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Definition

I Lattice polytope P :=

convex hull of a finite set of points in Zd

(or in a d-dimensional lattice).

I Size of P :=

number of lattice points in P: |P ∩ Zd |

I Volume of P :=

volume “normalized to the lattice”=

d!× Euclidean volume.

The volume of a lattice polytope is always
an integer.

d + 1 points form a simplex of volume 1
(called UNIMODULAR) if and only if they
affinely span the lattice
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Unimodular equivalence

A unimodular transformation is a linear integer map t : Rd → Rd that
preserves the lattice. That is,

t(x) = A · x + b, x ∈ Rd

for A ∈ Zd×d , det(A) = ±1 and b ∈ Zd .
Two lattice polytopes P and Q are said unimodularly equivalent (or
simply equivalent) if there is an affine unimodular transformation t such
that t(P) = Q.

Remark

Size, volume, combinatorial type, ... are invariant modulo unimodular
equivalence.
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Examples of unimodular transformations

I −→x 7→ −→x +
−→
b

I −→x 7→ −−→x

I (x , y) 7→ (−x , y)

I (x , y) 7→
(x + (−1)y , y)

I (x , y) 7→
(x + 3y , y)
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Goal

WE WANT TO CLASSIFY (classes of) LATTICE d-POLYTOPES

For this, we separate by size: let n ≥ d + 1

Pd(n) := {(classes of) lattice d-polytopes of size n}

I Dimension 1: for each n ≥ 2, there is
one lattice 1-polytope of size n, a
segment of length n − 1: |P1(n)| = 1

I Dimension 2: for each n, the cardinal
of P2(n) is finite |P2(n)| <∞
All polygons of sizes 3, 4 and 5:
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Dimension 3, n = 4 (empty tetrahedra)

In dimension 3, Reeve tetrahedra are
infinitely many lattice 3-polytopes with
4 lattice points |P3(4)| =∞

Elements in P3(4) are called empty
tetrahedra: tetrahedra in which the
only lattice points are the four
vertices. Their classification is classical
(White 1964):

(1, 0, 0)(0, 0, 0)

(0, 1, 0)

(1, 1, 1)

P3(4) = {T (p, q) | p, q ∈ Z, 0 < p ≤ q, gcd(p, q) = 1} ,
where T (p, q) := conv {(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}.

Remark

All empty tetrahedra have width 1.
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(Lattice) Width

Definition
I Width of P with respect to

a linear functional f : Rd → R
= length of the interval f (P)

f

I Width of P:= Minimum width of P with respect to a linear
NON-CONSTANT, INTEGER functional = minimum lattice
distance between two parallel lattice hyperplanes enclosing P

Width: 2 Width: 1 Width: 2
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Width > 1 =⇒ finite number of classes (for d = 3)

P∗
d(n) := {P ∈ Pd(n) | width(P) > 1}

For each n ≥ 4:

I There are infinitely many
equivalence classes of
width 1:

|Pd(n) \ P∗d (n)| =∞.

I But for width > 1:

Lemma (Blanco-Santos, 2016)

For each n ≥ 4, there are finitely many lattice 3-polytopes of width

greater than one and size n. That is,

|P∗
3 (n)| <∞, for each n ≥ 4

WE CAN (a priori) ENUMERATE the complete list P∗3 (n) of lattice
3-polytopes of size n AND WIDTH > 1, for each n
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Dimension 3, n = 5, 6

I For sizes n = 5, 6, we previously classified all lattice 3-polytopes of
those sizes.

Size 4 5 6
width 1 ∞ ∞ ∞
width 2 − 9 74
width 3 − − 2

I The classification for n = 5, 6 was done via oriented matroids, a.k.a.
order types (information on the position of the set of points in the
space). For 5 points, there are 5 posible oriented matroids, for 6
points there are 55.

I But for 7 points there are already 5000... and for 8 points the
number of them is around the 10 millions!!!!! So another approach
is required.
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Essential vertices

From now on, let P ∈ P∗d (n). For each vertex v ∈ vert(P), we denote by
Pv the polytope conv(P \ {v} ∩ Zd) ⊂ Rd . This polytope has size n − 1
but it is not necessarily full-dimensional.

Definition (Essential vertex)

We say that v is an essential vertex of P if Pv 6∈ P∗d (n − 1). That is, if
Pv is either (d − 1)-dimensional or has width one.

(−1, 0, 0)

(1, 5, 0)

(1, 0, 0)

(−1, 1, 2)

P P (−1,1,2) is 2-dimensional

P (1,0,0) has width one

P (0,5,0) has width larger than one

P (−1,0,0) has width one

essential
vertices
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Quasiminimal vs. Merged

Definition

Let P ∈ P∗d (n).

I We say that P is quasiminimal if it has ≤ 1 NON-essential vertices.
That is, if there is at most one vertex v such that Pv ∈ P∗d (n − 1).

