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Up-To Techniques for Behavioural Metrics
via Fibrations

Abstract
Up-to techniques are a well-known method for enhancing coinductive proofs of behavioural equi-
valences. We introduce up-to techniques for behavioural metrics between systems modelled as
coalgebras and we provide abstract results to prove their soundness in a compositional way.

In order to obtain a general framework, we need a systematic way to lift functors: we show
that the Wasserstein lifting of a functor, introduced in a previous work, corresponds to a change of
base in a fibrational sense. This observation enables us to reuse existing results about soundness
of up-to techniques in a fibrational setting. We focus on the fibrations of predicates and relations
valued in a quantale, for which pseudo-metric spaces are an example. To illustrate our approach
we provide an example on distances between regular languages.
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1 Introduction

Checking whether two systems have an equivalent (or similar) behaviour is a crucial problem
in computer science. In concurrency theory, one standard methodology for establishing
behavioural equivalence of two systems is constructing a bisimulation relation between them.
When the systems display a quantitative behaviour, the notion of behavioural equivalence is
replaced with the more robust notion of behavioural metric [41, 14, 15].

Due to the sheer complexity of state-based systems, computing their behavioural equi-
valences and metrics can be very costly, therefore optimization techniques—the so called
up-to techniques—have been developed to render these computations more efficient. These
techniques found applications in various domains such as checking algorithms [9, 7], abstract
interpretation [6] and proof assistants [13]. In the qualitative setting and in particular in
concurrency, the theory of up-to techniques for bisimulations and various other coinductive
predicates has been thoroughly studied [29, 33, 20]. On the other hand, in the quantitative
setting, so far, only [12] has studied up-to techniques for behavioural metrics. However, the
notion of up-to techniques therein and the accompanying theory of soundness are specific for
probabilistic automata and are not instances of the standard lattice theoretic framework,
which we will briefly recall next.

Suppose we want to verify whether two states in a system behave in the same way, (e.g.
whether two states of an NFA accept the same language). The starting observation is that the
relation of interest (e.g. behavioural equivalence or language equivalence) can be expressed
as the greatest fixed point νb of a monotone function b : RelQ → RelQ on the complete lattice
RelQ of relations on the state space Q of the system. Hence, in order to prove that two states
x and y are behaviourally equivalent, i.e. (x, y) ∈ νb, it suffices to find a witness relation r
which on one hand is a post-fixpoint of b, that is, r ⊆ b(r) and on the other hand contains
the pair (x, y). This is simply the coinduction proof principle. However, exhibiting such
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a witness relation r can be sometimes computationally expensive. In many situations this
computation can be significantly optimized, if instead of computing a post-fixpoint of b one
exhibits a relaxed invariant, that is a relation r such that r ⊆ b(f(r)) for a suitable function
f . The function f is called a sound up-to technique when the proof principle

(x, y) ∈ r r ⊆ b(f(r))
(x, y) ∈ νb

is valid. Establishing the soundness of up-to techniques on a case-by-case basis can be a
tedious and sometimes delicate problem, see e.g. [28]. For this reason, several works [35, 31,
33, 20, 30, 32] have established a lattice-theoretic framework for proving soundness results in
a modular fashion. The key notion is compatibility: for arbitrary monotone maps b and f on
a complete lattice (C,≤), the up-to technique f is b-compatible iff f ◦ b ≤ b ◦ f . Compatible
techniques are sound and, most importantly, can be combined in several useful ways.

In this paper we develop a generic theory of up-to techniques for behavioural metrics
applicable to different kinds of systems and metrics, which reuses established methodology.
To achieve this we exploit the theory developed in [8] by modelling systems as coalgebras
[34, 22] and behavioural metrics as coinductive predicates in a fibration [18]. In order to
provide general soundness results, we need a principled way to lift functors from Set to
metric spaces, a problem that has been studied in [19] and [3]. Our key observation is that
these liftings arise from a change-of-base situation between V-Rel and V-Pred, namely the
fibrations of relations, respectively predicates, valued over a quantale V (see Section 4 and 5).

In Section 6 we provide sufficient conditions ensuring the compatibility of basic quantitative
up-to techniques, as well as proper ways to compose them. Interestingly enough, the conditions
ensuring compatibility of the quantitative analogue of up-to reflexivity and up-to transitivity
are subsumed by those used in [19] to extend monads to a bicategory of many-valued relations
and generalize those in [3] (see the discussion after Theorem 21).

When the state space of a system is equipped with an algebraic structure, e.g. in process
algebras, one can usually exploit this structure by reasoning up-to context. Assuming that
the system forms a bialgebra [39, 26], intuitively the algebraic structure distributes over the
coalgebraic behaviour as in GSOS specifications, we give sufficient conditions ensuring the
compatibility of the quantitative version of contextual closure (Theorem 27).

In the qualitative setting, the sufficient conditions for compatibility are automatically
met when taking as lifting the canonical relational one (see [8]). We show that the situation
is similar in the quantitative setting for a certain notion of quantitative canonical lifting. In
particular, up-to context is compatible for the canonical lifting under very mild assumptions
(Theorem 30). As an immediate corollary we have that, in a bialgebra, syntactic contexts
are non-expansive with respect to the behavioural metric induced by the canonical lifting.
This property and weaker variants of it (such as non-extensiveness or uniform continuity),
considered to be the quantitative analogue of behavioural equivalence being a congruence,
have recently received considerable attention (see e.g. [15, 1, 38]).

To fix intuitions, Section 2 provides a motivating example, formally treated in Section 7.
We conclude with a comparison to related work and a discussion of open problems in Section 8.

All proofs and additional material are provided in the full version of this paper [10].

2 Motivating example: distances between regular languages

Computing various distances (such as the edit-distance or Cantor metric) between strings, and
more generally between regular languages or string distributions, has found various practical
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Figure 1 Example automaton

applications in various areas such as speech and handwriting recognition or computational
biology. In this section we focus on a simple distance between regular languages, which we
will call shortest-distinguishing-word-distance and is defined as dsdw(L,K) = c|w| – where w
is the shortest word which belongs to exactly one of the languages L,K and c is a constant
such that 0 < c < 1.

