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Abstract

Using process calculi one can verify properties of a system and simulate the system as
well. One should be able to do these operations at least semi-automatically. There is a
tool to simulate the Non-deterministic Timed Concurrent Constraint (ntcc) calculus in the
Ntccrt framework, but there are not tools for verification. We present a new simulation
tool for Probabilistic ntcc (pntcc) and a prototype for verification of pntcc models. We
include these tools in the Ntccrt framework. We also show the formal basis for correctness
of the ntcc simulation tool and we show that the execution times of the simulation are still
acceptable for real-time interaction using pntcc.

1 Introduction

Using process calculi one can simulate a model and also verify logical properties over it.
For instance, the Non-deterministic Timed Concurrent Constraint (ntcc) [NPV02] calcu-
lus is as an extension of the Saraswat’s concurrent constraint programming (ccp) [Sar92]
to model new phenomena, in particular non-deterministic and timed behavior. The ntcc
calculus is based on solid mathematical principles and it has succeed in a wide range of
applications in emergent areas such as Security, Biology and Multimedia Semantic Interac-
tion according to [Ola09]. Ntcc provides rich verification techniques allowing the inference
of important temporal properties satisfied by the encoded applications. For instance,
security breaches in cryptographic protocols [OV08], prediction of organic malfunctions
[GPRV07] and rhythmic coherence in music improvisation [RV04].

It is also argued in [Ola09] that in spite of its modeling success, at present ntcc does
not provide for the automatic, or even machine-assisted, verification of system properties.
Since they deal with complex and large systems, machine-assisted verification is essential
to our intended applications. However, this issue has not been deeply considered for ccp
formalisms. To the best of their knowledge only Villanueva et al [MV06] have addressed
automatic verification, but only in the context of finite-state ccp systems. Several inter-
esting applications of ntcc are, however, inherently infinite-state according to [Ola09].
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under the REACT project (No. 1251-330-18902) and the INRIA Équipe Associée FORCES (FORmalisms
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Automatic verification of large systems, not to mention infinite systems, represents a fun-
damental challenge because of the state explosion problem it poses because the number of
states a system has is exponential in the number of concurrent processes. For that reason,
it is proposed in [Ola09] to rise to this challenge by identifying ntcc fragments appropriate
for automatic verification and developing efficient techniques and tools to machine assist
the verification of system properties in ntcc.

Multiple tools have been developed for the simulation of ntcc models. For instance, the
Ntccrt framework [TBAAR09]. However, it has not been proved formally the correctness
of the framework’s tools, thus, users cannot be sure that a simulation obtained using the
ntcc simulation tool corresponds to the semantics of the calculus. In addition, Ntccrt
does not provide tools for automated verification.

In this report we describe a formalization of the principles used by Ntccrt to simulate
models. We also present the extension of the ntcc simulation tool for Probabilistic ntcc
(pntcc) [PR08] models and we prove the correctness of the simulation tool for ntcc. In
addition, we developed a verification tool for pntcc models. Using this verification tool,
we can prove properties such as “the system will go to a successful state with probability
p under t discrete time-units”.

In what follows, we present in chapter 1 the formalization of the ntcc simulation tool.
Then, in chapter 2 we explain the implementation of the frameworks’ tools. In chapter
3, we present some applications ran using the framework’s tools. Finally, we give some
concluding remarks, current and future work in chapter 4.

2 Formal basis for simulation and verification for ntcc

In this chapter we explain the formal basis of our tool for simulation of ntcc models. Since
pntcc is an extension of ntcc, some of these results could be later applied for pntcc.

2.1 Encoding a fragment of ntcc as a Constraint Satisfaction Problem

In this section we show how a star-free fragment of ntcc can be encoded as a Constraint
Satisfaction Problem (CSP). We prove that the solutions of the CSP have a relation with
the store computed in a single time unit. In such fragment, we do not not include the
asynchronous operator (*) and we present a different operational semantic based on the
concept of a scheduler or adversary (proposed in pntcc semantics).

