Lattice polytopes: width and enumeration

Mónica Blanco, Francisco Santos (partially with C. Haase and J. Hofmann)

> Universidad de Cantabria Freie Universität Berlin

LIX, École Polytechnique - April 20, 2016

1

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

	0	0	0	0
► Lattice polytope P := convex hull of a finite set of points in Z ^d (or in a <i>d</i> -dimensional lattice).	o	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

• **Size** of *P* :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

• **Size** of *P* :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

Size of P :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

Volume of P :=

volume "normalized to the lattice" = $d! \times$ Euclidean volume.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

• **Size** of *P* :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

Volume of P :=

volume "normalized to the lattice" = $d! \times$ Euclidean volume

The volume of a lattice polytope is always an integer.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

▶ **Size** of *P* :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

Volume of P :=

volume "normalized to the lattice" =

 $d! \times$ Euclidean volume.

The volume of a lattice polytope is always an integer.

d + 1 points form a simplex of volume 1 (called UNIMODULAR) if and only if they affinely span the lattice

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

Size of P :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

Volume of P :=

volume "normalized to the lattice" = $d! \times$ Euclidean volume.

The volume of a lattice polytope is always an integer.

d + 1 points form a simplex of volume 1 (called UNIMODULAR) if and only if they affinely span the lattice

► Lattice polytope *P* :=

convex hull of a finite set of points in \mathbb{Z}^d (or in a *d*-dimensional lattice).

• **Size** of *P* :=

number of lattice points in $P: |P \cap \mathbb{Z}^d|$

Volume of P :=

volume "normalized to the lattice" = $d! \times$ Euclidean volume.

The volume of a lattice polytope is always an integer.

d + 1 points form a simplex of volume 1 (called UNIMODULAR) if and only if they affinely span the lattice

DQC

A unimodular transformation is a linear integer map $t : \mathbb{R}^d \to \mathbb{R}^d$ that preserves the lattice. That is,

$$t(x) = A \cdot x + b, \ x \in \mathbb{R}^d$$

for $A \in \mathbb{Z}^{d \times d}$, det $(A) = \pm 1$ and $b \in \mathbb{Z}^d$. Two lattice polytopes P and Q are said **unimodularly equivalent** (or simply **equivalent**) if there is an affine unimodular transformation t such that t(P) = Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A unimodular transformation is a linear integer map $t : \mathbb{R}^d \to \mathbb{R}^d$ that preserves the lattice. That is,

$$t(x) = A \cdot x + b, \ x \in \mathbb{R}^d$$

for $A \in \mathbb{Z}^{d \times d}$, det $(A) = \pm 1$ and $b \in \mathbb{Z}^d$. Two lattice polytopes P and Q are said **unimodularly equivalent** (or simply **equivalent**) if there is an affine unimodular transformation t such that t(P) = Q.

Remark

Size, volume, combinatorial type, ... are invariant modulo unimodular equivalence.

0	0	0	0	0	0	0	0	0
0	ο	0	0	0	0	0	0	ο
0	0	ο	ο	0	0	0	0	o
0	0	o	o	o	0	o	o	o
0	0	o	o	o	o	o	o	o
0	o	o	o	o	o	o	o	0
0	o	o	ο	o	o	o	o	o

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

4

- 4 回 ト - 4 三 ト - 4 三 ト

Э

DQC

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 → のへぐ

WE WANT TO CLASSIFY (classes of) LATTICE *d*-POLYTOPES

 $\mathcal{P}_d(n) := \{ (classes of) | attice d-polytopes of size n \} \}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = のへで

 $\mathcal{P}_d(n) := \{(\text{classes of}) | \text{attice } d\text{-polytopes of size } n\}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\mathcal{P}_d(n) := \{(\text{classes of}) | \text{attice } d\text{-polytopes of size } n\}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\mathcal{P}_d(n) := \{(\text{classes of}) | \text{attice } d\text{-polytopes of size } n\}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

○ ● ● ● ● ○

▶ Dimension 2: for each n, the cardinal of P₂(n) is finite |P₂(n)| < ∞</p>

 $\mathcal{P}_d(n) := \{(\text{classes of}) | \text{attice } d\text{-polytopes of size } n\}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

○ ● ● ● ● ○

▶ **Dimension** 2: for each *n*, the cardinal of $\mathcal{P}_2(n)$ is **finite** $|\mathcal{P}_2(n)| < \infty$ All polygons of sizes 3, 4 and 5:

$\mathcal{P}_d(n) := \{ (classes of) | attice d-polytopes of size n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

▶ **Dimension** 2: for each *n*, the cardinal of $\mathcal{P}_2(n)$ is **finite** $|\mathcal{P}_2(n)| < \infty$ All polygons of sizes 3, 4 and 5:

 $\mathcal{P}_d(n) := \{ (classes of) | attice d-polytopes of size n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

▶ **Dimension** 2: for each *n*, the cardinal of $\mathcal{P}_2(n)$ is **finite** $|\mathcal{P}_2(n)| < \infty$ All polygons of sizes 3, 4 and 5:

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

▶ **Dimension** 2: for each *n*, the cardinal of $\mathcal{P}_2(n)$ is **finite** $|\mathcal{P}_2(n)| < \infty$ All polygons of sizes 3, 4 and 5:

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

► Dimension 2: for each *n*, the cardinal of P₂(*n*) is finite |P₂(*n*)| < ∞ All polygons of sizes 3, 4 and 5:</p>