I We say that P is merged if there are ≥ 2 NON-essential vertices
(i.e. u, v ∈ vert(P) with Pu,Pv ∈ P∗d (n − 1)) AND the polytope
Pu,v := conv(Pu ∩ Pu ∩ Zd) is still d-dimensional.

u
v

P

u
v

P

u
v

P

u
v

P

We will denote by Qd(n) and Md(n) the sets of quasiminimal and
merged d-polytopes of size n, respectively.
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Exceptions

Theorem (Blanco and Santos, 2016)

There is a single lattice 3-dimensional lattice polytope that is neither
quasiminimal nor merged, and it is of size n = 6:

|P∗3 (6) \ (Q3(6) ∪M3(6))| = 1, P∗3 (n) = Q3(n) ∪M3(n), for all n ≥ 7.

I That is, this polytope has ≥ 2 NON-essential vertices, AND for all
pairs u, v ∈ vert(P) of non-essential vertices, Pu,Pv ∈ P∗d (n − 1)
are such that Pu,v := conv(Pu ∩ Pu ∩ Zd) is (d − 1)-dimensional.

u v

P u,v

u

v

P u,v
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Merging algorithm

INPUT: a finite list L of lattice d-polytopes of size n − 1 and width > 1.

OUTPUT: the list L′ = Merging(L) of all lattice d-polytopes of size n
obtained merging polytopes of L.
For each P1,P2 ∈ L, and for each vertex v1 of P1 and v2 of P2:

1. Let P ′1 = conv(Zd ∩ P1 \ {v1}) and P ′2 = conv(Zd ∩ P2 \ {v2}).

2. Check if P ′1 and P ′2 are d-dimensional and equivalent. If they are,
let t : Zd → Zd be an equivalence sending P ′1 to P ′2 (there are
finitely many possibilities for t; do step 3 for each).

3. If the size of P := conv(t(P1) ∪ P2) equals n, add P to L′.

P2

P1

P ′
2

P ′
1

v2

v1

t(v1)

t(P ′
1) = P ′

2

v2

P

Dimension 3: By definition, and since P∗3 (n − 1) is a finite list:
M3(n) = Merging(P∗3 (n − 1)), for all n.
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Quasiminimal polytopes

Let P ∈ Qd(n) and, for each essential vertex
v ∈ vert(P), let fv : Rd → R be an inte-
ger linear functional that gives width one (or
zero) to Pv . fv

v

P v

We distinguish two cases:

Definition (Boxed vs. spiked)

I If the set {fv : v is essential vertex of P}
linearly spans (Rd)∗, then we can find d
linearly independent fv . We call these
polytopes boxed, because all except d of
its lattice points lie in a d-parallelepiped
of facet-width one.

I If the set {fv : v is essential vertex of P}
does not linearly span (Rd)∗, then there is
a projection that respects all fv . We call
these polytopes spiked, because most of
their lattice points lie in a lattice segment.

fv

v

Pu,v

u

fu

v

fu
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Boxed polytopes

It is easy to see that boxed d-polytopes have size at most 2d + d : apart

from d vertices, the only possible lattice points are the 2d vertices of the
d-parallelepiped.

In dimension three this implies (by our Lemma that almost all lattice
3-polytopes of fixed size have width one) that there are finitely many.
We have enumerated those of dimension 3 with computer help. Let the
list of them, for each size n ∈ {7, . . . , 11}, be denoted Boxed3(n).
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Spiked polytopes

Spiked d-polytopes can, however, have arbitrarily large size. Still, it turns
out that the projection of spiked d-polytopes in the direction of the
lattice segment has very specific properties:

Theorem (Blanco and Santos, 2016)

Every spiked 3-polytope of size n ≥ 7 projects to one of the following
2-polytopes in such a way that all the vertices in the projection have a
unique element in the preimage.

This allows us to explicitly list spiked 3-polytopes for each given size
n ≥ 7. We denote this list by Spiked3(n).
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Quasiminimal polytopes

Putting these things together, we present the full classification of
quasiminimal 3-polytopes:

Theorem (Blanco and Santos, 2016)

For 7 ≤ n ≤ 11, Q3(n) = Boxed3(n) ∪ Spiked3(n), and it has 50, 42, 44,
46 and 49 elements, respectively.
For n > 11, Q3(n) = Spiked3(n) and it has 4n + 7 elements if n ≡ 0
(mod 3), and 4n + 5 otherwise.
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Summary & computational results

I P∗3 (5) and P∗3 (6) (explicitly classified previously by us).

I Q3(n), for n ≥ 7, can be computed explicitly.

I M3(n) = Merging(P∗3 (n − 1)), for n ≥ 7.

Assume P∗3 (n − 1) previously computed. Then:

P∗3 (n) = Merging(P∗3 (n − 1)) ∪ Q3(n).

Size 4 5 6 7 8 9 10 11
width 2 0 9 74 477 2524 10862 40885 137803
width 3 0 0 2 19 151 836 4148 18635
width 4 0 0 0 0 0 0 2 26

quasiminimal 0 9 35 50 42 44 46 49
merged 0 0 40 446 2633 11654 44989 156415

exceptions 0 0 1 0 0 0 0 0
total 0 9 76 496 2675 11698 45035 156464
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Infinitely many polytopes of width larger than one

What about dimension 4 and higher?