Definition 1. A Constraint Satisfaction Problem (CSP) is defined as a triple
〈X,D,C〉 where X is a set of variables, D is a set of domains and C is a set of con-
straints. A solution for a CSP is an evaluation that satisfies all constraints.

The following star-free fragment of ntcc is parametrized by a Finite Domain FD[232]
constraint system. Thirty-two is the size of an integer on a 32-bits computer architecture.

Definition 2. A star-free fragment of ntcc parametrized by FD[232] where P,Q ::=

P‖Q | tell (c) | local x in P |
∑
i∈I

when ci do Pi | next P | unless c next P | !P

Definition 3. A Constraint System (CS) is a pair (
∑

,∆) where
∑

is a signature
specifying constants, functions and predicate symbols, and ∆ is consistent first-order theory
over

∑
(i.e., a set of first-order sentences over

∑
having at least one model). We say

that c entails d in ∆, written c |=∆ d iff the formula c⇒ d is true in all models of ∆. We
write |= instead of |=∆ when ∆ is unimportant [Val02].
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Definition 4. Let n > 0. A Finite Domain FD(n) is a CS such that:
-

∑
is given by constant symbols 0..n− 1 and the equality.

- ∆ is given by the axioms of equational theory x = x, x = y → y = x, x = y ∧ y = z →
x = z, and v = w → false for each two different constants v,w in

∑
[Val02].

In order to define an encoding for a process given by Def. 2 into a CSP, we need to
define a function to calculate the set of the non-local variables of a process and a function
to solve non-deterministic choices for each

∑
process.

Definition 5. Let vars(P): “ ntcc process” → “set of variable names” be recursively
defined

vars(tell(c)) = Cvars(c), the variables contained in a constraint.
vars(P ||Q) = vars(P )∪vars(Q)
vars(

∑
i∈I

when ci do Pi) =
⋃
i∈I

vars(P )

vars(local x in P ) = vars(P )−{x}
vars(unless c next P ) = vars(next P ) = ∅
vars(!P ) = vars(P )

Before defining our function to solve non-determinism, let us introduce how the non-
determinism is solved according to the pntcc semantics based on a Probabilistic Automata.

Definition 6. A Probabilistic Automata (PA) is a tuple (Q, q,A, T ), where Q is a
countable set of states, q ∈ Q is the start state, A is a countable set of actions, and
T ⊂ Q× Probs(A×Q) defines the transition groups of the automaton [Seg06]. In pntcc

semantics, we do not need actions, thus, in this report we discard the set of actions. On
the other hand, since we are describing non-probabilistic processes in this section, all the
probabilities in the transitions are 1.

We recall from the pntcc paper that a scheduler is a function Sj : TMi → TMi that
takes a set of transition groups and returns a set of transition groups where we can only
observe probabilistic choice.

One may think about defining a particular scheduler for each model one defines.
This posses two problems: the person defining the model must be aware of the tran-
sition groups generated by each process involving non-determinism (parallel and non-
deterministic choice processes); and the person has to consider all the possible inputs for
a process, since the transition groups may be different according to the input.

In order to make things easier, we propose to define define a function FND : “Process,
Set of N” → N to solve the non-determinism on each

∑
process P. FND takes the set

of indexes of the guards that hold in a non-deterministic process and returns one index.
Choosing an index with the function FND is equivalent to selecting a transition group
generated by a

∑
process. The non-determinism generated by the parallel processes (after

removing the non-determinism generated by the
∑

processes) is confluent (i.e., indepen-
dent from the scheduling strategy) according to Falaschi et al. [FGMP97]. To clarify the
purpose of FND, consider the execution of the first time unit of an improvisation process
that chooses between playing a note or not.

P
def
= tell(playnote = true) + tell (playnote = false)

Improv
def
= tell (dur=250) ‖ P
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In the process P , both guards hold. Then, the purpose of the function FND is to
solve the non-deterministic choice. For instance, a function FND(P, I) = min(I) chooses
the process that plays the note. On the other hand, the function FND(P, I) = max(I)
chooses not to play the note. According to Falaschi et al. [FGMP97], we get the same
results executing tell (dur=250) and P in any order once the non-deterministic choices
are solved.