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

► Dimension 2: for each *n*, the cardinal of P₂(*n*) is finite |P₂(*n*)| < ∞ All polygons of sizes 3, 4 and 5:</p>

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

► Dimension 2: for each *n*, the cardinal of P₂(*n*) is finite |P₂(*n*)| < ∞ All polygons of sizes 3, 4 and 5:</p>

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

 $\bullet \bullet \bullet \bullet \bullet \circ$

▶ Dimension 2: for each *n*, the cardinal of P₂(*n*) is finite |P₂(*n*)| < ∞ All polygons of sizes 3, 4 and 5:</p>

5

 $\mathcal{P}_d(n) := \{ (\text{classes of}) \text{ lattice } d \text{-polytopes of size } n \}$

▶ Dimension 1: for each n ≥ 2, there is one lattice 1-polytope of size n, a segment of length n − 1: |P₁(n)| = 1

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

▶ Dimension 2: for each *n*, the cardinal of P₂(*n*) is finite |P₂(*n*)| < ∞ All polygons of sizes 3, 4 and 5:</p>

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

Э

- 4 回 ト 4 三 ト 4 三 ト

DQC

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

Image: A = 1

문 문 문

DQA

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

▲□→ ▲ □

문 문 문

DQA

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

Image: A = 1

문 문 문

DQC

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

- ▲ @ → - ▲ 注

문 문 문

DQC

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

Elements in $\mathcal{P}_3(4)$ are called **empty tetrahedra**: tetrahedra in which the only lattice points are the four vertices. Their classification is classical (White 1964):

イロト イヨト イヨト

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

Elements in $\mathcal{P}_3(4)$ are called **empty tetrahedra**: tetrahedra in which the only lattice points are the four vertices. Their classification is classical (White 1964):

 $\begin{aligned} \mathcal{P}_3(4) &= \left\{ \mathit{T}(p,q) \mid p,q \in \mathbb{Z}, \ 0$

In dimension 3, Reeve tetrahedra are infinitely many lattice 3-polytopes with 4 lattice points $|\mathcal{P}_3(4)| = \infty$

Elements in $\mathcal{P}_3(4)$ are called **empty tetrahedra**: tetrahedra in which the only lattice points are the four vertices. Their classification is classical (White 1964):

イロト イヨト イヨト

Э

nan

$$\mathcal{P}_3(4) = \{ T(p,q) \mid p,q \in \mathbb{Z}, \ 0 where $T(p,q) := \operatorname{conv} \{ (0,0,0), (1,0,0), (0,0,1), (p,q,1) \}.$$$

Remark

All empty tetrahedra have width 1.

Definition

- ► Width of *P* with respect to
 - a linear functional $f:\mathbb{R}^d
 ightarrow \mathbb{R}$
 - = length of the interval f(P)

Definition

- ► Width of *P* with respect to
 - a linear functional $f:\mathbb{R}^d\rightarrow\mathbb{R}$
 - = length of the interval f(P)

・ロン ・四 と ・ 日 ・ ・ 日 ・

590

Definition

- Width of P with respect to
 - a linear functional $f:\mathbb{R}^d\rightarrow\mathbb{R}$
 - = length of the interval f(P)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Width of P:= Minimum width of P with respect to a linear NON-CONSTANT, INTEGER functional

Definition

- ► Width of *P* with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Definition

- ► Width of *P* with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width of P:= Minimum width of P with respect to a linear NON-CONSTANT, INTEGER functional = minimum lattice distance between two parallel lattice hyperplanes enclosing P

Width: 2 Width: 1 Width: 2

Definition

- ► Width of *P* with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width: 2 Width: 1 Width: 2

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width: 2 Width: 1 Width:

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width: 2 Width: 1 Width: 2

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width: 2

Width: 1

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

 Width: 2
 Width: 1
 Width: 2

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width of P:= Minimum width of P with respect to a linear NON-CONSTANT, INTEGER functional = minimum lattice distance between two parallel lattice hyperplanes enclosing P

Width: 2

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

Width: 2

Definition

- Width of P with respect to
 - a linear functional $f : \mathbb{R}^d \to \mathbb{R}$
 - = length of the interval f(P)

5900

Width of P:= Minimum width of P with respect to a linear NON-CONSTANT, INTEGER functional = minimum lattice distance between two parallel lattice hyperplanes enclosing P

Width: 2Width: 1Width: 2

$$\mathcal{P}_d^*(n) := \{ P \in \mathcal{P}_d(n) \mid \text{ width}(P) > 1 \}$$

$$\mathcal{P}_d^*(n) := \{ P \in \mathcal{P}_d(n) \mid \text{ width}(P) > 1 \}$$

For each $n \ge 4$:

 There are infinitely many equivalence classes of width 1:

 $|\mathcal{P}_d(n) \setminus \mathcal{P}_d^*(n)| = \infty.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

$$\mathcal{P}_d^*(n) := \{ P \in \mathcal{P}_d(n) \mid \text{ width}(P) > 1 \}$$

For each $n \ge 4$:

 There are infinitely many equivalence classes of width 1:

 $|\mathcal{P}_d(n) \setminus \mathcal{P}_d^*(n)| = \infty.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

$$\mathcal{P}_d^*(n) := \{ P \in \mathcal{P}_d(n) \mid \text{ width}(P) > 1 \}$$

For each $n \ge 4$:

 There are infinitely many equivalence classes of width 1:

 $|\mathcal{P}_d(n) \setminus \mathcal{P}_d^*(n)| = \infty.$

590

$$\mathcal{P}_d^*(n) := \{ P \in \mathcal{P}_d(n) \mid \text{ width}(P) > 1 \}$$

For each $n \ge 4$:

