove:

αH
σ (e , f ) ≤ ΓαH

σ ( |e |0, | f |).

Since Γ is inductive and |e |0 = ⊥Vσ , it is sufficient to prove
αH
σ (e , f ) ≤ k . Because the quantale is integral the latter trivially

holds.
2. We have to prove:

αH
σ (val v ,w ) ≤ ΓαH

σ ( |val v |n+1, |w |).

Since |val v |n+1 = η(v ), it is sufficient to prove that for any a
such that the judgment ∅ |= a ≤ αH (val v ,w ) : σ is derivable,
a ≤ ΓαH

σ (η(v ), |w |) holds. Suppose ∅ |= a ≤ αH (val v ,w ) : σ to
be derivable. The latter must have been inferred via an instance
of rule (H-val) from premisses:

∅ |= b ≤ αH (v ,v ′) : σ , (11)

c ≤ ασ (val v ′,w ). (12)

In particular, we have b ≤ αH
σ (v ,v ′) and thus, by condition

(Lax unit), b ≤ ΓαH
σ (η(v ),η(v ′)). From, (11) we infer, by very

definition of applicative Γ-simulation, c ≤ Γασ (η(v
′), |w |), and

thus b ⊗ c ≤ ΓαH
σ (η(v ),η(v ′)) ⊗ Γασ (η(v

′), |w |). We conclude
the thesis by Γ-pseudo-transitivity.
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3. We have to prove:

αH
τ ((λx .e )v , f ) ≤ ΓαH

τ ( |(λx .e )v |n+1, | f |).

As |(λx .e )v |n+1 = |e[x := v]|n , it is sufficient to show that for
any a such that ∅ |= a ≤ αH ((λx .e )v , f ) : τ holds, we have a ≤
ΓαH

τ ( |e[x := v]|n , | f |) . Assume ∅ |= a ≤ αH ((λx .e )v , f ) : τ . The
latter must have been inferred via an instance of rule (H-app)
from premisses:

∅ |= b ≤ αH (v ,w ) : σ , (13)

∅ |= c ≤ αH (λx .e ,u) : σ ⊸ τ , (14)
d ≤ ατ (uw , f ). (15)

Let us examine premise (14). First of all, since u is a closed value
of type σ ⊸ τ it must be of the form λx .д. Moreover, (14) must
have been inferred via an instance rule rule (H-abs) from pre-
misses:

x :1 σ |= c1 ≤ α
H (e ,h) : τ , (16)

c2 ≤ ασ⊸τ (λx .h, λx .д). (17)

In particular, we have the equality c1 ⊗ c2 = c . From (16) we
deduce c1 ≤ x :1 σ ⊢ αH (e ,h) : τ , whereas from (13) we infer
b ≤ αH

σ (v ,w ). We are now in position to apply the Substitution
Lemma, obtaining c1 ⊗ b ≤ αH

τ (e[x := v],h[x := w]). By very
definition of applicative Γ-simulation, (17) implies the inequality
c2 ≤ ατ (h[x := w],д[x := w]). Applying pseudo-transitivity
followed by the induction hypothesis we obtain:

c1 ⊗ c2 ⊗ b ≤ α
H
τ (e[x := v],д[x := w])

≤ ΓαH
τ ( |e[x := v]|n , |д[x := w]|).

Finally, from (15), by definition of applicative Γ-simulation we
infer d ≤ Γατ ( |д[x := w]|, | f |) (recall that u = λx .д, so that
|uw | = |д[x := w]|). We can now conclude the thesis by Γ-
pseudo-transitivity.

4. Cases for pattern matching against folds and sums are standard
(they follow the same pattern of point 5 but are simpler).

5. We have to prove:

αH
τ (case !v of {!x → e}, f ) ≤ ΓαH

τ ( |case !v of {!x → e}|n+1, | f |).

As |case !v of {!x → e}|n+1 = |e[x := v]|n , we show that
for any a such that ∅ |= a ≤ αH (case !v of {!x → e}, f ) : τ
is derivable, the inequality a ≤ ΓαH

τ ( |e[x := v]|n , | f |) holds.
Suppose ∅ |= a ≤ αH (case !v of {!x → e}, f ) : τ . The latter must
have been inferred via an instance of rule (H-bang-cases) from
premisses:

∅ |= b ≤ αH (!v ,u) : !sσ , (18)

x :r ·s σ |= c ≤ αH (e , e ′) : τ , (19)

d ≤ ατ (case u of {!x → e ′}, f ). (20)