Let us explore the concept of scheduler defined in the operational semantics. Consider
a store d as the input for the Improv process. Then, the probabilistic automata Mi rep-
resents the transitions for the first time unit of the improvisation process.

Mi = (Ti, γ0, TMi)
Ti = {γ1 = 〈skip, dur = 250 ∧ playnote ∧ d〉, γ2 = 〈skip, dur = 250 ∧ ¬playnote ∧ d}
γ0 = 〈Improv, d〉
TMi = {{γ0{→1 γ1}, γ0{→1 γ2}}}

In the example above, the scheduler returns {γo{−→1 γ1}} if the function FND(P, I) =
min(I) or {γo{−→1 γ2}} if the function FND(P, I) = max(I).

In what follows, we use the function FND to make an encoding of the star-free frag-
ment of ntcc given by Def. 2 into a CSP. In order to define the encoding, we assume a
constraint C ↔ b (where b does not occur free in C) in the constraint system for each con-
straint used as guard in the

∑
processes. These constraints are called reified constraints.

Using constraints as guards for
∑

processes are limited by the reified constraints supplied
by the constraint solving tool.

Definition 7. Reification represents the validity of a constraint into a 0/1-variable.
Therefore, constraints can be combined using 0/1-variables. The reification of a constraint
C with respect to a variable x is the constraint (C ↔ b)∧b ∈ {0, 1} where it is assumed that
b does not occur free in C. The operational semantics of a propagator for the reification of
a constraint C with respect to b is given by the following rules [Kor01]:

• If the constraint store entails b = 1, the propagator for the reification reduces to a
propagator for C.

• If the constraint store entails b = 0, the propagator for the reification reduces to a
propagator for C.

• If a propagator for C would realize that the constraint store entails C, the propagator
for the reification tells b = 1 and ceases to exist.

• If a propagator for C would realize that the constraint store is inconsistent with C,
the propagator for the reification tells b = 0 and ceases to exist.

Next, we define the encoding of a ntcc process given by Def. 2 into a constraint. The
encoding is parametrized by the function FND.

Definition 8. Let [[P ]]FND: “ntcc process” → “constraint” be defined recursively.

[[tell(c)]]FND = c

[[
∑
i∈I

when ci do Pi]]FND =

{
[[Pj ]]FND I 6= ∅
true I = ∅

where j = FND(P, I) and I = {i|∃b.i ∈ I ∧ ci ↔ b ∧ b = 1}
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[[Q||R]]FND = [[Q]]FND∧[[R]]FND

[[local x in Q]]FND = ∃x.[[Q]]FND

[[next Q]]FND = [[unless c next Q]]FND = true
[[!Q]]FND = [[Q]]FND

Definition 9. A scheduler Sj defined by a function FND is a function Sj : TM →
TM , such that a transition group γi{→1 γi+1} ∈ Sj(TMi) if 〈P, c〉 = γi, 〈Q, d〉 = γ′, [[P ]]FND∧
c = d, it exists a path from γi+1 to γ′ in TMi and γ′ has no more successors. Non-
determinism in parallel processes can be discarded because it is confluent in this context.

It exists a path from A to B in a set of transition groups TM iff the following groups
belong to the set A{−→1 A1})...Ai{−→1 Ai+1}...{Ai+1{−→1 B}. B has not successors in
a set of transition groups TM iff there is not a group B{−→1 X} in TM.

To prove the correctness of the encoding presented above, we need to prove three
properties. (1) All the solutions for a CSP given by the constraint computed by the
previous encoding implies the store calculated by a process at the end of a time unit. (2)
The future function, calculated using the previous encoding, corresponds to the future
function defined in the semantics. (3) The store calculated by a process at the end of a
time unit has a connection to the solutions of the CSP (which connection do they have?).
In this report we do not present propositions (2) and (3). Before presenting the proposition
(1), we present some theorems taken from the ntcc operational semantics.