- ► There are infinitely many equivalence classes of width 1: $|P_d(n) \setminus P_d^*(n)| = \infty.$
- But for width > 1:

200

Lemma (Blanco-Santos, 2016)

For each $n \ge 4$, there are **finitely** many lattice 3-polytopes of width greater than one and size n. That is,

 $|\mathcal{P}_3^*(n)| < \infty, \text{ for each } n \geq 4$
Width $> 1 \implies$ finite number of classes (for d = 3)

$$\mathcal{P}_d^*(n) := \{ P \in \mathcal{P}_d(n) \mid \text{ width}(P) > 1 \}$$

For each $n \ge 4$:

- ► There are infinitely many equivalence classes of width 1: $|P_d(n) \setminus P_d^*(n)| = \infty.$
- ▶ But for width > 1:

Lemma (Blanco-Santos, 2016)

For each $n \ge 4$, there are **finitely** many lattice 3-polytopes of width greater than one and size n. That is,

 $|\mathcal{P}_3^*(n)| < \infty, \text{ for each } n \geq 4$

Dimension 3, n = 5, 6

► For sizes n = 5, 6, we previously classified all lattice 3-polytopes of those sizes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Dimension 3, n = 5, 6

► For sizes n = 5, 6, we previously classified all lattice 3-polytopes of those sizes.

Size	4	5	6
width 1	∞	∞	∞
width 2	-	9	74
width 3	-	_	2

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Size	4	5	6
width 1	∞	∞	∞
width 2	-	9	74
width 3	-	—	2

The classification for n = 5, 6 was done via oriented matroids, a.k.a. order types (information on the position of the set of points in the space). For 5 points, there are 5 posible oriented matroids, for 6 points there are 55.

Size	4	5	6
width 1	∞	∞	∞
width 2	-	9	74
width 3	-	_	2

- The classification for n = 5, 6 was done via oriented matroids, a.k.a. order types (information on the position of the set of points in the space). For 5 points, there are 5 posible oriented matroids, for 6 points there are 55.
- But for 7 points there are already 5000...

Size	4	5	6
width 1	∞	∞	∞
width 2	-	9	74
width 3	-	_	2

- The classification for n = 5, 6 was done via oriented matroids, a.k.a. order types (information on the position of the set of points in the space). For 5 points, there are 5 posible oriented matroids, for 6 points there are 55.
- But for 7 points there are already 5000... and for 8 points the number of them is around the 10 millions!!!!!

Size	4	5	6
width 1	∞	∞	∞
width 2	-	9	74
width 3	-	_	2

- The classification for n = 5, 6 was done via oriented matroids, a.k.a. order types (information on the position of the set of points in the space). For 5 points, there are 5 posible oriented matroids, for 6 points there are 55.
- But for 7 points there are already 5000... and for 8 points the number of them is around the 10 millions!!!!! So another approach is required.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

• (-1,1,2)

 $P^{(-1,1,2)}$ is 2-dimensional

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

 $P^{(1,0,0)}$ has width one

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

 $P^{(-1,0,0)}$ has width one

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

 $P^{(0,5,0)}$ has width larger than one

◆□ → ◆□ → ◆注 → ◆注 → □ □

Definition (Essential vertex)

We say that v is an **essential vertex** of P if $P^{v} \notin \mathcal{P}_{d}^{*}(n-1)$. That is, if P^{v} is either (d-1)-dimensional or has width one.

 $\begin{array}{c} P^{(-1,1,2)} \text{ is 2-dimensional} \\ P^{(1,0,0)} \text{ has width one} \\ P^{(-1,0,0)} \text{ has width one} \end{array} \right)$

essential vertices

200

 $P^{(0,5,0)}$ has width larger than one

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 -

Definition

Let $P \in \mathcal{P}_d^*(n)$.

▶ We say that *P* is **quasiminimal** if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex *v* such that $P^v \in \mathcal{P}^*_d(n-1)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Definition

Let $P \in \mathcal{P}_d^*(n)$.

- We say that P is quasiminimal if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex v such that P^v ∈ P^{*}_d(n-1).
- ▶ We say that *P* is **merged** if there are ≥ 2 NON-essential vertices (i.e. $u, v \in vert(P)$ with $P^u, P^v \in \mathcal{P}_d^*(n-1)$) AND the polytope $P^{u,v} := conv(P^u \cap P^u \cap \mathbb{Z}^d)$ is still *d*-dimensional.

Definition

Let $P \in \mathcal{P}_d^*(n)$.

- We say that P is quasiminimal if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex v such that P^v ∈ P^{*}_d(n-1).
- ▶ We say that *P* is **merged** if there are ≥ 2 NON-essential vertices (i.e. $u, v \in vert(P)$ with $P^u, P^v \in \mathcal{P}_d^*(n-1)$) AND the polytope $P^{u,v} := conv(P^u \cap P^u \cap \mathbb{Z}^d)$ is still *d*-dimensional.

(日) (四) (王) (王) (王)

Definition

Let $P \in \mathcal{P}_d^*(n)$.

- We say that P is quasiminimal if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex v such that P^v ∈ P^{*}_d(n-1).
- ▶ We say that *P* is **merged** if there are ≥ 2 NON-essential vertices (i.e. $u, v \in vert(P)$ with $P^u, P^v \in \mathcal{P}_d^*(n-1)$) AND the polytope $P^{u,v} := conv(P^u \cap P^u \cap \mathbb{Z}^d)$ is still *d*-dimensional.

