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Unimodular equivalence

A unimodular transformation is a linear integer map t : R — R that
preserves the lattice. That is,

t(x)=A-x+b, xR

for A€ 7979, det(A) = +1 and b € Z9.

Two lattice polytopes P and @ are said unimodularly equivalent (or
simply equivalent) if there is an affine unimodular transformation t such
that t(P) = Q.
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A unimodular transformation is a linear integer map t : R — R that
preserves the lattice. That is,

t(x)=A-x+b, xR

for A€ 7979, det(A) = +1 and b € Z9.
Two lattice polytopes P and @ are said unimodularly equivalent (or
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Remark

Size, volume, combinatorial type, ... are invariant modulo unimodular
equivalence.
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Dimension 3, n = 4 (empty tetrahedra)

In dimension 3, Reeve tetrahedra are
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P3(4) ={T(p.q) | p,g€Z, 0< p<gq, ged(p,q) = 1},
where T(p, g) := conv {(0,0,0),(1,0,0),(0,0,1),(p, q,1)}.
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In dimension 3, Reeve tetrahedra are
infinitely many lattice 3-polytopes with
4 lattice points |P3(4)] = o0

Elements in P3(4) are called empty
tetrahedra: tetrahedra in which the
only lattice points are the four

vertices. Their classification is classical .1,
(White 1964):
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P3(4) ={T(p,q) | p,g€Z, 0 < p<gq, ged(p,q) =1},

where T(p, g) := conv {(0,0,0),(1,0,0),(0,0,1),(p, q,1)}.

All empty tetrahedra have width 1.
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3-polytopes of size n AND WIDTH 8> 1, for each n
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From now on, let P € P}(n). For each vertex v € vert(P), we denote by
PV the polytope conv(P\ {v} N Z9) C R9. This polytope has size n — 1
but it is not necessarily full-dimensional.
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From now on, let P € P}(n). For each vertex v € vert(P), we denote by
PV the polytope conv(P\ {v} N Z9) C R9. This polytope has size n — 1
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From now on, let P € P}(n). For each vertex v € vert(P), we denote by
PV the polytope conv(P\ {v} N Z9) C R9. This polytope has size n — 1
but it is not necessarily full-dimensional.

We say that v is an essential vertex of P if PV & Pj(n— 1). That is, if
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From now on, let P € P}(n). For each vertex v € vert(P), we denote by
PV the polytope conv(P\ {v} N Z9) C R9. This polytope has size n — 1
but it is not necessarily full-dimensional.

We say that v is an essential vertex of P if PV & Pj(n— 1). That is, if
PY is either (d — 1)-dimensional or has width one.
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From now on, let P € P}(n). For each vertex v € vert(P), we denote by
PV the polytope conv(P\ {v} N Z9) C R9. This polytope has size n — 1
but it is not necessarily full-dimensional.

We say that v is an essential vertex of P if PV & Pj(n— 1). That is, if
PY is either (d — 1)-dimensional or has width one.
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P(10.0) has width one

P59 has width larger than one
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Let P € Pj(n).

» We say that P is quasiminimal if it has < 1 NON-essential vertices.
That is, if there is at most one vertex v such that PV € Pj(n — 1).
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Quasiminimal vs. Merged

Definition
Let P € Pj(n).
» We say that P is quasiminimal if it has < 1 NON-essential vertices.

That is, if there is at most one vertex v such that PV € Pj(n — 1).

> We say that P is merged if there are > 2 NON-essential vertices
(i.e. u,v € vert(P) with P¥, P¥ € Pj(n— 1)) AND the polytope
Puv .= conv(P“ N PN Z9) is still d-dimensional.
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Quasiminimal vs. Merged

Definition
Let P € Pj(n).

» We say that P is quasiminimal if it has < 1 NON-essential vertices.
That is, if there is at most one vertex v such that PV € Pj(n — 1).

» We say that P is merged if there are > 2 NON-essential vertices
(i.e. u,v € vert(P) with P¥, P¥ € Pj(n— 1)) AND the polytope
Puv .= conv(P“ N PN Z9) is still d-dimensional.

We will denote by Qg4(n) and My(n) the sets of quasiminimal and
merged d-polytopes of size n, respectively.

