Analytic combinatorics of connected graphs

Élie de Panafieu
Lander Ramos
Gwendal Collet, Danièle Gardy, Bernhard Gittenberger, Vlady Ravelomanana

Bell Labs France, Nokia

seminar of the Combi team, Lix 2016
Introduction

\[n = \# \text{ vertices}, \ m = \# \text{ edges} \]

Goal: counting \((n, m)\)-connected graphs when \(m = \Theta(n)\)

Tool: analytic combinatorics (Flajolet Sedgewick 2009).

Future extensions:
- investigate the “giant component” of random graphs with \(m/n > 1/2\)
 (Ederős Rényi 1959, Janson Knuth Łuczak Pittel 1993)
- extend the result to other graph-like models
 (degree constraints, inhomogeneous, hypergraphs).
<table>
<thead>
<tr>
<th>Condition</th>
<th>Structure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = n - 1$</td>
<td>trees</td>
<td>Borchardt 1860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cayley formula</td>
</tr>
<tr>
<td>$m = n$</td>
<td>unicycles</td>
<td>Rényi 1959</td>
</tr>
<tr>
<td>$m - n = O(1)$</td>
<td>fixed excess</td>
<td>Wright 1977, 1978, 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flajolet Schaeffer Salvy 2004</td>
</tr>
<tr>
<td>$m - n \to \infty$</td>
<td>large excess</td>
<td>Bender Canfield McKay 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pittel Wormald 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hofstad Spencer 2006</td>
</tr>
<tr>
<td>$m = o(n)$</td>
<td></td>
<td>Łuczak 1990</td>
</tr>
<tr>
<td>$\frac{2m}{n} - \log(n) \to \infty$</td>
<td>almost all graphs</td>
<td>Erdős Rényi 1959</td>
</tr>
</tbody>
</table>
Structure of the proof

Multigraphs with degree constraints (all vertices have their degree in D)

remove loops and double edges

Graphs with degree constraints (E.d.P Ramos 2006)

counting graphs without trees
(same principle as in Pittel Wormald 2005)

Connected graphs
Multigraphs with degree constraints

Multigraphs: labelled vertices, labelled oriented edges

Degree constraints: all vertices have their degree in a given set D

$$\delta_d = \begin{cases} 1 & \text{if } d \in D \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta(x) = \sum_{d \geq 0} \delta_d \frac{x^d}{d!}.$$

Generating function:

$$MG(z, w) = \sum_{\text{multigraph } G} \prod_{d \geq 0} \delta_d^{\deg_d(G)} \frac{w^m(G)}{2^m(G)m(G)!} \frac{z^n(G)}{n(G)!}.$$

Half-edges representation:

$$MG(z, w) = \sum_{m \geq 0} (2m)! [x^{2m}] e^{2z\Delta(x)} \frac{w^m}{2^m m!}.$$
Multigraphs with degree constraints

Multigraphs: labelled vertices, labelled oriented edges

![Multigraph Example]

Degree constraints: all vertices have their degree in a given set D

$$\delta_d = \begin{cases} 1 & \text{if } d \in D \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta(x) = \sum_{d \geq 0} \delta_d \frac{x^d}{d!}.$$

Generating function:

$$MG(z, w) = \sum_{\text{multigraph } G} \prod_{d \geq 0} \delta_d^{\deg_d(G)} \frac{w^{m(G)}}{2^{m(G)} m(G)!} \frac{z^{n(G)}}{n(G)!}.$$

Half-edges representation:

$$MG(z, w) = \sum_{m \geq 0} (2m)! [x^{2m}] e^{z \Delta(x)} \frac{w^m}{2^m m!}.$$
From multigraphs to simple graphs

Simple graphs: unlabelled unoriented edges, no loops nor multiple edges

\[\text{SG}(z, w) = \sum_{\text{graph } G} \prod_{d \geq 0} \delta_{d}^{\deg d(G)} w^{m(G)} \frac{z^{n(G)}}{n(G)!} \]

Any \((n, m)\)-graph matches \(2^{m} m!\) multigraphs

Corollary: set \(\text{MG}(z, w, u) := \) generating function of multigraphs with loops and double edges marked by \(u\)

\[\text{MG}(z, w, 0) = \sum_{\text{multigraph } G} \prod_{d \geq 0} \delta_{d}^{\deg d(G)} \frac{w^{m(G)}}{2^{m(G)} m(G)!} \frac{z^{n(G)}}{n(G)!} \]
From multigraphs to simple graphs

Simple graphs: unlabelled unoriented edges, no loops nor multiple edges

\[
SG(z, w) = \sum_{\text{graph } G} \prod_{d \geq 0} \delta_{d}^{\text{deg}_d(G)} w^{m(G)} \frac{z^{n(G)}}{n(G)!}
\]