Lemma 1. Every sequence of internal sequences is terminating (i.e., there are not infinite
sequences) [Val02].

Property 1. Internal Extensiveness if 〈P, c〉 −→ 〈Q, d〉 then d |= c. [Val02].

Proposition 1. Let P , FND and [[P ]]FND be a process in the ntcc fragment given by
Def. 2, a function FND : set of N → N and the encoding of P given by Def. 10. Then,
for every constraint c, it exists a constraint d such that
∀x.x ∈ Solutions of the CSP

V ariables : V ars(P )
Domain for each variable : [0..232 − 1]
Constraints : {[[P ]]FND ∧ c}

then, in any time unit, it holds that 〈P, c〉{−→∗1 〈Q, d〉}Sj −→/ and x ⇒ d, where Sj is a
scheduler defined by FND according to Def. 9.

Proof. {〈P, c〉 −→∗1 〈Q, d〉}Sj −→/ holds by lemma 1. We have left to prove that for all x in
the solutions of the CSP, where the constraints are given by {[[P ]]FND ∧ c}, it holds that
x⇒ d. The proof proceeds by induction on the structure of P .

• P = tell(e)

By Def. 10, we have [[P ]]FND ∧ c = e∧ c and it holds that 〈tell(e), c〉{−→1 〈skip, c∧
e〉}Sj −→/ according to the TELL rule. Then, d = e ∧ c and it holds that x⇒ c ∧ e.

• P =
∑
i∈I

when ci do Pi

By the inductive hypothesis, we assume that the proposition holds for each i ∈ I:
for all xi in the solutions of the CSP given by the constraint [[Pi]]FND ∧ c, then it
holds that xi ⇒ di.

We have to prove that for all x in the solutions of the CSP given by the constraint
[[P ]]FND ∧ c it holds that x ⇒ d. There are two cases:
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– Case where all the guards are false or they cannot be deduced from the store:
We know that [[P ]]FND = true by Def. 10 and 〈P, c〉 −→/ by the semantics of

∑
.

Then, for all x in the solutions for the CSP given by the constraint true ∧ c, it
holds that x⇒ c.

– Case where at least one guard holds.
Let I be the set of the indexes whose guards holds, j = FND(P, I) and Sj the
scheduler defined by FND, then it holds that 〈P, c〉{−→1 〈Pj , e〉}Sj

We know by the inductive hypothesis that 〈Pj , e〉 −→∗1 〈Qj , dj〉}Sj −→/ and for
all x in the solutions of [[Pj ]]FND ∧ e, it holds that x⇒ dj .
By the property 1, e |= c, then e ⇒ c by Prop. 1. In the same way, e |= dj ,
then e⇒ dj , therefore c⇒ dj .
Finally, since [[P ]]FND = [[Pj ]]FND by Def. 10, then it holds for all x in the
solutions of the CSP given by the constraint [[P ]]FND ∧ c that x⇒ dj .

• P = Q‖R
By the inductive hypothesis, we assume that the proposition holds for each Q and R.
We have to prove that for all x in the solutions of the CSP given by the constraint
[[Q]]FND ∧ [[R]]FND ∧ c it holds that x ⇒ d.

We know that d |= [[Q]]FND, d |= [[R]]FND, d |= [[Q]]FND ∧ [[R]]FND, d |= [[Q]]FND ∧
[[R]]FND ∧ c, but how can we prove that [[Q]]FND ∧ [[R]]FND ∧ c |= d?

• P = local x in Q

By the inductive hypothesis, the assume that the proposition holds for Q. This
means that 〈Q, e ∧ ∃x.c〉 −→ 〈Q′, e〉 −→∗ 〈Q′′, d′〉 −→/ and for all x in the solutions
in the CSP given by [[Q]]FND, it holds that x⇒ d′.