As a running example, which will be formally explained in Section 7, we consider the
non-deterministic finite automaton in Figure 1 and the languages accepted by the states x0,
respectively y0. We can similarly define a distance on the states of an automaton as the
aforementioned distance between the languages accepted by the two states. The inequality

dsdw(x0, y0) ≤ cn (1)

holds in this example since no word of length smaller than n is accepted by either state.
Note that computing this distance is PSPACE-hard since the language equivalence problem
for non-deterministic automata can be reduced to it.

One way to show this is to determinize the automaton in Figure 1 and to use the fact
that for deterministic automata the shortest-distinguishing-word-distance can be expressed
as the greatest fixpoint for a monotone function. Indeed, for a finite deterministic automaton
(Q, (δa : Q→ Q)a∈A, F ⊆ Q) over a finite alphabet A, we have that dsdw : Q×Q→ [0, 1] is
the greatest fixpoint of a function b defined on the complete lattice [0, 1]Q×Q of functions
ordered with the reversed pointwise order ≺ and given by

b(d)(q1, q2) =
{

1, if only one of q1, q2 is in F
max
a∈A

c · {d(δa(q1), δa(q2))}, otherwise (2)

Notice that we use the reversed order on [0, 1], for technical reasons (see Section 4).
In order to prove (1) we can define a witness distance d̄ on the states of the determinized

automaton such that d̄({x0}, {y0}) ≤ cn and which is a post-fixpoint for b, i.e. d̄ ≺ b(d̄).
Notice that this would entail d̄ ≺ dsdw and hence dsdw({x0}, {y0}) ≤ d̄({x0}, {y0}) ≤ cn.

This approach is problematic since the determinization of the automaton is of exponential
size, so we have to define d̄ for exponentially many pairs of sets of states. In order to mitigate
the state space explosion we will use an up-to technique, which, just as up-to congruence
in [9], exploits the join-semilattice structure of the state set P(Q) of the determinization
of an NFA with state set Q. The crucial observation is the fact that given the states
Q1, Q2, Q

′
1, Q

′
2 ∈ P(Q) in the determinization of an NFA, the following inference rule holds

dsdw(Q1, Q2) ≤ r dsdw(Q′1, Q′2) ≤ r
dsdw(Q1 ∪Q′1, Q2 ∪Q′2) ≤ r

Based on this, we can define a monotone function f on [0, 1]P(Q)×P(Q) that closes a function
d according to such proof rules, producing f(d), which is in general smaller (in the numerical
sense) than d (the formal definition of f is given in Section 7). The general theory developed
in this paper allows us to show in Section 7 that f is a sound up-to technique, i.e., it is
sufficient to prove d̄ ≺ b(f(d̄)) in order to establish d̄ ≺ dsdw.



17:5

Using this technique it suffices to consider a quadratic number of pairs of sets of states.
In particular we define a function d̄ : P(Q)× P(Q)→ [0, 1] as follows:

d̄({xi}, {yj}) = cn−max{i,j}

and d̄(X1, X2) = 1 for all other values. Note that this function is not a metric but rather,
what we will call in Section 4, a relation valued in [0, 1].

It holds that d̄({x0}, {y0}) = cn. It remains to show that d̄ ≺ b(f(d̄)). For this, it suffices
to prove that

b(f(d̄))({xi}, {yj}) ≤ d̄({xi}, {yj}) .

For instance, when i = j = 0 we compute the sets of a-successors, which are {x0, x1}, {y0}.
We have that d̄({x0}, {y0}) = cn ≤ cn−1, d̄({x0}, {y1}) = cn−1 and using the up-to proof
rule introduced above we obtain that f(d̄)({x0, x1}, {y0}) ≤ cn−1. The same holds for the
sets of b-successors and since x0 and y0 are both non-final we infer b(f(d̄))({x0}, {y0}) ≤
c · cn−1 = cn = d̄({x0}, {y0}). The remaining cases (when i 6= 0 6= j) are analogous.

Our aim is to introduce such proof techniques for behavioural metrics, to make this
kind of reasoning precise, not only for this specific example, but for coalgebras in general.
Furthermore, we will not limit ourselves to metrics and distances, but we will consider more
general relations valued in arbitrary quantales, of which the interval [0, 1] is an example.

3 Preliminaries

We recall here formal definitions for notions such as coalgebras, bialgebras or fibrations.

I Definition 1. A coalgebra for a functor F : C → C, or an F -coalgebra is a morphism
γ : X → FX for some object X of C, referred to as the carrier of the coalgebra γ. A morphism
between two coalgebras γ : X → FX and ξ : Y → FY is a morphism f : X → Y such that
ξ ◦ f = Ff ◦ γ. Algebras for the functor F , or F -algebras, are defined dually as morphisms
of the form α : FX → X.

I Definition 2. Consider two functors F, T and a natural transformation ζ : TF ⇒ FT . A
bialgebra for ζ is a tuple (X,α, γ) such that α : TX → X is a T -algebra, γ : X → FX is
TX

α //

Tγ��

X
γ // FX

TFX
ζX // FTX

Fα

OO an F -coalgebra so that the diagram on the left commutes.
We call ζ the distributive law of the bialgebra (X,α, γ), even
when T is not a monad.

I Example 3. The determinization of an NFA can be seen as a bialgebra with X = PQ, the
algebra µQ : PPQ→ PQ given by the multiplication of the powerset monad, a coalgebra for
the functor F (X) = 2×XA, and a distributive law ζ : PF → FP defined for M ⊆ 2×XA

by ζX(M) = (
∨

(b,f)∈M b, [a 7→ {f(a) | (b, f) ∈M}]). See [37, 23] for more details.