Theorem (Haase-Ziegler 2000)

Let ∆(v) for v ∈ Z4 denote the simplex with vertices e1, e2, e3, e4 and v:

I ∆(2, 2, 3,D − 6) has determinant D for all D, width two for all
D ≥ 8, and is empty for infinitely many values of D.

I ∆(6, 14, 17, 65) is empty and has width four.

The classification of empty 4-simplices is unknown. What we know is:

Theorem
I (Mori-Morrison-Morrison 1988, Sankaran 1990, Bover 2009) There

are only finitely many empty 4-simplices not falling into an explicitly
described set of empty 4-simplices (consisting of 29 one-parameter
families and two two-parameter families).

I (Barile-Bernardi-Borisov-Kantor, 2011) In particular, there are only
finitely many empty 4-simplices of width larger than two.
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Threshold width

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

For each dimension d there is a threshold w∞(d) ∈ N such that for every
n ∈ N all but finitely many d-polytopes of size n have width ≤ w∞(d).

E.g.: w∞(2) = 0 (folklore + Pick’s Theorem) and w∞(3) = 1 (Blanco-Santos,

2016).

Proof.

I (Nill-Ziegler, 2011) There is only a finite number of hollow lattice
d-polytopes that do not admit a lattice projection onto a hollow lattice
(d − 1)-polytope. (Hollow =“no interior lattice points”).

I (Kannan-Lovász, 1988) Hollow convex bodies have width in O(d5/2).
(Better bound O(d3/2) for lattice polytopes, Banaszczyk et al. 1999).

I (Hensley, 1983) For each positive k ∈ Z≤0 there is a bound V (k) ∈ N for
the volume of lattice d-polytopes with exactly k interior points.

I (Lagarias-Ziegler, 1991) A family of lattice d-polytopes with bounded
volume contains only a finite number of integral equivalence classes.
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2016).
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Threshold width via lifts of (d − 1)-polytopes

Let wH(d):= maximum width of a hollow lattice d-polytope (which is
finite by Kannan-Lovász). As a by-product of the previous proof we have:

Corollary

w∞(d) ≤ wH(d − 1) ≤ O(d3/2).

For lower bounds, there is the following ob-
servation: if there is a lattice (d−1)-polytope
Q that can be lifted to infinitely many lat-
tice d-polytopes of the same size n, then
w∞(d) ≥ width(Q).

E.g.: w∞(3) ≥ 1 because the unit square has
infinitely many lifts of size 4 (Reeve tetrahe-
dra).
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Threshold width via lifts of (d − 1)-polytopes

In fact this is an if and only if:

Theorem (Blanco-Haase-Hofmann-Santos, 16+)

w∞(d) is the maximum width of a lattice (d − 1)-polytope Q that has
infinitely many lifts of the same size. Moreover, any such Q must be
hollow.

We also show that every hollow (d − 2)-polytope can be lifted to a
hollow (d − 1)-polytope Q that has infinitely many lifts of constant size
to dimension d , which implies:

Corollary

w∞(d) ∈ [wE (d − 2),wE (d − 1)]. To compute w∞(d) one can:

1. Compute the (finitely many, by Nill-Ziegler) hollow
(d − 1)-polytopes that do not project to a hollow (d − 2)-polytope.

2. For each of them check whether it has infinitely many lifts of some
fixed size. w∞(d) equals the maximal width of one that does.
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Threshold width in dimensions three and four

d = 3: There is a unique hollow 2-polytope of width larger than one, the
second dilation 2∆ of a unimodular triangle. By the corollary,
w∞(3) equals 2 = wE (2) or 1 = wE (1) depending solely on whether
2∆ has infinitely many lifts of some constant size.

It is easy to
check that it does not, so w∞(3) = 1 (Blanco-Santos, 2016).

d = 4: The list of hollow 3-polytopes that do not project to a hollow 2
polytope has been computed in (Averkov-Krümpelmann-Weltge,
2015). There are five of width three, and the rest have width two.
Thus, w∞(4) equals 3 = wE (3) or 2 = wE (2) depending solely on
whether some of those five has infinitely many lifts of some
constant size. We (Blanco-Haase-Hofmann-Santos, 16+) show that
they do not, so:

Theorem (BHSS)

w∞(4) = 2.
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Summary of known values

d wH(d − 2) w∞(d) wH(d − 1)
1 − 0 −
2 − 0 1
3 1 1 2
4 2 2 3
5 3 ≥ 4 ≥ 4

Final remarks

1. We know w∞(5) ≥ 4 > wH(3) because we prove that w∞(d) is at
least the maximum width of an empty(d − 1)-polytope (empty = all

lattice points are vertices) and there are empty 4-simplices of width 4.

2. As a by-product we have an independent proof of:

Corollary (Barile-Bernardi-Borisov-Kantor, 2011)

There are only finitely many empty 4-simplices of width larger than two.
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Thank you for your attention

http://personales.unican.es/santosf

http://personales.unican.es/blancogm/latticepoints.html
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