We have to prove that for all x in the solutions of the CSP given by the con-
straint [[P ]]FND ∧ c, it holds that x ⇒ d. We have [[P ]]FND = ∃x.[[Q]]FND by
Def. 10. By lemma 1 and the LOC rule, we know that 〈local (x, c) in P, c〉 −→
〈local (x, c′) in P ′, e ∧ ∃x.c〉 −→∗ 〈Q, f ∧ ∃x.c′ ∧ ∃x.c′′ ∧ ...∃x.cn〉 −→/ . Then
d = f ∧ ∃x.c′ ∧ ∃x.c′′ ∧ ...∃x.cn. What is the relation between d and f?

• P = next Q and P = unless c next Q

By Def. 10, [[P ]]FND = true. We also know that 〈P, c〉 −→/ . Then, d = c and for all
x in the solutions of c ∧ true, it holds that x⇒ d.

• P = !Q

We assume by the inductive hypothesis that the proposition holds for Q. Since we
know that [[P ]]FND = [[Q]]FND by Def. 10, then the proposition holds for P .

In what follows, we define a function F that returns the process to be executed in the
next time unit.

Definition 10. Let F(P )FND,d: “ntcc process” → “ntcc process” be defined recursively.

F(tell(c))FND,d = skip
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F(
∑
i∈I

when ci do Pi)FND,d =

{
F(Pj)FND,d ‖I‖ 6= 0
skip ‖I‖ = 0

where j = FND(P, I) and I = {i|∃b.i ∈ I ∧ ci ↔ b ∧ b = 1}
F(Q||R)FND,d = F(Q)FND,d‖F(R)FND,d

F(local x in Q)FND,d = local x in F( Q)FND

F(next Q)FND,d = Q
F(unless c next Q)FND = {

Q, d |= c

skip, d |=/ c

F(!Q)FND,d = F(Q)FND,d‖!Q

To prove proposition (3), we have to prove that the process calculated by the function
F is equivalent to the process calculated by the future function defined in the operational
semantics of ntcc.

3 Implementation of the tools for ntcc and pntcc

In the implementation, we use Gecode as the constraint-solving library. Gecode is an
efficient library using state-of-the-art algorithms for propagation. We do not use search
is our tools, thus, our implementation heavily relies on propagation. Gecode has a great
advantage, it is easily extensible: we can define new propagators without recompiling it.

We use Gecode for concurrency control. Although threads are a common way to
represent concurrency, we do not use them in our implementation. Instead, we rely on the
scheduler of Gecode propagators to execute all the parallel processes concurrently. In the
previous section, we show how we can encode all the processes as constraints, the intuition
of the simulation and verification tools is to use a propagator for each of those constraints
and let Gecode schedule those propagators.

Tools for Ntccrt are written in C++ because they runs faster than using other pro-
gramming languages and using a wrapper for Gecode. In addition, all the processes have
to be represented as propagators and at the end Gecode propagators are written in C++.
We also provide interfaces for Common Lisp, OpenMusic [BAA05], Max/MSP and Pure
Data [PAZ98]. The reader may find more information about the implementation of Ntccrt
at [TBAAR09] and [TB08]. In what follows, we explain how to represent each ntcc pro-
cess as a propagator and how to extend the ntcc simulation tool for the simulation and
verification of pntcc models.

3.1 Representing each ntcc process as a propagator

Processes are represented by classes. These classes inherit from a class Process declaring
a virtual Execute method.

Tell classes have an Execute method to post a Gecode propagator. For instance, a
process tell(a = b) is represented by a class, which execute method posts an equality-
relation propagator. Objects of the Parallel class contain a list of processes. Its Execute
method calls the Execute method for each object in the list.
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In Local processes, local variables are fresh variables created on execution time. Vari-
ables are classes wrapping Gecode variables. Gecode variables cannot be used directly
because they only exist during a single time unit, instead we create a an instance of
our Variable class that creates a new instance of a Gecode variable for each time unit.
Non-local variables are created at the beginning of the simulation.

Non-deterministic-choice classes have an Execute method that creates a non-deterministic-
choice propagator. This propagator randomly chooses a process from those whose guards
holds. We use reification to represent the conditions and we use an array of reified vari-
ables as a parameter for the non-deterministic-choice propagator. This propagator is the
implementation of one possible scheduler. However, this propagator can be changed to
stablish other policies of scheduling.