Any \((n, m)\)-graph matches \(2^m m!\) multigraphs

Corollary: set \(MG(z, w, u) := \) gf of multigraphs with loops and double edges marked by \(u\)

\[
MG(z, w, 0) = \sum_{\text{graph } G} 2^{m(G)} m(G)! \prod_{d \geq 0} \delta_{d}^{\text{deg}_d(G)} \frac{w^{m(G)}}{2^{m(G)} m(G)!} \frac{z^{n(G)}}{n(G)!}
\]
From multigraphs to simple graphs

Simple graphs: unlabelled unoriented edges, no loops nor multiple edges

\[\text{SG}(z, w) = \sum_{\text{graph } G} \prod_{d \geq 0} \delta_{d}^{\deg_d(G)} w^{m(G)} \frac{z^{n(G)}}{n(G)!} \]

Any \((n, m)\)-graph matches \(2^m m!\) multigraphs

Corollary: set \(\text{MG}(z, w, u) := \text{gf of multigraphs with loops and double edges marked by } u\)

\[\text{MG}(z, w, 0) = \sum_{\text{graph } G} 2^m(G) m(G)! \prod_{d \geq 0} \delta_{d}^{\deg_d(G)} \frac{w^{m(G)}}{2^m(G) m(G)!} \frac{z^{n(G)}}{n(G)!} \]
From multigraphs to simple graphs

Simple graphs: unlabelled unoriented edges, no loops nor multiple edges

\[
SG(z, w) = \sum_{\text{graph } G} \prod_{d \geq 0} \delta_d^\deg_d(G) w^m(G) z^n(G) \frac{z^n(G)}{n(G)!}
\]

Any \((n, m)\)-graph matches \(2^m m!\) multigraphs

Corollary: set \(MG(z, w, u) := \) gf of multigraphs with loops and double edges marked by \(u\)

\(MG(z, w, 0) = SG(z, w)\)
Removing loops and double edges

Inclusion-exclusion: express $\text{MG}(z, w, u + 1)$: each loop and double edge is either marked or left unmarked. Then set $u = -1$.

Patchwork: set of marked loops and double edges

$$P(z, w, (\delta_d)_{d \geq 0}, u) = \sum_{\text{patchwork } P} u^{\text{LD}(P)} \prod_{d \geq 0} \delta_d^{\text{deg}_d(P)} \frac{w^{m(P)}}{2^{m(P)} m(P)!} \frac{z^{n(P)}}{n(P)!}$$

Building a multigraph from $\text{MG}(z, w, u + 1)$:

- start with a patchwork (the marked loops and double edges),
- add isolated vertices,
- add half edges on each vertex,
- match them to form edges and relabel the edges.
Removing loops and double edges

Inclusion-exclusion: express $\text{MG}(z, w, u + 1)$: each loop and double edge is either marked or left unmarked. Then set $u = -1$.

![Diagram](image)

Patchwork: set of marked loops and double edges

$$P(z, w, (\delta_d)_{d \geq 0}, u) e^{z\delta_0}$$

Building a multigraph from $\text{MG}(z, w, u + 1)$:
- start with a patchwork (the marked loops and double edges),
- add isolated vertices,
- add half edges on each vertex,
- match them to form edges and relabel the edges.
Removing loops and double edges

Inclusion-exclusion: express $\text{MG}(z, w, u + 1)$: each loop and double edge is either marked or left unmarked. Then set $u = -1$.

Patchwork: set of marked loops and double edges

$$P(z, w, (\partial^d \Delta(x))_{d \geq 0}, u) e^{z \Delta(x)}$$

Building a multigraph from $\text{MG}(z, w, u + 1)$:
- start with a patchwork (the marked loops and double edges),
- add isolated vertices,
- add half edges on each vertex,
- match them to form edges and relabel the edges.
Removing loops and double edges

Inclusion-exclusion: express $MG(z, w, u + 1)$: each loop and double edge is either marked or left unmarked. Then set $u = -1$.

![Diagram](image)

Patchwork: set of marked loops and double edges

$$MG(z, w, u + 1) = \sum_{m \geq 0} (2m)! [x^{2m}] P(z, w, (\partial^d \Delta(x))_{d \geq 0}, u) e^{z \Delta(x)} \frac{w^m}{2^m m!}$$

Building a multigraph from $MG(z, w, u + 1)$:
- start with a patchwork (the marked loops and double edges),
- add isolated vertices,
- add half edges on each vertex,
- match them to form edges and relabel the edges.
Removing loops and double edges

Inclusion-exclusion: express $MG(z, w, u + 1)$: each loop and double edge is either marked or left unmarked. Then set $u = -1$.

![Diagram of a multigraph with loops and double edges marked and unmarked.]