(日) (四) (三) (三) (三) (三)

Definition

Let $P \in \mathcal{P}^*_d(n)$.

- We say that P is quasiminimal if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex v such that P^v ∈ P^{*}_d(n-1).
- ▶ We say that *P* is **merged** if there are ≥ 2 NON-essential vertices (i.e. $u, v \in vert(P)$ with $P^u, P^v \in \mathcal{P}_d^*(n-1)$) AND the polytope $P^{u,v} := conv(P^u \cap P^u \cap \mathbb{Z}^d)$ is still *d*-dimensional.

Definition

Let $P \in \mathcal{P}^*_d(n)$.

- We say that P is quasiminimal if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex v such that P^v ∈ P^{*}_d(n-1).
- ▶ We say that *P* is **merged** if there are ≥ 2 NON-essential vertices (i.e. $u, v \in vert(P)$ with $P^u, P^v \in \mathcal{P}_d^*(n-1)$) AND the polytope $P^{u,v} := conv(P^u \cap P^u \cap \mathbb{Z}^d)$ is still *d*-dimensional.

Definition

Let $P \in \mathcal{P}^*_d(n)$.

- We say that P is quasiminimal if it has ≤ 1 NON-essential vertices. That is, if there is at most one vertex v such that P^v ∈ P^{*}_d(n-1).
- ▶ We say that *P* is **merged** if there are ≥ 2 NON-essential vertices (i.e. $u, v \in vert(P)$ with $P^u, P^v \in \mathcal{P}_d^*(n-1)$) AND the polytope $P^{u,v} := conv(P^u \cap P^u \cap \mathbb{Z}^d)$ is still *d*-dimensional.

We will denote by $Q_d(n)$ and $\mathcal{M}_d(n)$ the sets of quasiminimal and merged *d*-polytopes of size *n*, respectively.

Exceptions

Theorem (Blanco and Santos, 2016)

There is a single lattice 3-dimensional lattice polytope that is neither quasiminimal nor merged, and it is of size n = 6:

 $|\mathcal{P}_3^*(6)\setminus (\mathcal{Q}_3(6)\cup \mathcal{M}_3(6))|=1, \qquad \mathcal{P}_3^*(n)=\mathcal{Q}_3(n)\cup \mathcal{M}_3(n), \text{ for all } n\geq 7.$

▶ That is, this polytope has ≥ 2 NON-essential vertices, AND for all pairs $u, v \in \text{vert}(P)$ of non-essential vertices, $P^u, P^v \in \mathcal{P}_d^*(n-1)$ are such that $P^{u,v} := \text{conv}(P^u \cap P^u \cap \mathbb{Z}^d)$ is (d-1)-dimensional.

Exceptions

Theorem (Blanco and Santos, 2016)

There is a single lattice 3-dimensional lattice polytope that is neither quasiminimal nor merged, and it is of size n = 6:

 $|\mathcal{P}_3^*(6)\setminus (\mathcal{Q}_3(6)\cup \mathcal{M}_3(6))|=1, \qquad \mathcal{P}_3^*(n)=\mathcal{Q}_3(n)\cup \mathcal{M}_3(n), \text{ for all } n\geq 7.$

▶ That is, this polytope has ≥ 2 NON-essential vertices, AND for all pairs $u, v \in \text{vert}(P)$ of non-essential vertices, $P^u, P^v \in \mathcal{P}_d^*(n-1)$ are such that $P^{u,v} := \text{conv}(P^u \cap P^u \cap \mathbb{Z}^d)$ is (d-1)-dimensional.

INPUT: a finite list L of lattice d-polytopes of size n-1 and width > 1.

INPUT: a finite list L of lattice d-polytopes of size n - 1 and width > 1. OUTPUT: the list L' = Merging(L) of all lattice d-polytopes of size n obtained merging polytopes of L.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

INPUT: a finite list L of lattice d-polytopes of size n - 1 and width > 1. OUTPUT: the list L' = Merging(L) of all lattice d-polytopes of size n obtained merging polytopes of L.

For each $P_1, P_2 \in L$, and for each vertex v_1 of P_1 and v_2 of P_2 :

(日) (四) (三) (三) (三) (三)

INPUT: a finite list L of lattice d-polytopes of size n-1 and width > 1. OUTPUT: the list L' = Merging(L) of all lattice d-polytopes of size n obtained merging polytopes of L.

For each $P_1, P_2 \in L$, and for each vertex v_1 of P_1 and v_2 of P_2 :

1. Let $P'_1 = \operatorname{conv}(\mathbb{Z}^d \cap P_1 \setminus \{v_1\})$ and $P'_2 = \operatorname{conv}(\mathbb{Z}^d \cap P_2 \setminus \{v_2\})$.

∃ ⇒

INPUT: a finite list L of lattice d-polytopes of size n-1 and width > 1. OUTPUT: the list L' = Merging(L) of all lattice d-polytopes of size n obtained merging polytopes of L.

For each $P_1, P_2 \in L$, and for each vertex v_1 of P_1 and v_2 of P_2 :

- 1. Let $P'_1 = \operatorname{conv}(\mathbb{Z}^d \cap P_1 \setminus \{v_1\})$ and $P'_2 = \operatorname{conv}(\mathbb{Z}^d \cap P_2 \setminus \{v_2\})$.
- Check if P'₁ and P'₂ are d-dimensional and equivalent. If they are, let t : Z^d → Z^d be an equivalence sending P'₁ to P'₂ (there are finitely many possibilities for t; do step 3 for each).