Temporal processes interact with a sequence of time units. Time units are represented
by a list of queues of processes. For instance, The execution of the Process object inside
a Next object is postponed for the next time unit. The execution of a Bang object calls
the Execute method of its nested process. It also duplicates the Bang object for the next
time unit.

Finally, unless c do P is represented by a class, which execution is postponed until
all the propagators for the processes (except unless processes) achieve a common fixpoint.
We recall that a propagator is a function f : store → store, thus, a common fixpoint for
all the propagators is a state such that none of the propagators can perform an action that
changes the store. After the fixpoint is calculated, the unless Execute method postpones
the execution of P for the next time-unit if c cannot be deduced from the store.

3.2 Extending the simulation tool for pntcc

In order to extend the ntcc simulation tool for pntcc, we only need to add a new class
for probabilistic choice inheriting from the Process class. This class takes an array of
Process objects; an array of boolean variables, used to represent the reified constraints of
the guards; and an array of integers, used to represent the probabilities.

To avoid errors produced by float-number calculations, users must represent the prob-
abilities as integers. For instance, [0.3, 0.4, 0.3] can be represented as [30, 40, 30] or [3, 4, 3].
Precision of the probabilities is limited by the size of non-signed integers (32 bits in a
32-bits computer architecture). Users also need to provide a reified constraint for each
guard in the process.

Definition 11. A Discrete-Time Markov Chain (DTMC) is a tuple 〈QOBS , q, TOBS , LM〉,
where QOBS is a finite set of states (with initial state q ∈ QOBS); TOBS : QOBS×QOBS →
[0, 1] is a transition, such that ∀q ∈ QOBS ,

∑
q′∈QOBS

TOBS(q, q′) = 1; and the labeling
function LM : QOBS → 2A assigns atomic propositions to states.

There is a connection between a pntcc process and a DTMC. We recall the following
proposition from the pntcc paper.

Proposition 2. Given a pntcc process P0, for every Pn reachable from P0 through an
observable sequence, in the DTMC given by DTMC(〈Po, true〉) there exists a path from
〈P0, true〉 to 〈Pn, d〉, for some constraint d.

In order to make a simulation for a pntcc model, we only need to calculate a single
path of the DTMC produced by a pntcc process. In order to achieve that, we solve
non-determinism using the user-defined FND function. On the other hand, in order to
solve probabilistic choice, we perform a simple algorithm. (1) Calculate the sum of the
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list of integers (representing probabilities) for the indexes whose guards that holds. (2)
Using a random-number-generator library, calculate a number between 0 and sum − 1.
(3) According to the number generated by the library, choose the appropriate process and
call its Execute method.

3.3 A verification tool for pntcc

The purpose of our verification tool is calculating a DTMC based on three things: a list
of inputs (i.e., constraints), a pntcc model and a function FND to solve non-determinism.
Then, the DTMC is saved as a PRISM input file. Finally, using PRISM, the tool can
verify properties for the model.

According to pntcc authors, there is a straightforward connection with model-checking
procedures for pntcc: “The rationale given by the language and the support provided by
operational semantics make it possible a natural relation between pntcc and the proba-
bilistic logic PCTL [CG04]. Formulas in PCTL express soft deadlines, statements explicitly
involving a time bound and a probability. Hence, they allow for including quantitative
parameters directly in the properties of interest. The relation between pntcc and PCTL is
based on the fact that the observable behavior of a process can be interpreted as the dis-
crete time Markov chain (DTMC) defining satisfaction in PCTL. This way, model checking
for tccp process specifications becomes possible”. [PR08]

PRISM can verify Probabilistic Computational Tree Logic (PCTL) properties for a
DTMC. Therefore, if we can construct a DTMC for a pntcc process using our verification
tool, the verification is straightforward. In order to create a DTMC, we need to extend the
simulation tool. First, we need to extend the definition of the variables, since a variable
with the same name can be in different time units in the simulation tool, but now, there
are several instances of a time unit. We also need to extend the way how temporal process
add processes to the next time unit, since there are several instances of a time unit.

