Cluster algebraic interpretation of infinite friezes

Emily Gunawan - Gustavus Adolphus College

(Joint work with Gregg Musiker and Hannah Vogel)

Laboratoire d'informatique de l'École polytechnique (LIX) January, 2017

Finite frieze patterns

Definition

A frieze pattern is an array such that:

- 1. the top row is a row of 1s
- 2. every diamond

b a d c

satisfies the rule ad - bc = 1.

Example (a **finite** integer frieze) 1 1 1 1 1 1 1 . . . Row 2 **3 1 2 2 1** 3 1 . . . 2 2 1 3 1 2 2 . . . 1 1 1 1 1 1 1

Note: every frieze pattern is completely determined by the 2nd row.

Conway and Coxeter (1970s)

Theorem

Finite integer frieze patterns \longleftrightarrow triangulations of polygons

3 / 33

Broline, Crowe, and Isaacs (1970s)

Theorem

Entries of a finite integer frieze pattern \longleftrightarrow edges between two vertices.

Cluster algebras (Fomin and Zelevinsky, 2000)

A **cluster algebra** is a commutative ring with a distinguished set of generators, called **cluster variables**.

Cluster algebras from surfaces (Fomin, Shapiro, and Thurston, 2006, etc.)

- ► Fix a marked surface: a Riemann surface S + marked points.
- Points are either on the boundary of S or in the interior (called punctures).
- The cluster variables \longleftrightarrow arcs with no self-intersection.

Cluster algebras (Fomin and Zelevinsky, 2000)

A **cluster algebra** is a commutative ring with a distinguished set of generators, called **cluster variables**.

Cluster algebras from surfaces (Fomin, Shapiro, and Thurston, 2006, etc.)

- ► Fix a marked surface: a Riemann surface S + marked points.
- Points are either on the boundary of S or in the interior (called punctures).
- The cluster variables \leftrightarrow arcs with no self-intersection.

Remark

- A cluster algebra of type A arises from a polygon.
- A cluster algebra of type D arises from a punctured polygon.

Cluster variables and mutations

- Specify an initial set of cluster variables {x₁,..., x_n} (called cluster) and an initial triangulation T_{initial}.
- To produce all cluster variables, repeatedly perform a mutation μ_k in each of the *n* positions:

Cluster variables and mutations

- Specify an initial set of cluster variables {x₁,..., x_n} (called cluster) and an initial triangulation T_{initial}.
- To produce all cluster variables, repeatedly perform a mutation µ_k in each of the n positions:

Definition (mutations)

Replace diagonal k with k'

► The new cluster variable is U'_k, where $U_k U'_k = U_a U_c + U_b U_d.$ Set weight of a boundary edge to 1.

• Remark: μ_k is an involution.

Example: a sequence of flips for a polygon

□ > < @ > < 클 > < 클 > ミ 의 < ♡ < ↔ 7/33

Example: a sequence of mutations

Remark

Arc 4 in the two right-most triangulations looks like it cannot be flipped, but there is a way to mutate at 4.

Cluster algebras

Definition (Fomin-Zelevinsky 2001)

The **cluster algebra** (corresponding to a triangulation T) is the subring of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all cluster variables.

Theorem (Fomin-Zelevinsky 2001)

Laurent Phenomenon: each cluster variable can be expressed as a Laurent polynomial in $\{x_1, \ldots, x_n\}$, that is, as

$$\frac{f(x_1,\ldots,x_n)}{x_1^{d_1}\ldots x_n^{d_n}},$$

where f is a polynomial.

Theorem (Lee - Schiffler, Gross - Hacking - Keel - Kontsevich, 2014, and special cases by others)

Positivity: this polynomial f has positive coefficients.

Finite type classification (Fomin-Zelevinsky 2002)

A cluster algebra is of **finite type** if there are finitely many cluster variables.

- The finite type cluster algebras are classified by the Dynkin diagrams.
- ► Type A and D are modeled by marked surfaces.

• Type *B* and *C* are modeled by orbifolds.

Caldero-Chapoton (2006)

Theorem

The cluster variables of a cluster algebra from a triangulated polygon (type A) form a finite frieze pattern.

Remark: When the variables a and b are specialized to 1, we recover the integer frieze pattern.

An infinite frieze patterns

1	1		1		1		1	1		1		1		1		1		1	1		1		1	1		1
4		1		2		3	2		4		1		2		3		2	4		1		2	3	3	2	
	3		1		5	ļ	5	7		3		1		5		5	•	7	3		1		5	5		7
		2		2		8	17		5		2		2		8	1	7	5		2		2	8	3	17	
Level	1		3		3	2	7	12		3		3		3	2	27	1	2	3		3		3	27	1	12
				4		.0	 19		7		4		4		0		9	7		4		4	10)	 19	
				1	13		7	11		9		5	1	.3		7	1	1	9		5	1	3	7	1	1
						9	4	:	14	1	1	1	6		9		4	14	1	11	1	6	ç	Э	4	
Level	2					;	5	5	1	17	3	35	1	.1		5	ļ	5	17	З	35	1	1	5		5
							6		6	5	54	2	24		6		6	6	Ę	54	2	24	6	5	6	
							-	7	1	L9	3	 37	1	.3		7		7	 19	3	 37	1	.3	7		7
Level	3							2	22	1	13	2	20	1	5		8	22	1	13	2	20	15	5	8	
									1	15		7	2	23	1	7	2	5	15		7	2	3	17	2	25
											8		8	2	6	5	3	17		8		8	26	3	53	
												9		9	8	31	3	6	9		9		9	81	3	36
													.0	2	8	5	5	19	1	L0	1	L0	28	3	 55	
Level	4												3	31	1	9	2	9 👩	21	<u> </u>	1	⊒3	1	19	0 a 4	29
														2	1	1	0	32	5	23	3	34	2	1	110/	33