INPUT: a finite list L of lattice d-polytopes of size n-1 and width > 1. OUTPUT: the list L' = Merging(L) of all lattice d-polytopes of size n obtained merging polytopes of L.

For each $P_1, P_2 \in L$, and for each vertex v_1 of P_1 and v_2 of P_2 :

- 1. Let $P'_1 = \operatorname{conv}(\mathbb{Z}^d \cap P_1 \setminus \{v_1\})$ and $P'_2 = \operatorname{conv}(\mathbb{Z}^d \cap P_2 \setminus \{v_2\})$.
- Check if P'₁ and P'₂ are d-dimensional and equivalent. If they are, let t : Z^d → Z^d be an equivalence sending P'₁ to P'₂ (there are finitely many possibilities for t; do step 3 for each).
- 3. If the size of $P := \operatorname{conv}(t(P_1) \cup P_2)$ equals *n*, add *P* to *L'*.

イロト イヨト イヨト

INPUT: a finite list L of lattice d-polytopes of size n-1 and width > 1. OUTPUT: the list L' = Merging(L) of all lattice d-polytopes of size n obtained merging polytopes of L.

For each $P_1, P_2 \in L$, and for each vertex v_1 of P_1 and v_2 of P_2 :

- 1. Let $P'_1 = \operatorname{conv}(\mathbb{Z}^d \cap P_1 \setminus \{v_1\})$ and $P'_2 = \operatorname{conv}(\mathbb{Z}^d \cap P_2 \setminus \{v_2\})$.
- Check if P'₁ and P'₂ are d-dimensional and equivalent. If they are, let t : Z^d → Z^d be an equivalence sending P'₁ to P'₂ (there are finitely many possibilities for t; do step 3 for each).
- 3. If the size of $P := \operatorname{conv}(t(P_1) \cup P_2)$ equals *n*, add *P* to *L'*.

Dimension 3: By definition, and since $\mathcal{P}_{3}^{*}(n-1)$ is a finite list: $\mathcal{M}_{3}(n) = \operatorname{Merging}(\mathcal{P}_{3}^{*}(n-1))$, for all n.

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v .

・ロト ・回ト ・ヨト ・ヨト

200

E

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v . We distinguish two cases:

Definition (Boxed vs. spiked)

If the set {f_v : v is essential vertex of P} linearly spans (ℝ^d)*, then we can find d linearly independent f_v. We call these polytopes **boxed**, because all except d of its lattice points lie in a d-parallelepiped of facet-width one.

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v . We distinguish two cases:

ヘロア 人間 アメヨア 人間 アー

Э

DQA

Definition (Boxed vs. spiked)

- If the set {f_v : v is essential vertex of P} linearly spans (ℝ^d)*, then we can find d linearly independent f_v. We call these polytopes **boxed**, because all except d of its lattice points lie in a d-parallelepiped of facet-width one.
- If the set {f_v : v is essential vertex of P} does not linearly span (ℝ^d)*, then there is a projection that respects all f_v. We call these polytopes **spiked**, because most of their lattice points lie in a lattice segment.

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v . We distinguish two cases:

Definition (Boxed vs. spiked)

- ► If the set {f_v : v is essential vertex of P} linearly spans (ℝ^d)*, then we can find d linearly independent f_v. We call these polytopes **boxed**, because all except d of its lattice points lie in a d-parallelepiped of facet-width one.
- If the set {f_v : v is essential vertex of P} does not linearly span (ℝ^d)*, then there is a projection that respects all f_v. We call these polytopes **spiked**, because most of their lattice points lie in a lattice segment.

Э

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v . We distinguish two cases:

Definition (Boxed vs. spiked)

- ► If the set {f_v : v is essential vertex of P} linearly spans (ℝ^d)*, then we can find d linearly independent f_v. We call these polytopes **boxed**, because all except d of its lattice points lie in a d-parallelepiped of facet-width one.
- If the set {f_v : v is essential vertex of P} does not linearly span (ℝ^d)*, then there is a projection that respects all f_v. We call these polytopes **spiked**, because most of their lattice points lie in a lattice segment.

Э
Quasiminimal polytopes

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v . We distinguish two cases:

Definition (Boxed vs. spiked)

- ► If the set {f_v : v is essential vertex of P} linearly spans (ℝ^d)*, then we can find d linearly independent f_v. We call these polytopes **boxed**, because all except d of its lattice points lie in a d-parallelepiped of facet-width one.
- If the set {f_v : v is essential vertex of P} does not linearly span (ℝ^d)*, then there is a projection that respects all f_v. We call these polytopes **spiked**, because most of their lattice points lie in a lattice segment.

Quasiminimal polytopes

Let $P \in \mathcal{Q}_d(n)$ and, for each essential vertex $v \in \text{vert}(P)$, let $f_v : \mathbb{R}^d \to \mathbb{R}$ be an integer linear functional that gives width one (or zero) to P^v . We distinguish two cases:

Definition (Boxed vs. spiked)

- ► If the set {f_v : v is essential vertex of P} linearly spans (ℝ^d)*, then we can find d linearly independent f_v. We call these polytopes **boxed**, because all except d of its lattice points lie in a d-parallelepiped of facet-width one.
- If the set {f_v : v is essential vertex of P} does not linearly span (ℝ^d)*, then there is a projection that respects all f_v. We call these polytopes **spiked**, because most of their lattice points lie in a lattice segment.