We now introduce the notions of fibration and bifibration.

I Definition 4. A functor p : E → B is called a fibration when for every morphism f : X → Y

in B and every R in E with p(R) = Y there exists a map f̃R : f∗(R)→ R such that p(f̃R) = f ,
Q

f∗(R) R

Z

X Y

∃!v

∀u

f̃R

g

fg

f

satisfying the following universal property:
For all maps g : Z → X in B and u : Q → R in E sitting
above fg (i.e., p(u) = fg) there is a unique map v : Q →
f∗(R) such that u = f̃Rv and p(v) = g.
For X in B we denote by EX the fibre above X, i.e., the
subcategory of E with objects mapped by p to X and arrows
sitting above the identity on X.
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A map f̃ as above is called a Cartesian lifting of f and is unique up to isomorphism. If
we make a choice of Cartesian liftings, the association R 7→ f∗(R) gives rise to the so-called
reindexing functor f∗ : EY → EX . In what follows we will only consider split fibrations, that
is, the Cartesian liftings are chosen such that we have (fg)∗ = g∗f∗.

A functor p : E → B is called a bifibration if both p : E → B and pop : Eop → Bop are
fibrations. Interestingly, a fibration is a bifibration if and only if each reindexing functor
f∗ : EY → EX has a left adjoint Σf a f∗, see [21, Lemma 9.1.2]. We will call the functors Σf
direct images along f .

Two important examples of bifibrations are those of relations over sets, p : Rel→ Set, and
of predicates over sets, p : Pred→ Set, which played a crucial role in [8]. We do not recall
their exact definitions here, as they arise as instances of the more general bifibrations of
quantale-valued relations and predicates described in detail in the next section.

E E ′

B B′
p

F̂

p′

F

Given fibrations p : E → B and p′ : E ′ → B′ and a functor on the base
categories F : B → B′, we call F̂ : E → E ′ a lifting of F when p′F̂ = Fp.
Notice that a lifting F̂ restricts to a functor between the fibres F̂X : EX →
E ′FX . We omit the subscript X when it is clear from the context.

Consider an arbitrary lifting F̂ of F and a morphism f : X → Y in B. For any R ∈ EY
the maps F̃ f

F̂R
: (Ff)∗(F̂R) → F̂R and F̂ (f̃R) : F̂ (f∗R) → F̂R sit above Ff . Using the

universal property in Definition 4, we obtain a canonical morphism

F̂ ◦ f∗(R)→ (Ff)∗ ◦ F̂ (R) . (3)

A lifting F̂ is called a fibred lifting when the natural transformation in (3) is an isomorphism.

4 Moving towards a quantitative setting

We start by introducing two fibrations which are the foundations for our quantitative
reasoning: predicates and relations valued in a quantale.

I Definition 5. A quantale V is a complete lattice equipped with an associative operation
⊗ : V × V → V which is distributive on both sides over arbitrary joins

∨
.

This implies that for every y ∈ V the functor −⊗ y has a right adjoint [y,−]. Similarly,
for every x ∈ V, the functor x⊗− has a right adjoint, denoted by Jx,−K. Thus, for every
x, y, z ∈ V, we have: x⊗ y ≤ z ⇐⇒ x ≤ [y, z] ⇐⇒ y ≤ Jx, zK.

If ⊗ has an identity element or unit 1 for ⊗ the quantale is called unital. If x⊗ y = y⊗ x
for every x, y ∈ V the quantale is called commutative and we have [x,−] = Jx,−K. Hereafter,
we only work with unital, commutative quantales.

I Example 6. The Boolean algebra 2 with ⊗ = ∧ is a unital and commutative quantale: the
unit is 1 and [y, z] = y → z. The complete lattice [0,∞] ordered by the reversed order1 of
the reals, i.e. ≤=≥R and with ⊗ = + is a unital commutative quantale: the unit is 0 and
for every y, z ∈ [0,∞] we have [y, z] = z .− y (truncated subtraction). Also [0, 1] is a unital
quantale where r ⊗ s = min(r + s, 1) (truncated addition).

I Definition 7. Given a set X and a quantale V, a V-valued predicate on X is a map
p : X → V. A V-valued relation on X is a map r : X ×X → V.

Given two V-valued predicates p, q : X → V , we say that p ≤ q ⇐⇒ ∀x ∈ X. p(x) ≤ q(x).

1 To avoid confusion we use ∨,∧ in the quantale and inf, sup in the reals.
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I Definition 8. A morphism between V-valued predicates p : X → V and q : Y → V is a
map f : X → Y such that p ≤ q ◦ f . We consider the category V-Pred whose objects are
V-valued predicates and arrows are as above.

I Definition 9. A morphism between V-valued relations r : X ×X → V and q : Y × Y → V
is a map f : X → Y such that p ≤ q ◦ (f × f). We consider the category V-Rel whose objects
are V-valued relations and arrows are as above.

The bifibration of V-valued predicates. The forgetful functor V-Pred → Set mapping a
predicate p : X → V to X is a bifibration. The fibre V-PredX is the lattice of V-valued
predicates on X. For f : X → Y in Set the reindexing and direct image functors on a
predicate p ∈ V-PredY are given by

f∗(p) = p ◦ f and Σf (p)(y) =
∨
{p(x) | x ∈ f−1(y)} .

The bifibration of V-valued relations. Notice that we have the following pullback in
Cat, where ∆X = X × X. This is a change-of-base situation and thus the functor
V-Rel → Set mapping each V-valued relation to its underlying set is also a bifibration.

We denote by V-RelX the fibre above a set X. For each set X the
functor ι restricts to an isomorphism ιX : V-RelX → V-PredX×X .

V-Rel
��

ι // V-Pred
��

Set
∆

// Set
For f : X → Y in Set the reindexing and direct image on p ∈ V-RelY are given by

f∗(p) = p ◦ (f × f) and Σf (p)(y) =
∨
{p(x, x′) | (x, x′) ∈ (f × f)−1(y, y′)} .