In particular, we have a = r (b) ⊗ c ⊗ d . Let us examine premise
(18). First of all, since u is a closed value of type !sσ it must be
of the form !v ′. Moreover, (18) must have been inferred via an
instance of rule (H-bang) from premisses:

∅ |= b1 ≤ α
H (v ,w ) : σ , (21)

b2 ≤ α!sσ (!w , !v ′). (22)

In particular,b = s (b1)⊗b2. From (22), by definition of applicative
Γ-simulation we infer b2 ≤ s ◦ ασ (w ,v ′). Since (21) implies
b1 ≤ αH

σ (v ,w ), we have:

b = s (b1) ⊗ b2

≤ s ◦ αH
σ (v ,w ) ⊗ s ◦ ασ (w ,v ′)

≤ s ◦ (αH
σ (v ,w ) ⊗ ασ (w ,v ′))

≤ s ◦ αH
σ (v ,v ′),

where the last inequality follows by pseudo-transitivity. From
(19) we infer the inequality c ≤ x :r ·s σ ⊢ αH (e , e ′) : τ . We are
now in position to apply the Substitution Lemma obtaining:

(r · s ) ◦ αH
σ (v ,v ′) ⊗ c ≤ αH

τ (e[x := v], e ′[x := v ′]).

The latter, together with the inequality b ≤ s ◦αH
σ (v ,v ′), implies

r (b) ⊗ c ≤ αH
τ (e[x := v], e ′[x := v ′]). Applying the induction

hypothesis we conclude:

r (b) ⊗ c ≤ ΓαH
τ ( |e[x := v]|n , |e ′[x := v ′]|).

Finally, from (20) by definition of applicative Γ-simulation we
infer d ≤ Γατ ( |e

′[x := v ′]|, | f |) (recall that u = !v ′) and thus
conclude the thesis by Γ-pseudo-transitivity.

6. We have to prove:

αH
τ (let x = e in f ,д) ≤ ΓαH

τ ( |let x = e in f |n+1, |д |).

As |let x = e in f |n+1 = | f [x := _]|†n |e |n , it is sufficient to prove
that for any a such that ∅ |= a ≤ αH (let x = e in f ,д) : τ
is derivable, we have a ≤ ΓαH

τ ( | f [x := _]|†n |e |n , |д |). Suppose
∅ |= a ≤ αH (let x = e in f ,д) : τ . The latter must have been
inferred via an instance of rule (H-let) from premisses:

∅ |= b ≤ αH (e , e ′) : σ , (23)

x :s σ |= c ≤ αH ( f , f ′) : τ , (24)

d ≤ ατ (let x = e ′ in f ′,д). (25)

In particular, we have a = (s ∧ 1) (b) ⊗ c ⊗ d . We now claim to
have:

(x :s σ ⊢ αH ( f , f ′) : τ ) ⊗ (s ∧ 1) ◦ αH
σ (e , e ′)

≤ ΓαH
τ ( |let x = e in f |n+1, |let x = e ′ in f ′ |). (26)

By very definition of Howe’s extension, the latter obviously
entails (s∧1) (b)⊗c ≤ ΓαH

τ ( |let x = e in f |n+1, |let x = e ′ in f ′ |).
Moreover, by definition of applicative Γ-simulation, (25) implies
d ≤ Γατ ( |let x = e ′ in f ′ |, |д |), which allows to conclude the
thesis by Γ-pseudo-transitivity. Let us now turn to the proof of
(25). First of all we apply the induction hypothesis on αH

σ (e , e ′).
By monotonicity of s ∧ 1 we have thus reduced the proof of (25)
to proving the inequality:

(x :s σ ⊢ αH ( f , f ′) : τ ) ⊗ (s ∧ 1) ◦ ΓαH
σ ( |e |n , |e ′ |)

≤ ΓαH
τ ( | f [x := _]|†n |e |n , | f ′[x := _]|† |e ′ |). (27)

Consider the diagram:

I ×TVσ

≤γ ⊗(s∧1)◦ΓαHσ _
��

|f [x :=_] |†n ·λTVσ// TVτ

ΓαHτ_
��

I ×TVσ
|f ′[x :=_] |† ·λTVσ

// TVτ

(28)



where I = {∗} and γ (∗, ∗) = (x :s σ ⊢ αH ( f , f ′) : τ ). It is easy to
see that (27) follows from (28), since e.g.:

( | f [x := _]|†n · λTVσ ) (∗, |e |n ) = |e[x := _]|†n |e |n .