11



There is a single lattice 3-dimensional lattice polytope that is neither
quasiminimal nor merged, and it is of size n = 6:

P3(6) \ (Q3(6) U M3(6))] = 1,

P;(n) = Q3(n) U Ms(n), foralln>7

» That is, this polytope has > 2 NON-essential vertices, AND for all
pairs u, v € vert(P) of non-essential vertices, P¥, PV € Pj(n—1)
are such that P“¥ := conv(PY N PN Z9) is (d — 1)-dimensional.



Exceptions

Theorem (Blanco and Santos, 2016)

There is a single lattice 3-dimensional lattice polytope that is neither
quasiminimal nor merged, and it is of size n = 6:

|P5(6) \ (Q3(6) U M5(6))| =1, P3(n) = Qz(n) U Ms(n), for all n > 7.

» That is, this polytope has > 2 NON-essential vertices, AND for all
pairs u, v € vert(P) of non-essential vertices, P*, PV € P;(n— 1)
are such that P“¥ := conv(PY N PN Z9) is (d — 1)-dimensional.
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INPUT: a finite list L of lattice d-polytopes of size n — 1 and width > 1.
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obtained merging polytopes of L.

OUTPUT: the list L’ = Merging(L) of all lattice d-polytopes of size n
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INPUT: a finite list L of lattice d-polytopes of size n — 1 and width > 1.
OUTPUT: the list L’ = Merging(L) of all lattice d-polytopes of size n
obtained merging polytopes of L.

For each Pi, P, € L, and for each vertex vy of P; and v, of Ps:
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Merging algorithm

INPUT: a finite list L of lattice d-polytopes of size n — 1 and width > 1.
OUTPUT: the list L’ = Merging(L) of all lattice d-polytopes of size n

obtained merging polytopes of L.
For each Py, P, € L, and for each vertex v; of P; and v, of Ps:

1. Let Pj = conv(Z9 N Py \ {w1}) and P} = conv(Z N Py \ {wv2}).

E:L
P R ona
.
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Merging algorithm
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obtained merging polytopes of L.
For each Py, P, € L, and for each vertex v; of P; and v, of Ps:

1. Let Pj = conv(Z9 N Py \ {w1}) and P} = conv(Z N Py \ {wv2}).

2. Check if P; and P} are d-dimensional and equivalent. If they are,
let t : Z¢ — Z9 be an equivalence sending Pj to P} (there are
finitely many possibilities for t; do step 3 for each).
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Merging algorithm
INPUT: a finite list L of lattice d-polytopes of size n — 1 and width > 1.
OUTPUT: the list L’ = Merging(L) of all lattice d-polytopes of size n

obtained merging polytopes of L.
For each Py, P, € L, and for each vertex v; of P; and v, of Ps:

1. Let Pj = conv(Z9 N Py \ {w1}) and P} = conv(Z N Py \ {wv2}).

2. Check if P; and P} are d-dimensional and equivalent. If they are,
let t : Z¢ — Z9 be an equivalence sending Pj to P} (there are
finitely many possibilities for t; do step 3 for each).

3. If the size of P := conv(t(P1) U P,) equals n, add P to L'.

Dimension 3: By definition, and since P;(n — 1) is a finite list:
M;3(n) = Merging(P;(n— 1)), for 3]l n.



Let P € Qq(n) and, for each essential vertex
v € vert(P), let f, : RY — R be an inte-

ger linear functional that gives width one (or
zero) to PY.
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Quasiminimal polytopes
Let P € Qq(n) and, for each essential vertex - _
v € vert(P), let f, : RY — R be an inte- 2
ger linear functional that gives width one (or ///
zero) to PY. i
We distinguish two cases:

Definition (Boxed vs. spiked)

> If the set {f, : v is essential vertex of P}
linearly spans (R9)*, then we can find d
linearly independent f,. We call these
polytopes boxed, because all except d of
its lattice points lie in a d-parallelepiped
of facet-width one.
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It is easy to see that boxed d-polytopes have size at most 2¢ + d: apart
from d vertices, the only possible lattice points are the 29 vertices of the
d-parallelepiped.