It is easy to see that <u>boxed *d*-polytopes have size at most $2^d + d$ </u>: apart from *d* vertices, the only possible lattice points are the 2^d vertices of *the d*-parallelepiped.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

It is easy to see that boxed *d*-polytopes have size at most $2^d + d$: apart from *d* vertices, the only possible lattice points are the 2^d vertices of *the d*-parallelepiped.

In dimension three this implies (by our Lemma that almost all lattice 3-polytopes of fixed size have width one) that there are finitely many. We have enumerated those of dimension 3 with computer help. Let the list of them, for each size $n \in \{7, ..., 11\}$, be denoted $Boxed_3(n)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Spiked polytopes

Spiked *d*-polytopes can, however, have arbitrarily large size. Still, it turns out that the projection of spiked *d*-polytopes in the direction of *the* lattice segment has very specific properties:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Spiked polytopes

Spiked *d*-polytopes can, however, have arbitrarily large size. Still, it turns out that the projection of spiked *d*-polytopes in the direction of *the* lattice segment has very specific properties:

Theorem (Blanco and Santos, 2016)

Every spiked 3-polytope of size $n \ge 7$ projects to one of the following 2-polytopes in such a way that all the vertices in the projection have a unique element in the preimage.

This allows us to explicitly list spiked 3-polytopes for each given size $n \ge 7$. We denote this list by Spiked₃(n).

Putting these things together, we present the full classification of quasiminimal 3-polytopes:

Theorem (Blanco and Santos, 2016)

For $7 \le n \le 11$, $Q_3(n) = Boxed_3(n) \cup Spiked_3(n)$, and it has 50, 42, 44, 46 and 49 elements, respectively. For n > 11, $Q_3(n) = Spiked_3(n)$ and it has 4n + 7 elements if $n \equiv 0 \pmod{3}$, and 4n + 5 otherwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Summary & computational results

- $\mathcal{P}_{3}^{*}(5)$ and $\mathcal{P}_{3}^{*}(6)$ (explicitly classified previously by us).
- $Q_3(n)$, for $n \ge 7$, can be computed explicitly.
- $\mathcal{M}_3(n) = \text{Merging}(\mathcal{P}_3^*(n-1))$, for $n \geq 7$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary & computational results

- $\mathcal{P}_3^*(5)$ and $\mathcal{P}_3^*(6)$ (explicitly classified previously by us).
- $Q_3(n)$, for $n \ge 7$, can be computed explicitly.
- $\mathcal{M}_3(n) = \operatorname{Merging}(\mathcal{P}_3^*(n-1))$, for $n \geq 7$.

Assume $\mathcal{P}_3^*(n-1)$ previously computed. Then:

 $\mathcal{P}_3^*(n) = \operatorname{Merging}(\mathcal{P}_3^*(n-1)) \ \cup \ \mathcal{Q}_3(n).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Summary & computational results

- ▶ $\mathcal{P}_3^*(5)$ and $\mathcal{P}_3^*(6)$ (explicitly classified previously by us).
- $Q_3(n)$, for $n \ge 7$, can be computed explicitly.
- $\mathcal{M}_3(n) = \operatorname{Merging}(\mathcal{P}_3^*(n-1))$, for $n \geq 7$.

Assume $\mathcal{P}_3^*(n-1)$ previously computed. Then:

 $\mathcal{P}_3^*(n) = \operatorname{Merging}(\mathcal{P}_3^*(n-1)) \ \cup \ \mathcal{Q}_3(n).$

Size	4	5	6	7	8	9	10	11
width 2	0	9	74	477	2524	10862	40885	137803
width 3	0	0	2	19	151	836	4148	18635
width 4	0	0	0	0	0	0	2	26
quasiminimal	0	9	35	50	42	44	46	49
merged	0	0	40	446	2633	11654	44989	156415
exceptions	0	0	1	0	0	0	0	0
total	0	9	76	496	2675	11698	45035	156464

5900

What about dimension 4 and higher?

What about dimension 4 and higher?

Theorem (Haase-Ziegler 2000)

Let $\Delta(v)$ for $v \in \mathbb{Z}^4$ denote the simplex with vertices e_1, e_2, e_3, e_4 and v:

 ∆(2,2,3,D-6) has determinant D for all D, width two for all D ≥ 8, and is empty for infinitely many values of D.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

What about dimension 4 and higher?

Theorem (Haase-Ziegler 2000)

Let $\Delta(v)$ for $v \in \mathbb{Z}^4$ denote the simplex with vertices e_1, e_2, e_3, e_4 and v:

► Δ(2,2,3, D - 6) has determinant D for all D, width two for all D ≥ 8, and is empty for infinitely many values of D.

• $\Delta(6, 14, 17, 65)$ is empty and has width four.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What about dimension 4 and higher?

Theorem (Haase-Ziegler 2000)

Let $\Delta(v)$ for $v \in \mathbb{Z}^4$ denote the simplex with vertices e_1, e_2, e_3, e_4 and v:

► Δ(2,2,3, D - 6) has determinant D for all D, width two for all D ≥ 8, and is empty for infinitely many values of D.

• $\Delta(6, 14, 17, 65)$ is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What about dimension 4 and higher?

Theorem (Haase-Ziegler 2000)

Let $\Delta(v)$ for $v \in \mathbb{Z}^4$ denote the simplex with vertices e_1, e_2, e_3, e_4 and v:

- ► Δ(2,2,3, D 6) has determinant D for all D, width two for all D ≥ 8, and is empty for infinitely many values of D.
- $\Delta(6, 14, 17, 65)$ is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

Theorem

 (Mori-Morrison-Morrison 1988, Sankaran 1990, Bover 2009) There are only finitely many empty 4-simplices not falling into an explicitly described set of empty 4-simplices (consisting of 29 one-parameter families and two two-parameter families).