For two relations p, q ∈ V-RelX , we define their composition p · q : X × X → V by
p · q(x, y) =

∨
{p(x, z)⊗ q(z, y) | z ∈ X}. We define the diagonal relation diagX ∈ V-RelX

by diagX(x, y) = 1 if x = y and ⊥ otherwise.

I Definition 10. We say that a V-valued relation r : X ×X → V is

reflexive if for all x ∈ X we have r(x, x) ≥ 1, (i.e. r ≥ diagX);
transitive if r · r ≤ r;
symmetric if r = r ◦ symX , where symX : X×X → X×X is the symmetry isomorphism.

We denote by V-Cat the full subcategory of V-Rel consisting of reflexive, transitive relations
and by V-Catsym the full subcategory of V-Rel that are additionally symmetric.

Note that V-Cat is the category of small categories enriched over the V in the sense of [25].

I Example 11. For V = 2, V-valued relations are just relations. Reflexivity, transitivity and
symmetry coincide with the standard notions, so V-Cat is the category of preorders, while
V-Catsym is the category of equivalence relations.

For V = [0,∞], V-Cat is the category of generalized metric spaces à la Lawvere [27] (i.e.
directed pseudo-metrics and non-expansive maps), while V-Catsym is the one of pseudo-metrics.

5 Lifting functors to V-Pred and V-Rel

In the previous section, we have introduced the fibrations of interest for quantitative reasoning.
In order to deal with coinductive predicates in this setting, it is convenient to have a structured
way to lift Set-functors to V-valued predicates and relations, and eventually to V-enriched
categories. Our strategy is to first lift functors to V-Pred and then, by exploiting the change
of base, move these liftings to V-Rel. A comparison with the extensions of Set-monads to the
bicategory of V-matrices [19] is provided in Section 8.
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5.1 V-predicate liftings
Liftings of Set-functors to the category Pred (for V = 2) of predicates have been widely
studied in the context of coalgebraic modal logic, as they correspond to modal operators
(see e.g. [36]). For V-Pred, we proceed in a similar way. Let us analyse what it means to
have a fibred lifting F̂ to V-Pred of an endofunctor F on Set. First, recall that the fibre
V-PredX is just the preorder VX . So the restriction F̂X to such a fibre corresponds to a
monotone map VX → VFX . The fact that F̂ is a fibred lifting essentially means that the maps
(VX → VFX)X form a natural transformation between the contravariant functors V− and
VF−. Furthermore, by Yoneda lemma we know that natural transformations V− ⇒ VF− are
in one-to-one correspondence with maps ev : FV → V , which we will call hereafter evaluation
maps. One can characterise the evaluation maps which correspond to the monotone natural
transformations. These are the monotone evaluation maps ev : (FV,�) → (V,≤) with
respect to the usual order ≤ on V and an order � on FV defined by applying the standard
canonical relation lifting of F to ≤.

I Proposition 12. There is a one-to-one correspondence between

fibred liftings F̂ of F to V-Pred,
monotone natural transformations V− ⇒ VF−,
monotone evaluation maps ev : FV → V.

Notice that the correspondence between fibred liftings and monotone evaluation maps is
given in one direction by ev = F̂ (idV), and conversely, by F̂ (p : X → V) = ev ◦ F (p).
Evaluation maps as Eilenberg-Moore algebras. Evaluation maps have also been extensively
considered in the coalgebraic approach to modal logics [36]. A special kind of evaluation map
arises when the truth values V have an algebraic structure for a given monad (T, µ, η), that is,
we have V = TΩ for some object Ω and the evaluation map TV → V is an Eilenberg-Moore
algebra for T . This notion of monadic modality has been studied in [17] where the category
of free algebras for T was assumed to be order enriched. Under reasonable assumptions the
evaluation map obtained as the free Eilenberg-Moore algebra on Ω (i.e., ev : TV → V is just
µΩ : T 2Ω→ TΩ) is a monotone evaluation map, and hence gives rise to a fibred lifting of T
(see [10] for more details.)

We provide next several examples of monotone evaluation maps which arise in this fashion.

I Example 13. When T is the powerset monad P and Ω = 1 we obtain V = 2 and µ1 : P2→ 2
corresponds to the ♦ modality, i.e. to an existential predicate transformer, see [17].

I Example 14. When T is the probability distribution functor D on Set and Ω = 2 = {0, 1}
equipped with the order 1 v 0 we obtain V = D{0, 1} ∼= [0, 1] with the reversed order of the
reals, i.e., ≤ = ≥R. In this case evD(f) =

∑
r∈[0,1] r · f(r) for f : [0, 1]→ [0, 1] a probability

distribution (expectation of the identity random variable).

The canonical evaluation map. In the case V = 2, there exists a simple way of lifting a
functor F : Set → Set: given a predicate p : U � X, one defines the canonical predicate
lifting F̂can(U) of F as the epi-mono factorization of Fp : FU → FX. This lifting corresponds
to a canonical evaluation map true : 1 → 2 which maps the unique element of 1 into the
element 1 of the quantale 2. For V-relations, a generalized notion of canonical evaluation
map was introduced in [19]. For r ∈ V consider the subset ↑r = {v ∈ V | v ≥ r} and write
truer : ↑r → V for the inclusion. Given u ∈ FV we write u ∈ F (↑r) when u is in the image
of the injective function F (truer). Following [19], we define evcan : FV → V as follows:

evcan(u) =
∨
{r | u ∈ F (↑r)}.
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I Example 15. Assume F is the powerset functor P and let u ∈ P(V). We obtain that

evcan(u) =
∨
{r | u ⊆ ↑r}, or equivalently, evcan(u) =

∧
u .

When V = 2 we obtain evcan : P2 → 2 given by evcan(u) = 1 iff u = ∅ or u = {1}. This
corresponds to the � operator from modal logic. If V = [0,∞] we have evcan(u) = supu.