15
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Boxed polytopes

It is easy to see that boxed d-polytopes have size at most 2¢ + d: apart
from d vertices, the only possible lattice points are the 2¢ vertices of the
d-parallelepiped.

In dimension three this implies (by our Lemma that almost all lattice
3-polytopes of fixed size have width one) that there are finitely many.
We have enumerated those of dimension 3 with computer help. Let the
list of them, for each size n € {7,...,11}, be denoted Boxeds(n).

15



Spiked d-polytopes can, however, have arbitrarily large size. Still, it turns

out that the projection of spiked d-polytopes in the direction of the
lattice segment has very specific properties:

16
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Spiked polytopes

Spiked d-polytopes can, however, have arbitrarily large size. Still, it turns
out that the projection of spiked d-polytopes in the direction of the
lattice segment has very specific properties:

Theorem (Blanco and Santos, 2016)

Every spiked 3-polytope of size n > 7 projects to one of the following
2-polytopes in such a way that all the vertices in the projection have a
unique element in the preimage.

N

This allows us to explicitly list spiked 3-polytopes for each given size
n > 7. We denote this list by Spiked;(n).

16



Putting these things together, we present the full classification of
quasiminimal 3-polytopes:

For7 < n <11, Q3(n) = Boxeds(n) U Spiked,(n), and it has 50, 42, 44,
46 and 49 elements, respectively.

For n > 11, O3(n) = Spikeds(n) and it has 4n+ 7 elements if n = 0
(mod 3), and 4n + 5 otherwise.

«O> «Fr « =
17



> P;(5) and P5(6) (explicitly classified previously by us).
> Os3(n), for n > 7, can be computed explicitly.
> Ms3(n) = Merging(P;(n—1)), for n > 7.

18
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> P;(5) and P5(6) (explicitly classified previously by us).

> Os3(n), for n > 7, can be computed explicitly.
> Ms3(n) = Merging(P;(n—1)), for n > 7.

Assume P5(n — 1) previously computed. Then:

P3(n) = Merging(P;(n—1)) U Qs(n).
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Summary & computational results

> P;(5) and P;(6) (explicitly classified previously by us).
> Qs(n),
> Mj3(n) = Merging(P;(n— 1)), for n>7.

for n > 7, can be computed explicitly.

Assume P3(n — 1) previously computed. Then:

P;(n) = Merging(P;(n—1)) U Qs(n).

Size 45 6 7 8 9 10 11
width 2 0 9 74 477 2524 10862 40885 137803
width 3 00 2 19 151 836 4148 18635
width4 |00 0 O 0 0 2 26

quasiminimal [0 9 35 50 42 44 46 49
merged 0 0 40 446 2633 11654 44989 156415

exceptions ([0 0 1 O 0 0 0 0
total 0 9 76 496 2675 11698 45035 156464
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What about dimension 4 and higher?
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What about dimension 4 and higher?

Let A(v) for v € Z* denote the simplex with vertices ey, €, e3,e4 and v:

> A(2,2,3,D — 6) has determinant D for all D, width two for all
D > 8, and is empty for infinitely many values of D.



Infinitely many polytopes of width larger than one

What about dimension 4 and higher?
Theorem (Haase-Ziegler 2000)
Let A(v) for v € Z* denote the simplex with vertices e, >, €3, €4 and v:

» A(2,2,3,D — 6) has determinant D for all D, width two for all
D > 8, and is empty for infinitely many values of D.

> A(6,14,17,65) is empty and has width four.

10



Infinitely many polytopes of width larger than one

What about dimension 4 and higher?
Theorem (Haase-Ziegler 2000)
Let A(v) for v € Z* denote the simplex with vertices e, >, €3, €4 and v:

» A(2,2,3,D — 6) has determinant D for all D, width two for all
D > 8, and is empty for infinitely many values of D.

> A(6,14,17,65) is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

10
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What about dimension 4 and higher?
Theorem (Haase-Ziegler 2000)
Let A(v) for v € Z* denote the simplex with vertices e, >, €3, €4 and v:

> A(2,2,3,D — 6) has determinant D for all D, width two for all
D > 8, and is empty for infinitely many values of D.