What about dimension 4 and higher?

Theorem (Haase-Ziegler 2000)

Let $\Delta(v)$ for $v \in \mathbb{Z}^4$ denote the simplex with vertices e_1, e_2, e_3, e_4 and v:

- ► Δ(2,2,3, D 6) has determinant D for all D, width two for all D ≥ 8, and is empty for infinitely many values of D.
- $\Delta(6, 14, 17, 65)$ is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

Theorem

- (Mori-Morrison-Morrison 1988, Sankaran 1990, Bover 2009) There are only finitely many empty 4-simplices not falling into an explicitly described set of empty 4-simplices (consisting of 29 one-parameter families and two two-parameter families).
- (Barile-Bernardi-Borisov-Kantor, 2011) In particular, there are only finitely many empty 4-simplices of width larger than two.

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

Proof.

► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope.

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

Proof.

► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope. (Hollow = "no interior lattice points").

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

- ► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope. (Hollow = "no interior lattice points").
- (Kannan-Lovász, 1988) Hollow convex bodies have width in $O(d^{5/2})$.

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

- ► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope. (Hollow = "no interior lattice points").
- (Kannan-Lovász, 1988) Hollow convex bodies have width in O(d^{5/2}). (Better bound O(d^{3/2}) for lattice polytopes, Banaszczyk et al. 1999).

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

- ► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope. (Hollow = "no interior lattice points").
- (Kannan-Lovász, 1988) Hollow convex bodies have width in O(d^{5/2}). (Better bound O(d^{3/2}) for lattice polytopes, Banaszczyk et al. 1999).
- (Hensley, 1983) For each positive k ∈ Z_{≤0} there is a bound V(k) ∈ N for the volume of lattice d-polytopes with exactly k interior points.

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

- ► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope. (Hollow = "no interior lattice points").
- (Kannan-Lovász, 1988) Hollow convex bodies have width in O(d^{5/2}). (Better bound O(d^{3/2}) for lattice polytopes, Banaszczyk et al. 1999).
- (Hensley, 1983) For each positive k ∈ Z_{≤0} there is a bound V(k) ∈ N for the volume of lattice d-polytopes with exactly k interior points.
- (Lagarias-Ziegler, 1991) A family of lattice *d*-polytopes with bounded volume contains only a finite number of integral equivalence classes.

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold $w^{\infty}(d) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes of size n have width $\leq w^{\infty}(d)$.

E.g.: $w^{\infty}(2) = 0$ (folklore + Pick's Theorem) and $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

Proof.

- ► (Nill-Ziegler, 2011) There is only a finite number of hollow lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d - 1)-polytope. (Hollow = "no interior lattice points").
- (Kannan-Lovász, 1988) Hollow convex bodies have width in O(d^{5/2}). (Better bound O(d^{3/2}) for lattice polytopes, Banaszczyk et al. 1999).
- (Hensley, 1983) For each positive k ∈ Z_{≤0} there is a bound V(k) ∈ N for the volume of lattice d-polytopes with exactly k interior points.
- (Lagarias-Ziegler, 1991) A family of lattice *d*-polytopes with bounded volume contains only a finite number of integral equivalence classes.

DQC

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_{H}(d-1) \leq O(d^{3/2}).$$

(日) (同) (E) (E) (E)

DQC

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_{\mathcal{H}}(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 -

200

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_{\mathcal{H}}(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

E.g.: $w^{\infty}(3) \ge 1$ because the unit square has infinitely many lifts of size 4 (Reeve tetrahedra).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_{\mathcal{H}}(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

E.g.: $w^{\infty}(3) \ge 1$ because the unit square has infinitely many lifts of size 4 (Reeve tetrahedra).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_{\mathcal{H}}(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_H(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_H(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_H(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

E.g.: $w^{\infty}(3) \ge 1$ because the unit square has infinitely many lifts of size 4 (Reeve tetrahedra).

200

Let $w_H(d)$:= maximum width of a *hollow* lattice *d*-polytope (which is finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

$$w^{\infty}(d) \leq w_H(d-1) \leq O(d^{3/2}).$$

For lower bounds, there is the following observation: if there is a lattice (d-1)-polytope Q that can be *lifted* to infinitely many lattice d-polytopes of the same size n, then $w^{\infty}(d) \ge \operatorname{width}(Q)$.

In fact this is an if and only if:

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

 $w^{\infty}(d)$ is the maximum width of a lattice (d-1)-polytope Q that has infinitely many lifts of the same size. Moreover, any such Q must be hollow.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○
In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

 $w^{\infty}(d)$ is the maximum width of a lattice (d-1)-polytope Q that has infinitely many lifts of the same size. Moreover, any such Q must be hollow.

We also show that every hollow (d-2)-polytope can be lifted to a hollow (d-1)-polytope Q that has infinitely many lifts of constant size to dimension d, which implies:

Corollary

 $w^{\infty}(d) \in [w_E(d-2), w_E(d-1)].$

イロン 不聞 とくほど 不良とう ほ

nan

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

 $w^{\infty}(d)$ is the maximum width of a lattice (d-1)-polytope Q that has infinitely many lifts of the same size. Moreover, any such Q must be hollow.