Infinite frieze patterns

Theorem (Baur, Fellner, Parsons, and Tschabold, 2015-2016)

Any **infinite** frieze can be constructed from a triangulation of a punctured disk or an annulus/ infinite strip.

Theorem (G., Musiker, Vogel)

We construct an infinite frieze pattern of Laurent polynomials corresponding to arcs (allowing self-intersections) between the boundary vertices of a punctured disk or annulus.

Convention: the boundary is to the right of the curve. < >>

Remark: When the variables are specialized to 1, we recover the integer frieze pattern.

1		1		1		1		1		1		1		1		1		1		1	
	4		1		2		3		2		4		1		2		3		2		Ą
		3		1		5		5		7		3		1		5		5		7	
			2		2		8	-	17		5		2		2		8	1	17		5
				3		3	2	27	-	12		3		3		3	2	27	1	.2	
					4		 10		19		7		4		4		 10		9		7
					-	13		7		11		9		5	-	13		7	1	.1	
							9		4		14	-	11	-	16		9		4	1	4
								5		5	1	L7	3	35	-	11		5		5	
									6		6	Ę	54		24		6		6		6
										7	1	19	- 3	37-		13	<.≣	•7	1	7))))

15/33

Theorem (G., Musiker, Vogel)

We construct an infinite frieze pattern of Laurent polynomials corresponding to arcs (allowing self-intersections) between the boundary vertices of a punctured disk or annulus.

Proof: The self-intersecting arcs correspond to elements of the algebra via skein relation

due to Musiker, Schiffler, and Williams (2011), etc.

Example (Example of resolving a self-crossing)

Complementary arcs

Definition (complementary arc)

Let $\gamma_k := \gamma_k(i, j)$ be the arc from *i* to *j* with k - 1 self-crossings. The **complementary arc** γ_k^C of γ_k is the arc from *j* to *i* with k - 1 self-crossings.

 Their concatenation is a loop with twice as many self-crossings.

Glide symmetry for finite friezes

In a polygon

a punctured disk/annulus

< 17 ▶

18 / 33

Complementary arcs in infinite friezes

Progression formulas

Theorem (G., Musiker, and Vogel)

Let γ_1 be an arc starting and finishing at vertices *i* and *j*. For k = 1, 2, ... and $1 \le m \le k - 1$, we have

$$x(\gamma_k) = x(\gamma_m)x(Brac_{k-m}) + x(\gamma_{k-2m+1}^{\mathcal{C}}), where:$$

▶ for
$$r \ge 0$$
, γ_{-r}^{C} is the curve γ_{r+1} with a kink, so that $x(\gamma_{-r}^{C}) = -x(\gamma_{r+1})$, and

▶ a bracelet Brac_k is obtained by following a (non-contractible, non-self-crossing, kink-free) loop k times, creating (k − 1) self-crossings.

$$x(\gamma_4) = x(\gamma_1)x(Brac_3) + x(\gamma_3^C) \text{ for } k = 4, m = 1$$

20 / 33

Arithmetic progressions in frieze patterns from punctured disks (Tschabold)

1 1 **1** 1 1 1 1 **1** 1 1 1 1 **1** 2 3 2 4 1 2 3 2 4 1 2 3 2 1 4 5 7 3 **1** 5 5 7 3 **1** 5 5 7 5 3 1 8 17 5 2 2 8 17 5 2 2 8 17 2 2 3 27 **12** 3 3 3 27 **12** 3 3 3 27 **12 4** 10 19 7 4 **4** 10 19 7 4 **4** 10 19 9 5 13 7 11 9 5 13 7 11 13 7 11 **4** 14 11 16 9 **4** 14 11 16 9 **4** 9 5 17 35 11 5 5 17 35 11 5 5 5 6 54 **24** 6 6 6 54 **24** 6 6 6 7 19 37 13 7 7 19 37 13 7 22 13 20 15 8 22 13 20 15 8 **7** 23 17 25 15 **7** 23 17 25 15 8 8 26 53 17 8 8 26 53 9 81 **36** 9 9 9 81 **36** 28 55 19 10 **10** 28 55 10 31 19^{-29⁻³} 21⁻² 11⁻² 31⁻² 19⁻² 29⁻²

Geometric interpretation of the arithmetic progression

The arc from vertex blue to vertex green with k self-intersections

Proof: Progression formulas and induction.