> A(6,14,17,65) is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

Theorem
» (Mori-Morrison-Morrison 1988, Sankaran 1990, Bover 2009) There
are only finitely many empty 4-simplices not falling into an explicitly
described set of empty 4-simplices (consisting of 29 one-parameter
families and two two-parameter families).
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Infinitely many polytopes of width larger than one

What about dimension 4 and higher?
Theorem (Haase-Ziegler 2000)
Let A(v) for v € Z* denote the simplex with vertices e, >, €3, €4 and v:

> A(2,2,3,D — 6) has determinant D for all D, width two for all
D > 8, and is empty for infinitely many values of D.

> A(6,14,17,65) is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

Theorem
» (Mori-Morrison-Morrison 1988, Sankaran 1990, Bover 2009) There
are only finitely many empty 4-simplices not falling into an explicitly
described set of empty 4-simplices (consisting of 29 one-parameter
families and two two-parameter families).

» (Barile-Bernardi-Borisov-Kantor, 2011) In particular, there are only
finitely many empty 4-simplices of width larger than two.
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For each dimension d there is a threshold w™(d) € N such that for every
n € N all but finitely many d-polytopes of size n have width < w(d).



For each dimension d there is a threshold w™(d) € N such that for every
n € N all but finitely many d-polytopes of size n have width < w(d).

E.g.: w*(2) = 0 (folklore + Pick’s Theorem) and w°(3) = 1 (Blanco-Santos,
2016).
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Threshold width

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold w*°(d) € N such that for every
n € N all but finitely many d-polytopes of size n have width < w(d).

E.g.: w*(2) = 0 (folklore + Pick’s Theorem) and w*°(3) =1 (Blanco-Santos,
2016).

Proof.

> (Nill-Ziegler, 2011) There is only a finite number of hollow lattice
d-polytopes that do not admit a lattice projection onto a hollow lattice
(d — 1)-polytope.
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» (Kannan-Lovész, 1988) Hollow convex bodies have width in O(d®/?).
(Better bound O(d*?) for lattice polytopes, Banaszczyk et al. 1999).

> (Hensley, 1983) For each positive k € Z<q there is a bound V/(k) € N for
the volume of lattice d-polytopes with exactly k interior points.

> (Lagarias-Ziegler, 1991) A family of lattice d-polytopes with bounded
volume contains only a finite number of integral equivalence classes.
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> (Nill-Ziegler, 2011) There is only a finite number of hollow lattice
d-polytopes that do not admit a lattice projection onto a hollow lattice
(d — 1)-polytope. (Hollow ="no interior lattice points™).

» (Kannan-Lovész, 1988) Hollow convex bodies have width in O(d®/?).
(Better bound O(d*?) for lattice polytopes, Banaszczyk et al. 1999).

> (Hensley, 1983) For each positive k € Z<q there is a bound V/(k) € N for
the volume of lattice d-polytopes with exactly k interior points.

> (Lagarias-Ziegler, 1991) A family of lattice d-polytopes with bounded
volume contains only a finite number of integral equivalence classes.
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Let wy(d):= maximum width of a hollow lattice d-polytope (which is
finite by Kannan-Lovész). As a by-product of the previous proof we have:
w>(d) < wy(d —1) < 0(d*?).
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Threshold width via lifts of (d — 1)-polytopes

Let wy(d):= maximum width of a hollow lattice d-polytope (which is
finite by Kannan-Lovész). As a by-product of the previous proof we have:

Corollary

w(d) < wy(d — 1) < 0(d*?).

For lower bounds, there is the following ob-
servation: if there is a lattice (d—1)-polytope
Q@ that can be lifted to infinitely many lat-
tice d-polytopes of the same size n, then
w(d) > width(Q).
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w(d) > width(Q).

E.g.: w®(3) > 1 because the unit square has
infinitely many lifts of size 4 (Reeve tetrahe-
dra).
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In fact this is an if and only if:
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In fact this is an if and only if:

w(d) is the maximum width of a lattice (d — 1)-polytope Q that has
infinitely many lifts of the same size. Moreover, any such @ must be
hollow.




Threshold width via lifts of (d — 1)-polytopes

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

w(d) is the maximum width of a lattice (d — 1)-polytope Q that has
infinitely many lifts of the same size. Moreover, any such Q must be
hollow.