We also show that every hollow (d-2)-polytope can be lifted to a hollow (d-1)-polytope Q that has infinitely many lifts of constant size to dimension d, which implies:

Corollary

 $w^{\infty}(d) \in [w_E(d-2), w_E(d-1)].$ To compute $w^{\infty}(d)$ one can:

・ロン ・雪 と ・ 田 と ・ 田 ・

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

 $w^{\infty}(d)$ is the maximum width of a lattice (d-1)-polytope Q that has infinitely many lifts of the same size. Moreover, any such Q must be hollow.

We also show that every hollow (d-2)-polytope can be lifted to a hollow (d-1)-polytope Q that has infinitely many lifts of constant size to dimension d, which implies:

Corollary

 $w^{\infty}(d) \in [w_E(d-2), w_E(d-1)]$. To compute $w^{\infty}(d)$ one can:

1. Compute the (finitely many, by Nill-Ziegler) hollow (d-1)-polytopes that **do not project** to a hollow (d-2)-polytope.

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

 $w^{\infty}(d)$ is the maximum width of a lattice (d-1)-polytope Q that has infinitely many lifts of the same size. Moreover, any such Q must be hollow.

We also show that every hollow (d-2)-polytope can be lifted to a hollow (d-1)-polytope Q that has infinitely many lifts of constant size to dimension d, which implies:

Corollary

 $w^{\infty}(d) \in [w_E(d-2), w_E(d-1)]$. To compute $w^{\infty}(d)$ one can:

- 1. Compute the (finitely many, by Nill-Ziegler) hollow (d-1)-polytopes that **do not project** to a hollow (d-2)-polytope.
- 2. For each of them check whether it has infinitely many lifts of some fixed size. $w^{\infty}(d)$ equals the maximal width of one that does.

・ロト ・ 四 ト ・ 三 ト ・ 三 ・ つへで

d = 3: There is a unique hollow 2-polytope of width larger than one, the second dilation 2Δ of a unimodular triangle. By the corollary, $w^{\infty}(3)$ equals $2 = w_E(2)$ or $1 = w_E(1)$ depending solely on whether 2Δ has infinitely many lifts of some constant size.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

d = 3: There is a unique hollow 2-polytope of width larger than one, the second dilation 2Δ of a unimodular triangle. By the corollary, $w^{\infty}(3)$ equals $2 = w_E(2)$ or $1 = w_E(1)$ depending solely on whether 2Δ has infinitely many lifts of some constant size. It is easy to check that it does not, so $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).

- d = 3: There is a unique hollow 2-polytope of width larger than one, the second dilation 2Δ of a unimodular triangle. By the corollary, $w^{\infty}(3)$ equals $2 = w_E(2)$ or $1 = w_E(1)$ depending solely on whether 2Δ has infinitely many lifts of some constant size. It is easy to check that it does not, so $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).
- d = 4: The list of hollow 3-polytopes that do not project to a hollow 2 polytope has been computed in (Averkov-Krümpelmann-Weltge, 2015). There are five of width three, and the rest have width two.

- d = 3: There is a unique hollow 2-polytope of width larger than one, the second dilation 2Δ of a unimodular triangle. By the corollary, $w^{\infty}(3)$ equals $2 = w_E(2)$ or $1 = w_E(1)$ depending solely on whether 2Δ has infinitely many lifts of some constant size. It is easy to check that it does not, so $w^{\infty}(3) = 1$ (Blanco-Santos, 2016).
- d = 4: The list of hollow 3-polytopes that do not project to a hollow 2 polytope has been computed in (Averkov-Krümpelmann-Weltge, 2015). There are five of width three, and the rest have width two. Thus, $w^{\infty}(4)$ equals $3 = w_E(3)$ or $2 = w_E(2)$ depending solely on whether some of those five has infinitely many lifts of some constant size. We (Blanco-Haase-Hofmann-Santos, 16+) show that they do not, so:

	d	$w_H(d-2)$	$w^{\infty}(d)$	$w_H(d-1)$
-	1	—	0	_
	2	—	0	1
	3	1	1	2
	4	2	2	3
	5	3	\geq 4	\geq 4

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

d	$w_H(d-2)$	$w^{\infty}(d)$	$w_H(d-1)$
1	_	0	_
2	_	0	1
3	1	1	2
4	2	2	3
5	3	≥ 4	\geq 4

Final remarks

d	$w_H(d-2)$	$w^{\infty}(d)$	$w_H(d-1)$
1	—	0	_
2	—	0	1
3	1	1	2
4	2	2	3
5	3	\geq 4	\geq 4

Final remarks

1. We know $w^{\infty}(5) \ge 4 > w_H(3)$ because we prove that $w^{\infty}(d)$ is at least the maximum width of an *empty*(d-1)-polytope (empty = all lattice points are vertices) and there are empty 4-simplices of width 4.

d	$w_H(d-2)$	$w^{\infty}(d)$	$w_H(d-1)$	
1	—	0	_	
2	—	0	1	
3	1	1	2	
4	2	2	3	
5	3	\geq 4	\geq 4	

Final remarks

- 1. We know $w^{\infty}(5) \ge 4 > w_H(3)$ because we prove that $w^{\infty}(d)$ is at least the maximum width of an empty(d-1)-polytope (empty = all lattice points are vertices) and there are empty 4-simplices of width 4.
- 2. As a by-product we have an independent proof of:

Corollary (Barile-Bernardi-Borisov-Kantor, 2011)

There are only finitely many empty 4-simplices of width larger than two.

Thank you for your attention

http://personales.unican.es/santosf http://personales.unican.es/blancogm/latticepoints.html