The execution of a time unit in the verification tool is slightly different from the
simulation tool. It proceeds in the following way. First, we create a state 〈S, c〉. For every
time unit, P‖Q,

∑
and local are executed as described for the simulation tool. Temporal

processes create a new state and a transition from the current state to the new state.
Probabilistic processes create a state and a transition for each guard that holds, except
the first guard, which process is executed in the current state.

The last step is to reduce the DTMC-tree into a DTMC by reducing repeated states.
There is a configuration 〈P,C〉 associated to each state by the means of the labeling
function. We consider that two configurations are equal if their processes are structural
congruent and they have logical equivalent stores.

To check structural congruence, Valencia proposes in [Val02] to construct a syntax tree
for each process and check whether they are isomorphic. This feature is still experimental
in our tool.

4 Applications

In this section we present some applications ran with the simulation and verification tools
for pntcc models.

4.1 Probabilistic Ccfomi

Concurrent Constraint Factor Oracle Model for Music Improvisation (Ccfomi) [RAD06] is
a ntcc model for music improvisation, where improvisation is made non-deterministically.
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Probabilistic Ccfomi [PR08] extends the choice in the improvisation process probabilisti-
cally. We ran Probabilistic Ccfomi in our tool and we defined constants for the probabilities
of the probabilistic choice process.

4.2 The zigzag robot

Zigzagging is a task on which a robot can go either forward, left, or right, but (1) it
cannot go forward if its preceding action was to go forward, (2) it cannot turn right if its
second-last action was to go right, and (3) it cannot turn left if its second-last action was
to go left. Valencia models this problem by using cells a1 and a2 to “look back” and three
different distinct constants f, r, l ∈ D− {0} and the predicate symbols forward, right, left
[Val02].
Using our ntcc simulation tool, we obtain the following data

direction last direction second-last direction
1 0 0
3 1 0
1 3 1
2 1 3
2 2 1
1 2 2
3 1 2
3 3 1
1 3 3
2 1 3
2 2 1
3 2 2
1 3 2

where f = 1, r = 2, l = 3.

Valencia verified that the model eventually goes right or left.For this model, we proved
that the robot does not go forward twice, the robot does not go right more than twice,
the robot does not go left more than twice, the robot always makes a good move.

We also provide a probabilistic extension of this model where the direction is chosen
probabilistically. We also keep track of the cartesian coordinate (x,y) of the robot. Using
our pntcc simulation tool, we obtain the following data data

direction last direction second-last direction x y
2 0 0 0 0
1 2 0 1 0
3 1 2 1 1
1 3 1 0 1
2 1 3 0 2
2 2 1 1 2
1 2 2 2 2
3 1 2 2 3

For this model, we use the verification tool to find a probability distribution for the
position (x,y) of the robot. We also provide a graphical simulation using “ardilla python”
(a visual programming environment based on robot moving on a two-dimensional board’).
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4.3 Herman stabilization protocol

A self-stabilizing protocol (according to PRISM website) for a network of processes is a
protocol which, when started from some possibly illegal start configuration, returns to a
legal/stable configuration without any outside intervention within some finite number of
steps.

The network is a ring of identical processes. The stable configurations are those where
there is exactly one process designated as ”privileged” (has a token). This privilege (token)
should be passed around the ring forever in a fair manner. For further details on self-
stabilization see http://www.prism.org.

An interesting property for these protocols is to compute the minimum probability
of reaching a stable configuration and the maximum expected time (number of steps) to
reach a stable configuration (given that the above probability is 1) over every possible
initial configuration of the protocol.

We modeled Herman’s protocol [Her90]. This protocol is described in PRISM website
as follows: “The protocol operates synchronously, the ring is oriented, and communication
is unidirectional in the ring. In this protocol the number of processes in the ring must be
odd.