To prove (28) we first observe that by very definition of strong
monad we have | f [x := _]|†n · λTVσ = ( | f [x := _]|n · λVσ )

∗. We
can now apply condition (L-Strong lax bind). As a consequence,
to prove (28) it is sufficient to prove that for all closed values
v ,w of type σ , we have:

(x :s σ ⊢ αH ( f , f ′) : τ ) ⊗ (s ∧ 1) ◦ αH
σ (v ,w )

≤ ΓαH
τ ( | f [x := v]|n , | f ′[x := w]|).

By Substitution Lemma and induction hypothesis we have:

(x :s σ ⊢ αH ( f , f ′) : τ ) ⊗ s ◦ αH
σ (v ,w )

≤ ΓαH
τ ( | f [x := v]|n , | f ′[x := w]|).

We conclude the thesis since s ∧ 1 ≤ s .
7. We have to prove:

αH
σ (op(e1, . . . , em ), f ) ≤ ΓαH

σ ( |op(e1, . . . , em ) |n+1, | f |),

where op is anm-ary operation symbol in Σ. As usual, we use
the notation x⃗i for items x1, . . . ,xm .
We show that for any a such that ∅ |= a ≤ αH (op(e⃗i ), f ) : σ
is derivable, a ≤ ΓαH

τ ( |op(e⃗i ) |n , | f |) holds. Suppose to have
∅ |= a ≤ αH (op(e⃗i ), f ) : τ . The latter must have been inferred
via an instance of rule (H-op) from premisses:

∀i ≤ m. ∅ |= ai ≤ α
H (ei , fi ) : σ , (29)

b ≤ ατ (op( f1, . . . , fm ), f ). (30)

In particular, we have a = opV (a1, . . . ,am ) ⊗ b. We apply the
induction hypothesis on (29) obtaining, for each i ≤ m, the
inequality ai ≤ ΓαH ( |ei |n , | fi |). By monotonicity of opV we thus
infer:

opV (a⃗i ) ≤ opV (Γα
H ( |e1 |n , | f1 |), . . . , ΓαH ( |em |n , | fm |))

≤ ΓαH
σ (opVσ ( |e1 |n , . . . , |em |n ),opVσ ( | f1 |, . . . , | fm |))

= ΓαH
σ ( |op(e1, . . . , em ) |n+1, |op( f1, . . . , fm ) |),

where the second inequality follows since Γ is Σ-compatible.
We conclude the thesis from (30) by Γ-pseudo-transitivity and
definition of applicative Γ-simulation.

□

A.5 Applicative Γ-bisimilarity
In this last section we expand on some technical details necessary
to prove that applicative Γ-bisimilarity is compatible.

Proposition 8. Let Γ be a V-relator. Define the λ-term V-relation
γ ′ as follows:

γ ′ ≜
∨
{α | α◦ = α , α ≤ [α]}.

Then:
1. γ ′ is a symmetric applicative Γ-simulation, and therefore the

largest such λ-term V-relation.
2. γ ′ coincide with applicative (Γ ∧ Γ◦)-similarity γ .

Proof. Obviously γ is an applicative Γ-simulation. Moreover, γ is
symmetric and thus we have γ ≤ γ ′. To see that γ ′ ≤ γ it is
sufficient to prove that γ ′ is an applicative (Γ ∧ Γ◦)-simulation.
Clauses on values are trivially satisfied. We now show that for

any symmetric applicative Γ-simulation α , we have the inequality
αΛ
σ (e , e ′) ≤ ΓαVσ ( |e |, |e ′ |)∧ Γ(αVσ )◦ ( |e ′ |, |e |) for all terms e , e ′ ∈ Λσ .

For that it is sufficient to prove αΛ
σ (e , e ′) ≤ Γ(αVσ )

◦ ( |e ′ |, |e |), which
obviously holds since α is symmetric. □

Lemma 10. Assume CBEs in Π to be finitely continuous. Define
the transitive closure αT of a V-relation α as αT ≜

∨
n α

(n) , where
α (0) ≜ id , and α (n+1) ≜ α (n) · α .
1. Let α be a reflexive and transitive λ-term V-relation. Then (αH )T

is compatible.
2. Let α be an reflexive, symmetric, and transitive open λ-term

V-relation. Then (αH )T is symmetric.

Proof. We start with point 1. First of all observe that by Lemma
6 αH is compatible. To prove compatibility of (αH )T we have to
check that it satisfies all clauses in Figure 5. We show the case for
sequential composition as an illustrative example (the other cases
are proved in a similar, but easier, way). We have to prove:

(s ∧ 1) ◦ (Γ ⊢ (αH )T (e , e ′) : σ ) ⊗ (∆,x :s σ ⊢ (αH )T ( f , f ′) : τ )

≤ (s ∧ 1) · Γ ⊢ (αH )T (let x = e in f , let x = e ′ in f ′) : τ .