I Example 16. The canonical evaluation map for the distribution monad D and V = [0, 1]
is evcan(f) = supr∈[0,1] f(r), which is not the monad multiplication.

The canonical evaluation map evcan is monotone whenever the functor F preserves weak
pullbacks (see [10]). For such functors, by Proposition 12, the map evcan induces a fibred
lifting F̂can of F , called the canonical V-Pred-lifting of F and defined by

F̂can(p)(u) =
∨
{r | F (p)(u) ∈ F (↑r)} for p ∈ V-PredX and u ∈ FX .

5.2 From predicates to relations via Wasserstein
We describe next how functor liftings to V-Rel can be systematically obtained using the
change-of-base situation described above. In particular, we see how the Wasserstein metric
between probability distributions (defined in terms of couplings of distributions) can be
naturally modelled in the fibrational setting.

Consider a V-predicate lifting F̂ of a Set-functor F . A natural way to lift F to V-relations
using F̂ is to regard a V-relation r : X ×X → V as a V-predicate on the product X ×X.
Formally, we will use the isomorphism ιX described in Section 4. We can apply the functor
F̂ to the predicate ιX(r) in order to obtain the predicate F̂ ◦ ιX(r) on the set F (X ×X).
Ideally, we would want to transform this predicate into a relation on FX. So first, we have to
transform it into a predicate on FX × FX. To this end, we use the natural transformation

λF : F ◦∆⇒ ∆ ◦ F defined by λFX = 〈Fπ1, Fπ2〉 : F (X ×X)→ FX × FX . (4)

We drop the superscript and simply write λ when the functor F is clear from the context.
Additionally, the bifibrational structure of V-Rel plays a crucial role, as we can use the direct
image functor ΣλX to transform F̂ ◦ ιX(r) into a predicate on FX × FX. Putting all the
pieces together, we define a lifting of F on the fibre V-RelX as the composite FX given by:

FX : V-RelX V-Pred∆X V-PredF∆X V-Pred∆FX V-RelFX
ιX F̂∆X ΣλX ιFX

−1

(5)

The aim is to define a lifting F of F to V-Rel. The above construction provides the
definition of F on the fibres and, in particular, on the objects of V-Rel. For a morphism
between V-relations p ∈ V-RelX and q ∈ V-RelY , i.e. a map f : X → Y such that p ≤ f∗(q),
we define F (f) as the map Ff : FX → FY . To see that this is well defined it remains to
show that Fp ≤ (Ff)∗(Fq). This is the first part of the next proposition.

I Proposition 17. The functor F defined above is a well defined lifting of F to V-Rel.
Furthermore, when F preserves weak pullbacks and F̂ is a fibred lifting of F to V-Pred, then
F is a fibred lifting of F to V-Rel.

Spelling out the concrete description of the direct image functor and of λX , we obtain for
a relation p ∈ V-RelX and t1, t2 ∈ FX, that

F (p)(t1, t2) =
∨
{F̂ (p)(t) | t ∈ F (X ×X), Fπi(t) = ti} (6)
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Unraveling the definition of F̂ (p)(t) = ev ◦ F (p), we obtain for F (p) the same formula as for
the extension of F on V-matrices, as given in [19, Definition 3.4]. This definition in [19] is
obtained by a direct generalisation of the Barr extensions of Set-functors to the bicategory of
relations. In contrast, we obtained (6) by exploiting the fibrational change-of-base situation
and by first considering a V-Pred-lifting.

We call a lifting of the form F the Wasserstein lifting of F corresponding to F̂ . This
terminology is motivated by the next example.

I Example 18. When F = D (the distribution functor), V = [0, 1] and evF is as in
Example 14 then F is the original Wasserstein metric from transportation theory [42], which
– by the Kantorovich-Rubinstein duality – is the same as the Kantorovich metric. Here
we compare two probability distributions t1, t2 ∈ DX and obtain as a result the coupling
t ∈ D(X ×X) with marginal distributions t1, t2, giving us the optimal plan to transport the
“supply” t1 to the “demand” t2. More concretely, given a metric d : X×X → V, the (discrete)
Wasserstein metric is defined as

dW (t1, t2) = inf{
∑
x,y∈X

d(x, y) · t(x, y) |
∑
y

t(x, y) = t1(x),
∑
x

t(x, y) = t2(y)}.

On the other hand, when evF is the canonical evaluation map of Example 16 the corresponding
V-Rel-lifting F minimizes the longest distance (and hence the required time) rather than the
total cost of transport.

I Example 19. Let us spell out the definition when F = P (powerset functor), V = [0, 1]
and evF : P[0, 1]→ [0, 1] corresponds to sup, which is clearly monotone and is the canonical
evaluation map as in Example 15.

Then, given a metric d : X ×X → [0, 1] and X1, X2 ⊆ X, the lifted metric is defined as
follows (remember that the order is reversed on [0, 1]):

F (d)(X1, X2) = inf{sup d[Y ] | Y ⊆ X ×X,πi[Y ] = Xi}

As explained in [5], this is the same as the Hausdorff metric dH defined by:

dH(X1, X2) = sup{ sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x1, x2)}

The next lemma establishes that this construction is functorial: liftings of natural
transformations to V-Pred can be converted into liftings of natural transformations between
the corresponding Wasserstein liftings on V-Rel.

I Lemma 20. If there exists a lifting ζ̂ : F̂ ⇒ Ĝ of a natural transformation ζ : F ⇒ G, then
there exists a lifting ζ : F ⇒ G between the corresponding Wasserstein liftings. Furthermore,
when F̂ and Ĝ correspond to monotone evaluation maps evF and evG, then the lifting ζ̂
exists and is unique if and only if evF ≤ evG ◦ ζV .