Patchwork: set of marked loops and double edges

$$SG(z, w) = \sum_{m \geq 0} (2m)! [x^{2m}] P(z, w, (\partial^d \Delta(x))_{d \geq 0}, -1) e^{z \Delta(x)} \frac{w^m}{2^m m!}$$

Building a multigraph from $MG(z, w, u + 1)$:
- start with a patchwork (the marked loops and double edges),
- add isolated vertices,
- add half edges on each vertex,
- match them to form edges and relabel the edges.
Asymptotic analysis

Gauss transform: \[
\sqrt{\frac{2}{\pi}} \int_0^{+\infty} t^{2m} e^{-t^2/2} \, dt = \frac{(2m)!}{2^m m!}
\]

\[
\text{SG}(z, w) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} P\left(z, w, (\partial^d \Delta(\sqrt{w} t))_{d \geq 0}, -1\right) e^{z \Delta(\sqrt{w} t)} e^{-t^2/2} \, dt
\]

Changes of variables: \[n! [z^n w^m] \text{SG}(z, w) \text{ becomes}
\]

\[
u_n[z^n x^{2m}] \int_0^{+\infty} P \left(\frac{nz}{\Delta(x)}, \frac{x^2}{2mt^2}, (\partial^d \Delta(x))_{d \geq 0}, -1\right) \Delta(x)^n e^{nz} t^{2m} e^{-mt^2} \, dt
\]

Saddle-point: for \(m = \Theta(n)\) at \(z = t = 1\) and \(x = \zeta\) computable.
Each \((p, q)\)-patchwork counts for \((\frac{nz}{\Delta(x)})^p (\frac{x^2}{2mt^2})^q = O\left(\frac{1}{n^{q-p}}\right)\).
Non-negligible only for \(p = q\): disjoint loops and double edges.
Asymptotic analysis

Gauss transform: \[\sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} t^{2m} e^{-t^2/2} dt = \frac{(2m)!}{2^m m!} \]

\[\text{SG}(z, w) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} P\left(z, w, \left(\partial^d \Delta(\sqrt{w}t)\right)_{d \geq 0}, -1\right) e^{z\Delta(\sqrt{w}t)} e^{-t^2/2} dt \]

Changes of variables: \(n![z^n w^m] \text{SG}(z, w) \) becomes

\[u_n[z^n x^{2m}] \int_{0}^{+\infty} e^{-\frac{zx^2}{t^2\Delta(x)} \frac{n}{4m} - \left(\frac{zx^2}{t^2\Delta(x)} \frac{n}{4m}\right)^2} \Delta(x)^n e^{nz} t^{2m} e^{-mt^2} dt \]

Saddle-point: for \(m = \Theta(n) \) at \(z = t = 1 \) and \(x = \zeta \) computable.

Each \((p, q)\)-patchwork counts for \(\left(\frac{nz}{\Delta(x)}\right)^p \left(\frac{x^2}{2mt^2}\right)^q = O\left(\frac{1}{n^{q-p}}\right) \).

Non-negligible only for \(p = q \): disjoint loops and double edges.
Connected multigraphs

2-Core: multigraph with minimum degree at least 2

\[MG^{\geq 2}(z, w) = \sum_{k \geq 0} (2k)! [x^{2k}] \left(1 - zw \frac{e^x - 1 - x}{x^2/2} \right)^{-k - \frac{1}{2}} \frac{w^k}{2^k k!} \]

A connected multigraph is either

- a tree \(U(z) \),
- a unicyclic component \(V(z) \),
- a connected 2-Core where vertices are replaced by rooted trees

\[CMG(z, w) = \frac{U(zw)}{w} + V(z) + \log \left(MG^{\geq 2} \left(\frac{T(zw)}{w}, w \right) e^{-V(z)} \right) \]

Dominant coefficient for \(m = \Theta(n) \):

\[n! [z^n w^m] CMG(z, w) \approx n! [z^n w^m] MG^{\geq 2} \left(\frac{T(zw)}{w}, w \right) e^{-V(z)} \]
Connected multigraphs

2-Core: multigraph with minimum degree at least 2

\[\text{MG}^{\geq 2}(z, w) = \sum_{k \geq 0} (2k)! [x^{2k}] \left(1 - zw \frac{e^x - 1 - x}{x^2/2}\right)^{-k-\frac{1}{2}} \frac{w^k}{2^k k!} \]

A connected multigraph is either
- a tree \(U(z) \),
- a unicyclic component \(V(z) \),
- a connected 2-Core where vertices are replaced by rooted trees

\[\text{CMG}(z, w) = \frac{U(zw)}{w} + V(z) + \log \left(\text{MG}^{\geq 2} \left(\frac{T(zw)}{w}, w \right) e^{-V(z)} \right) \]

Dominant coefficient for \(m = \Theta(n) \):

\[n! [z^n w^m] \text{CMG}(z, w) \approx \frac{n!(2(m - n))!}{2^{m-n}(m - n)!} [x^{2(m-n)}] \left(1 - T(z) \frac{e^x - 1 - x}{x^2/2}\right)^{-m+n-\frac{1}{2}} \]
Contributions and future extensions

Develop the analytic combinatorics of graphs.

Multigraphs: new interpretation of the model used by Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993.

Degree constraints: we could also consider a different set of degrees for each vertex.

Remove loops and double edges: working on other subgraph families.

Structure of random graphs: beyond the birth of the giant component.

Other models: hypergraphs, inhomogeneous graphs.