Let c ≜ ((s ∧ 1) · Γ ⊢ (αH )T (let x = e in f , let x = e ′ in f ′) : τ ). By
definition of transitive closure we have to prove:

(s ∧ 1) ◦
∨
n
(Γ ⊢ (αH ) (n) (e , e ′) : σ )

⊗
∨
m

(∆,x :s σ ⊢ (αH ) (m) ( f , f ′) : τ ) ≤ c .

By finite continuity either s∧1 = ∞ or it is continuous with respect
to joints. In the former case we are trivially done. So suppose the
latter case, so that thesis becomes:∨

n
(s ∧ 1) ◦ (Γ ⊢ (αH ) (n) (e , e ′) : σ )

⊗
∨
m

(∆,x :s σ ⊢ (αH ) (m) ( f , f ′) : τ ) ≤ c .

In particular, we also have s , ∞. We prove that for any n,m ≥ 0
the following holds: for all e , e ′, f , f ′ (of appropriate type),

(s∧1)◦ (Γ ⊢ (αH ) (n) (e , e ′) : σ )⊗ (∆,x :s σ ⊢ (αH ) (m) ( f , f ′) : τ )

≤ ((s ∧ 1) · Γ ⊢ (αH )T (let x = e in f , let x = e ′ in f ′) : τ )

holds. First of all we observe that since αH is reflexive, we can
assume n = m. In fact, if e.g. n = m + l , then we can ‘complete’
(αH ) (m) as follows:

(αH ) (m) = (αH ) (m) ·id · · · · id︸     ︷︷     ︸
l -times

≤ (αH ) (m) ·αH · · · · αH︸        ︷︷        ︸
l -times

= (αH ) (n) .

We now do induction on n. The base case is trivial. Let us turn on
the inductive step. We have to prove:

(s ∧ 1) ◦
(∨
e ′′

(Γ ⊢ αH (e , e ′′) : σ ) ⊗ (Γ ⊢ (αH ) (n) (e ′′, e ′) : σ )
)

⊗
∨
f ′′

(∆,x :s σ ⊢ αH ( f , f ′′) : τ )

⊗ (∆,x :s σ ⊢ (αH ) (n) ( f ′′, f ′) : τ ) ≤ c .
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Since s ∧ 1 is continuous it is sufficient to prove that for all terms
e ′′, f ′′ we have:

(s ∧ 1) ◦ (Γ ⊢ αH (e , e ′′) : σ ) ⊗ (s ∧ 1) ◦ (Γ ⊢ (αH ) (n) (e ′′, e ′) : σ )

⊗(∆,x :s σ ⊢ αH ( f , f ′′) : τ )⊗(∆,x :s σ ⊢ (αH ) (n) ( f ′′, f ′) : τ ) ≤ c ,

i.e.

(s ∧ 1) ◦ (Γ ⊢ αH (e , e ′′) : σ ) ⊗ (∆,x :s σ ⊢ αH ( f , f ′′) : τ )

⊗ (s ∧ 1) ◦ (Γ ⊢ (αH ) (n) (e ′′, e ′) : σ )

⊗ (∆,x :s σ ⊢ (αH ) (n) ( f ′′, f ′) : τ ) ≤ c .

We can now apply compatibility of αH plus the induction hypothe-
sis, thus reducing the thesis to:(

(s ∧ 1) · Γ ⊗ ∆ ⊢ αH (let x = e in f , let x = e ′′ in f ′′) : σ )
)

⊗

(
(s∧1)·Γ⊗∆ ⊢ (αH )T (letx = e ′′ in f ′′, letx = e ′ in f ) : σ )

)
≤ c .

We can now conclude the thesis by very definition of (αH )T .
To prove point 2 we have to show (αH )T ≤ ((αH )T )◦. For that

it is sufficient to show αH ≤ ((αH )T )◦. That amounts to prove
that for all terms Γ ⊢ e , e ′ : σ and values Γ ⊢v v ,v ′, and for any
a ∈ V such that Γ |= a ≤ αH (e , e ′) : σ is derivable we have
a ≤ Γ ⊢ (αH )T (e , e ′) : σ (and similarity for Γ ⊢v v ,v ′ : σ ). The
proof is by induction on the derivation of Γ |= a ≤ αH (e , e ′) : σ
using point 1. □
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