For V = [0,∞], one is also interested in lifting functors to the category of (generalized)
pseudo-metric spaces, not just of [0,∞]-valued relations. This motivates the next question:
when does the lifting F restrict to a functor on V-Cat and V-Catsym? We have the following
characterization theorem, where κX : X → V is the constant function x 7→ 1 and u⊗v : X →
V denotes the pointwise tensor of two predicates u, v : X → V, i.e. (u⊗ v)(x) = u(x)⊗ v(x).

I Theorem 21. Assume F̂ is a lifting of F to V-Pred and F is the corresponding V-Rel
Wasserstein lifting. Then
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If F̂ (κX) ≥ κFX then F (diagX) ≥ diagFX , hence F preserves reflexive relations;
If F̂ is a fibred lifting, F preserves weak pullbacks and F̂ (p ⊗ q) ≥ F̂ (p) ⊗ F̂ (q) then
F (p · q) ≥ F (p) · F (q), hence F preserves transitive relations;
F preserves symmetric relations.

Consequently, when all the above hypotheses are satisfied, then the corresponding V-Rel
Wasserstein lifting F restricts to a lifting of F to both V-Cat and V-Catsym.

For V = [0,∞], the first condition of Theorem 21 is a relaxed version of a condition in
[5, Definition 5.14] used to guarantee reflexivity. The second condition (for transitivity) is
equivalent to a non-symmetric variant of a condition in [5] (see [10]).

We can establish generic sufficient conditions on a monotone evaluation map ev so that the
corresponding V-Pred-lifting F̂ satisfies the conditions of Theorem 21. In [10] we show that
F̂ (p⊗q) ≥ F̂ (p)⊗F̂ (q) holds whenever the map ⊗ : V×V → V is the carrier of a lax morphism
in the category of F -algebras between (V, ev)2 → (V, ev), i.e., ⊗◦ (ev × ev) ◦ λV ≤ ev ◦F (⊗).
Furthermore, F̂ (κX) ≥ κX holds whenever the map κ1 : 1 → V is the carrier of a lax
morphism from the one-element F -algebra ! : F1 → 1 to (V, ev), i.e., κ1◦! ≤ ev ◦ Fκ1.
These two requirements correspond to the conditions (Q⊗), respectively (Qk) satisfied by a
topological theory in the sense of [19, Definition 3.1]. Since these two are satisfied by the
canonical evaluation map evcan,2 we immediately obtain

I Proposition 22. Whenever F preserves weak pullbacks the canonical lifting F̂can satisfies
the conditions in Theorem 21:

1. F̂can(p⊗ q) ≥ F̂can(p)⊗ F̂can(q), for all p, q ∈ V-PredX ,
2. F̂can(κX) ≥ κX .

An immediate consequence of Proposition 22 and of Theorem 21 is that the Wasserstein
lifting F can that corresponds to F̂can restricts to a lifting of F to both V-Cat and V-Catsym.

6 Quantitative up-to techniques

The fibrational constructions of the previous section provides a convenient setting to develop
an abstract theory of quantitative up-to techniques. The coinductive object of interest is
the greatest fixpoint of a monotone map b on V-Rel, hereafter denoted by νb. Recall that
an up-to technique, namely a monotone map f on V-Rel, is sound whenever d ≤ b(f(d))
implies d ≤ νb, for all d ∈ V-RelX ; it is compatible if f ◦ b ≤ b ◦ f in the pointwise order. It
is well-known that compatibility entails soundness. Another useful property is:

if f is compatible, then f(νb) ≤ νb . (7)

Following [8], we assume hereafter that b can be seen as the composite

b : V-RelX V-RelFX V-RelX .F ξ∗ (8)

where ξ : X → FX is some coalgebra for F : Set → Set. When F admits a final coalgebra
ω : Ω→ FΩ, the unique morphism ! : X → Ω induces the behavioural closure up-to technique

bhv : V-RelX V-RelΩ V-RelX
Σ! !∗ (bhv(p)(x,y)=

∨
{p(x′,y′)|!(x)=!(x′) and !(y)=!(y′)}) (9)

2 The same observation is present in [19, Theorem 3.3(b)] but in a slightly different setting.
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that, for V = 2, corresponds to the usual up-to behavioural equivalence (bisimilarity). Other
immediate generalisations are the up-to reflexivity (ref ), up-to transitivity (trn) and up-to
symmetry (sym) techniques. Whenever F is obtained through the Wasserstein construction
of some F̂ satisfying the conditions of Theorem 21, these techniques are compatible (see [10]
for more details).

As usual, compatible techniques can be combined together either by function composition
(◦) or by arbitrary joins (

∨
). For instance compatibility of up-to metric closure, defined as

the composite mtr = trn ◦ sym ◦ ref follows immediately from compatibility of trn, sym and
ref . In V-Rel there is yet another useful way to combine up-to techniques – called chaining
in [12] – and defined as the pointwise composition ( · ) of relations.

I Proposition 23. Let f1, f2 : V-RelX → V-RelX be compatible with respect to b : V-RelX →
V-RelX . If F (p · q) ≥ F (p) · F (q) for all p, q ∈ V-RelX , then f1 · f2 is b-compatible.

In the reminder of this section, we focus next on quantitative generalizations of the up-to
contextual closure technique, which given an algebra α : TX → X, is seen as the composite:

f : V-RelX V-RelTX V-RelX .T Σα (10)

I Example 24. Consider a signature Σ and the algebra of Σ-terms with variables in X

µX : TΣTΣX → TΣX. The contextual closure ctx : V-RelTΣX → V-RelTΣX is defined as in (10)
by taking the canonical lifting of the functor TΣ. For all t1, t2 ∈ TΣX and d ∈ V-RelTΣX

ctx(d)(t1, t2) =
∨
C

{
∧
j

d(s1
j , s

2
j ) | ti = C(si0, . . . , sin)}

where C ranges over arbitrary contexts and sji over terms. Notice that for V = 2, this boils
down to the usual notion of contextual closure of a relation. Details can be found in [10].