In punctured disk case, this growth factor is always 2.

1		1		1		1		1	1		1		1		1		1	1		1		1		1	1	L	1		1		1	1	
	4		1		2		3	:	2	4		1		2		3	2	2	4		1		2	:	3	2		4		1	2	2	3
		3		1		5		5	7		3		1		5		5	7		3		1		5	5	5	7		3		1	5	
			2		2		8	1	7	5		2		2		8	17	7	5		2		2	8	3	17		5		2	2	2	8
				3		3	2	7	12	2	3		3		3	2	7	12		3		3		3	27	7	12		3		3	3	2
					4	1	0	1	9 9	7		4		4	1	0	19)	7		4		4	1()	19		7		4	4	1	10
					1	.3		7	11		9		5	1	3		7	11		9		5	1	3	7	7	11		9	ļ	5	13	
							9	4	4	14		11	1	16		9	4	1	14	:	11	1	6	9	Э	4		14	1	1	16	3	9
								5	5		17	- 3	35	1	1		5	5		17	- 3	35	1	1	5	5	5	1	17	3	5	11	
								(6	6	ļ	54	2	24		6	6	3	6	1	54	2	4	(6	6		6	5	4	24	ł	6
									7		19	3	37	1	3		7	7		19	3	37	1	3	7	7	7	1	19	3	7	13	
										22		13	2	20	1	5	8	3	22		13	2	0	1	5	8	:	22	1	3	20) :	15
											15		7	2	23	1	7	25		15		7	2	3	17	7	25	1	15		7	23	1
												8		8	2	6	53	3	17		8		8	20	6	53		17		8	8	3 2	26
													9		9	8	1	36		9		9		9	81	L	36		9	1	9	9	8
													1	10	2	8	55	5	19		10	1	0	28	3	55		19	1	0	10) 2	28
														3	31	1	9	29	:	21	1	11	3	1	19)	29	2	21	1	1	31	1
															2	1	10)	32	1	23	3	4	2:	1	10	;	32	2	3	34	1 2	21
																1	1	11		35	7	71	2	3	11	L	11	3	35	7	1	23	1
																	12	2	12	1(08	4	8	1:	2	12		12	10	8	48	3 :	12
																		13		37	< i	73	-2	5.⊳	13	3= 1	13		37	7	3	25	~1
																			40	:	25	3	8	2	7	14		40	2	5	38	3 242	2783

Geometric interpretation of the growth factor

The "jump" between frieze level k and k + 1 correspond to the bracelet which crosses itself k - 1 times.

Bracelets with 0, 1, and 2 self-crossings

Definition

Define the normalized Chebyshev polynomial by

$$T_0(x) = 2, T_1(x) = x$$
, and

the recurrence relation

$$T_k(x) = x T_{k-1}(x) - T_{k-2}(x).$$

For punctured disk, every bracelet corresponds to the integer 2.

Definition (Broline, Crowe, and Isaacs, 1970s)

Let R_1 , R_2 , ..., R_r be the boundary vertices to the right of γ . A **BCI tuple** for γ is an *r*-tuple (t_1, \ldots, t_r) such that:

- (B1) the *i*-th entry t_i is a triangle of T having R_i as a vertex. (We say that the vertex R_i is matched to the triangle in the *i*-th entry of the tuple).
- (B2) the entries are pairwise distinct.

Definition (Studied by Carroll-Price, 2003 and others)

A **BCI trail** w for (t_1, \ldots, t_r) is a walk from the beginning to the ending point of γ along T such that:

(TR 1) the triangles t_1, \ldots, t_r are to the right of w,

(TR 2) the other triangles are to the left of w.

Proposition (G., Musiker, Vogel)

There is a lattice-preserving bijection between the BCI tuples and *T*-paths (of Schiffler-Thomas, 2006-2007).

Corollary (G., Musiker, Vogel)

1. BCI-trail formula: the Laurent polynomial expansion corresponding to γ written in the variables of T is

$$x_{\gamma} = \sum_w rac{\prod \textit{odd steps of } w}{\prod \textit{even steps of } w}$$

where the sum is over all BCI-trails w for γ .

2. Starting from the minimal BCI-tuple for γ , we get to all the BCI-tuples by toggling a triangle to get closer to the starting point of γ .

From ideal triangulation T to its polygon cover

 $\sim \rightarrow$

<ロト < 部 ト < 注 ト < 注 ト 注 の Q () 29 / 33

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 30 / 33

The 11 BCI tuples correspond to the 11 terms of the expansion of x_{γ} :

$$x_{\gamma} = \frac{\mathbf{x_0}\mathbf{x_1}\mathbf{x_4} + 2x_1x_3x_4 + 2x_0^2 + 4x_0x_3 + 2x_3^2}{x_0x_1x_4}$$

For example, from the minimal BCI tuple $b = (\Delta_0, A, B, C, D, \Delta_3, E, F)$, we get a BCI trail $(b_{40}, \tau_5, \tau_1, \tau_1, \tau_3)$.

Thank you

33 / 33