Each process in the ring has a local boolean variable xi, and there is a token in place i
if xi = xi−1. In a basic step of the protocol, if the current values of xi and xi−1 are equal,
then it makes a (uniform) random choice as to the next value of xi, and otherwise it sets
it equal to the current value of xi−1”.

For instance, consider a simulation for the protocol for three nodes and an initial state
where x0 = 0, x1 = 0, x2 = 0. Using the simulation tool, we obtain the following data

number of tokens x0 x1 x2
1 0 0 0
1 1 0 0
1 0 1 1
1 1 0 0
1 0 1 1
1 1 0 0
1 0 1 1
1 1 0 1
1 1 1 0

We can also create a DTMC model for PRISM and then perform a simulation (fig. 1).

Figure 1: simulation
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In the same way as it is done for PRISM study cases, we check the correctness of
the protocol, namely that: from any configuration, a stable configuration is reached with
probability 1 and the minimum probability of reaching a stable configuration within K
steps (from any configuration). In figure 2, we present the chart obtained on PRISM
study cases and then, the graph obtained using our tool in joint work with PRISM.

Figure 2: The minimum probability of reaching a stable configuration within K steps

5 Results, conclusions and future work

In a previous work [TBAAR09], we ran Ccfomi as an stand-alone application over an Intel
2.8 GHz iMac using Mac OS 10.5.2 and Gecode 2.2.0. Each time-unit took an average of
20 ms, scheduling around 880 processes per time-unit. We simulated 300 time-units and
we ran each simulation 100 times in our tests.

In this work, we compared the performance of CCFOMI and Probabilistic CCFOMI.
The probabilistic model was around 50% slower than CCFOMI. Although, we still can do
multiple optimizations to the pntcc simulation tool, we conjecture that the performance
is still acceptable for real-time interaction.

Pachet argues in [Pac02] that an improvisation system able to learn and produce se-
quences in less than 30ms is appropriate for real-time interaction. Since our implemen-
tation of Ccfomi has a response time of 20ms in average, we conclude that it is capable
of real-time interaction for a 300 (or less) time-units simulation. There is not enough
data to conclude if the simulation of Probabilistic Ccfomi is also appropriate for real-time
interaction.
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For this work, we made all the test under Mac OS X using Pd. However, we also
ran successfully the tools on Linux. Since we are using Gecode and Flext to generate the
externals, they were easily compiled to Linux. In the future, we will also compile them to
use Max/MSP. This is due to Gecode and Flext portability.

In this report, we presented the formal basis of the ntcc simulation tool of the Ntccrt
framework. We presented two new tools for the framework: a simulation tool for pntcc and
a verification tool for pntcc. We also discussed some application ran using the simulation
and verification tools.

We want to encourage the use of process calculi to develop reactive systems. For that
reason, this research focuses on developing real-life applications with ntcc and pntcc and
showing how we can verify properties of those systems with a tool, from which we also
prove its correctness. In a previous work, we showed that our interpreter Ntccrt is a user-
friendly tool, providing a graphical interface to specify ntcc models and compiling them
to efficient C++ programs capable of real-time interaction in Pd. In this report, we show
that the new framework’s tools are also user friendly and efficient. Furthermore, they have
a formal basis.

In the International Colloquium on Emergent Trends in Concurrency Theory in Paris
in honor of Turing-award winner Robin Milner [VP08], leading researchers reflected about
strategic directions in concurrency theory, but we adhere (as well as presented on [Ola09]
in particular to Garavel’s position statement [Gar08]: “The times have gone, where for-
mal methods were primarily a pen-and-pencil activity for mathematicians. Today, only
languages properly equipped with software tools will have a chance to be adopted by indus-
try. It is therefore essential for the next generation of languages based on process calculi
to be supported by compilers, simulators, verification tools, etc. The research agenda
for theoretical concurrency should therefore address the design of efficient algorithms for
translating and verifying formal specifications of concurrent systems”.

In the future, we want to extend our implementation to fully support pntcc simulation
and verification. We also want to support rtcc [Sar08], and to generate an input for Spin
[Hol97] based on a ntcc model for verification of temporal properties in ntcc.
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