I Example 25. In [12], the convex closure of d ∈ V-RelD(X) is defined for ∆,Θ ∈ D(X) as

cvx(d)(∆,Θ) = inf{
∑
i

pi · d(∆i,Θi) | ∆ =
∑
i

pi ·∆i,Θ =
∑
i

pi ·Θi} .

This can be obtained as in (10) by taking the lifting of D from Example 18 and the algebra
given by the multiplication µX : DDX → DX. Details can be found in [10].

We consider next systems modelled as bialgebras (X,α : TX → X, ξ : X → FX) for a
natural transformation ζ : T ◦ F ⇒ F ◦ T . When b and f are as in (8), respectively (10), we
use [8, Theorem 2] to obtain

I Proposition 26. If there exists a lifting ζ : T ◦ F ⇒ F ◦ T of ζ, then f is b-compatible.

The next theorem establishes sufficient conditions for the existence of a lifting of ζ.

I Theorem 27. Assume the natural transformation ζ : T ◦ F ⇒ F ◦ T lifts to a natural
transformation ζ̂ : T̂ ◦ F̂ ⇒ F̂ ◦ T̂ and that we have T̂ ◦ ΣλF

X
≤ ΣTλF

X
◦ T̂ . Then ζ lifts to a

distributive law ζ : T ◦ F ⇒ F ◦ T .

Proof Sketch. Notice that T̂ ◦ F := T̂ ◦ F̂ and F̂ ◦ T := F̂ ◦ T̂ are liftings of the composite
functors T ◦ F , respectively F ◦ T . We will denote by T ◦ F and F ◦ T the corresponding
Wasserstein liftings obtained from T̂ ◦ F , respectively F̂ ◦ T as in Section 5. We split the
proof obligation into three parts:

T ◦ F ⇒
(1)
T ◦ F ζ̃⇒

(2)
F ◦ T ⇒

(3)
F ◦ T .
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(1) lifts the identity natural transformation on T ◦ F . Its existence is proved using the
hypothesis T̂ ◦ ΣλF

X
≤ ΣTλF

X
◦ T̂ .

(2) is obtained by applying Lemma 20 to ζ̂. Such liftings have already been studied in [4].
(3) lifts the identity natural transformation on F ◦ T . J

The first requirement of the previous theorem holds for the canonical V-Pred-liftings
under mild assumptions on F and T .

I Proposition 28. Assume that ζ : T ◦ F ⇒ F ◦ T is a natural transformation and that,
furthermore, T preserves weak pullbacks and F preserves intersections. Then ζ lifts to a
natural transformation ζ̂ : T̂can ◦ F̂can ⇒ F̂can ◦ T̂can.

The next proposition establishes sufficient conditions for the second hypothesis of The-
orem 27. We need a property on V that holds for the quantales in Example 6 and was also
assumed in [19]. Given u, v ∈ V we write u≪v if for every W ⊆ V, v ≤

∨
W implies that

there exists w ∈W with u ≤ w. The quantale V is constructively completely distributive iff
for all v ∈ V it holds that v =

∨
{u ∈ V | u≪v}. In [10] we prove a more general statement

(not reported here for lack of space) in which the lifting of T is not assumed to be the
canonical one, but that it is still useful to guarantee the result for interesting liftings, such as
the one in Example 18.

I Proposition 29. Assume that T preserves weak pullbacks and that V is constructively
completely distributive. Then T̂can ◦ Σf ≤ ΣTf ◦ T̂can.

Combining Theorem 27 and Propositions 26, 28 and 29 we conclude:

I Theorem 30. Let (X,α : TX → X, ξ : X → FX) be a bialgebra for a natural transform-
ation ζ : T ◦ F ⇒ F ◦ T . If V is constructively completely distributive, T preserves weak
pullbacks and F preserves intersections, then f = T can ◦ Σα is compatible with respect to
b = F can ◦ ξ∗.

When α is the free algebra for a signature µX : TΣTΣX → TΣX (as in Example 24), the
above theorem guarantees that up-to contextual closure is compatible with respect to b. By
(7), the following holds.

I Corollary 31. For all terms t1, t2 and unary contexts C, νb(t1, t2) ≤ νb(C(t1), C(t2)).

For V = 2, since the canonical quantitative lifting coincides with the canonical relational
one, then νb is exactly the standard coalgebraic notion of behavioural equivalence [18].
Therefore the above corollary just means that behavioural equivalence is a congruence.

For V = [0,∞] instead, this property boils down to non-expansiveness of contexts with
respect to the behavioural metric. It is worth to mention that this property often fails in
probabilistic process algebras when taking the standard Wasserstein lifting which, as shown
in Example 18, is not the canonical one. We leave as future work to explore the implications
of this insight.

7 Example: distance between regular languages

We will now work out the quantitative version of the up-to congruence technique for non-
deterministic automata. We consider the shortest-distinguishing-word-distance dsdw, proposed
in Section 2. As explained, we will assume an on-the-fly determinization of the non-
deterministic automaton, i.e. formally we will work with a coalgebra that corresponds to a
deterministic automaton on which we have a join-semilattice structure.
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We explain next the various ingredients of the example:
Coalgebra and algebra. As outlined in Section 2 and Example 3 the determinization of an
NFA with state space Q is a bialgebra (X,α, ξ) for the distributive law ζX : P(2×XA)→
2 × (P(X))A, where X = P(Q), α : P(X) → X is given by union and ξ : X → 2 × XA

specifies the DFA structure of the determinization. Hence, we instantiate the generic results
in the previous section with TX = P(X), FX = 2×XA and ζ as defined in Example 3.
Lifting the functors. We take the quantale V = [0, 1] (Example 6) and consider the
Wasserstein liftings of the endofunctors F and T to V-Rel corresponding to the following
evaluation maps:

evF (b, f) := c ·maxa∈A f(a), where b ∈ {0, 1}, f : A→ [0, 1] and c is the constant used
in dsdw, and,
evT := evPcan = sup, the canonical evaluation map as in Example 15.