We also show that every hollow (d — 2)-polytope can be lifted to a
hollow (d — 1)-polytope Q that has infinitely many lifts of constant size
to dimension d, which implies:

Corollary
w(d) € [we(d — 2), we(d — 1)].
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Threshold width via lifts of (d — 1)-polytopes

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

w(d) is the maximum width of a lattice (d — 1)-polytope Q that has
infinitely many lifts of the same size. Moreover, any such Q must be
hollow.

We also show that every hollow (d — 2)-polytope can be lifted to a
hollow (d — 1)-polytope Q that has infinitely many lifts of constant size
to dimension d, which implies:

Corollary

w(d) € [we(d — 2), we(d — 1)]. To compute w>(d) one can:

1. Compute the (finitely many, by Nill-Ziegler) hollow
(d —1)-polytopes that do not project to a hollow (d — 2)-polytope.

2. For each of them check whether it has infinitely many lifts of some
fixed size. w*(d) equals the maximal width of one that does.
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Threshold width in dimensions three and four

d = 3: There is a unique hollow 2-polytope of width larger than one, the
second dilation 2A of a unimodular triangle. By the corollary,
w>(3) equals 2 = wg(2) or 1 = wg(1) depending solely on whether
2A has infinitely many lifts of some constant size.
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d = 3: There is a unique hollow 2-polytope of width larger than one, the
second dilation 2A of a unimodular triangle. By the corollary,
w>(3) equals 2 = wg(2) or 1 = wg(1) depending solely on whether
2A has infinitely many lifts of some constant size. It is easy to
check that it does not, so w>(3) = 1 (Blanco-Santos, 2016).
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check that it does not, so w>(3) = 1 (Blanco-Santos, 2016).

d = 4: The list of hollow 3-polytopes that do not project to a hollow 2

polytope has been computed in (Averkov-Kriimpelmann-Weltge,
2015). There are five of width three, and the rest have width two.
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Threshold width in dimensions three and four

d=3:

There is a unique hollow 2-polytope of width larger than one, the
second dilation 2A of a unimodular triangle. By the corollary,
w>(3) equals 2 = wg(2) or 1 = wg(1) depending solely on whether
2A has infinitely many lifts of some constant size. It is easy to
check that it does not, so w>(3) = 1 (Blanco-Santos, 2016).

: The list of hollow 3-polytopes that do not project to a hollow 2

polytope has been computed in (Averkov-Kriimpelmann-Weltge,
2015). There are five of width three, and the rest have width two.
Thus, w™(4) equals 3 = wg(3) or 2 = wg(2) depending solely on
whether some of those five has infinitely many lifts of some
constant size. We (Blanco-Haase-Hofmann-Santos, 16+) show that
they do not, so:

Theorem (BHSS)
w>(4) = 2.
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WH(d — 2)

w>(d)

WH(d — 1)

d
1
2
3
4
5

w N~

N = OO
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WH(d - 2)

W PQ

W N~

w(d) | wy(d —1)
0 _
0 1
1 2
2 3
>4 >4
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Summary of known values

Final remarks

d | wy(d—2) | we(d) | wa(d—1)
1 — 0 —

2 — 0 1

3 1 1 2

4 2 2 3

5 3 >4 >4

1. We know w°(5) > 4 > wy/(3) because we prove that w°(d) is at
least the maximum width of an empty(d — 1)-polytope (empty = all
lattice points are vertices) and there are empty 4-simplices of width 4.
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Summary of known values

d | wy(d—2) | we(d) | wa(d—1)
1 — 0 —

2 — 0 1

3 1 1 2

4 2 2 3

5 3 >4 >4

Final remarks

1. We know w°(5) > 4 > wy/(3) because we prove that w°(d) is at
least the maximum width of an empty(d — 1)-polytope (empty = all
lattice points are vertices) and there are empty 4-simplices of width 4.

2. As a by-product we have an independent proof of:

Corollary (Barile-Bernardi-Borisov-Kantor, 2011)

There are only finitely many empty 4-simplices of width larger than two.
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Thank you for your attention

http://personales.unican.es/santosf
http://personales.unican.es/blancogm/latticepoints.html
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