These are monotone evaluation maps that satisfy the hypothesis of Theorem 21. Hence the
corresponding Wasserstein liftings restrict to V-Cat. We computed the Wasserstein lifting of
T = P in Example 19: applying the lifted functor T to a map d : X ×X → [0, 1], gives us the
Hausdorff distance, i.e., T (d)(X1, X2) = dH(X1, X2), where X1, X2 ⊆ X and dH denotes the
Hausdorff metric based on d. On the other hand, the Wasserstein lifting of F corresponding
to evF associates to a metric d : X×X → [0, 1] the metric F (d) : FX×FX → [0, 1] given by

((b1, f1), (b2, f2)) 7→
{

1 if b1 6= b2
max
a∈A

c · {d(f1(a), f2(a))} otherwise

Fixpoint equation. The map b for the fixpoint equation was defined in Section 6 as the
composite ξ∗ ◦ F . Using the above lifting F , this computation yields exactly the map b

defined in (2), whose largest fixpoint (smallest with respect to the natural order on the
reals) is the shortest-distinguishing-word-distance introduced in Section 2.
Up-to technique. The next step is to determine the map f introduced in Section 6 for the
up-to technique and defined as the composite Σα ◦ T on V-Rel. Combining the definition
of the direct image functors on V-Rel with the lifting T , we obtain for a given a map
d : X ×X → [0, 1] that

f(d)(x1, x2) = inf{dH(X1, X2) | X1, X2 ⊆ X,α(Xi) = xi}

To show that f(d)(Q1, Q2)≤Rr for two sets Q1, Q2 ⊆ Q (i.e. Q1, Q2 ∈ X) and a constant r
we use the following rules:

f(d)(∅, ∅)≤Rr
d(Q1, Q2)≤Rr

f(d)(Q1, Q2)≤Rr

f(d)(Q1, Q2)≤Rr f(d)(Q′
1, Q′

2)≤Rr

f(d)(Q1 ∪Q′
1, Q2 ∪Q′

2)≤Rr

Lifting of distributive law. In order to prove that the distributive law lifts to V-Rel and
hence that the up-to technique is sound by virtue of Proposition 26, we can prove that the
two conditions of Theorem 27 are met by the V-Pred liftings of F and T corresponding to
the evaluation maps evF and evT , see [10].

Everything combined, we obtain a sound up-to technique, which implies that the reasoning
in Section 2 is valid. Furthermore, as the example shows, the up-to technique can significantly
simplify behavioural distance arguments and speed up computations.

8 Related and future work

Up-to techniques for behavioural metrics in a probabilistic setting have been considered
in [12] using a generalization of the Kantorovich lifting [11]. In Section 6, we have shown that
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the basic techniques introduced in [12] (e.g., metric closure, convex closure and contextual
closure) as well as the ways to combine them (composition, join and chaining) naturally fit
within our framework. The main difference with our approach—beyond the fact that we
consider arbitrary coalgebras while in [12] just coalgebras for a fixed functor—is that the
definition of up-to techniques and the criteria to prove their soundness do not fit within the
standard framework of [33]. Nevertheless, as illustrated by a detailed comparison in [10], the
techniques of [12] can be reformulated within the standard theory and thus proved sound
by means of our framework. An important observation brought to light by compositional
methodology inherent to the fibrational approach, is that for probabilistic automata a
bisimulation metric up-to convexity in the sense of [12] is just a bisimulation metric, see [10].
Nevertheless, the up-to convex closure technique can find meaningful applications in linear,
trace-based behavioural metrics (see [4]).

The Wasserstein (respectively Kantorovich) lifting of the distribution functor involving
couplings was first used for defining behavioural pseudometrics using final coalgebras in [40].
Our work is based instead on liftings for arbitrary functors, a problem that has been considered
in several works (see e.g. [19, 2, 5, 24]), despite with different shades. The closest to our
approach are [19] and [2] that we discuss next.

In [19] Hofmann introduces a generalization of the Barr extension (of Set-functors to Rel),
namely he defines extensions of Set-monads to the bicategory of V-matrices, in which 0-cells
are sets and the V-relations are 1-cells. Some of the definitions and techniques do overlap
between the developments in [19] and the results we presented in Section 5. However, there
are also some (subtle) differences which would not allow us to use off the shelf his results.

First, in order to reuse the results in [8], we need to recast the theory in a fibrational
setting, rather than the bicategorical setting of [19]. The definition of topological theory [19,
Definition 3.1] comprises what we call an evaluation map, but which additionally has to
satisfy various conditions. An important difference with what we do is that the condition
(Q∨) in the aforementioned definition entails that the predicate lifting one would obtain
from such an evaluation map would be an opfibred lifting, rather than a fibred lifting as in
our setting. Indeed, the condition (Q∨) can be equivalently expressed in terms of a natural
transformation involving the covariant functor PV , as opposed to the contravariant one
V− that we used in Section 5.1. Lastly, in our framework we need to work with arbitrary
functors, not necessarily carrying a monad structure.

In [5] we provided a generic construction for the Wasserstein lifting of a functor to the
category of pseudo-metric spaces, rather than on arbitrary quantale-valued relations. The
realisation that this construction is an instance as a change-of-base situation between V-Rel
and V-Pred allows us to exploit the theory in [8] for up-to techniques and, as a side result,
provides simpler (and cleaner) conditions for the restriction V-Cat (Theorem 21).

We leave for future work several open problems. What is a universal property for the
canonical Wasserstein lifting? Secondly, can the Wasserstein liftings presented here be
captured in the framework of [2] or [24]? Preliminary discussions with the first author of
the latter paper suggested that the codensity monad construction cannot accommodate, at
least in a straightforward way, the Wasserstein lifting. We also leave for future work the
development of up-to techniques for other quantales than 2 and [0, 1]. We are particularly
interested in weighted automata [16] over quantales and in conditional transition systems, a
variant of featured transition systems.
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