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Introduction

n = # vertices, m = # edges

Goal: counting (n,m)-connected graphs when m = Θ(n)
(Bender Canfield McKay 1990, Pittel Wormald 2005, Hofstad Spencer 2006).

Tool: analytic combinatorics (Flajolet Sedgewick 2009).

Future extensions:

investigate the “giant component” of random graphs
with m/n > 1/2
(Ederős Rényi 1959, Janson Knuth  Luczak Pittel 1993)

extend the result to other graph-like models
(degree constraints, inhomogeneous, hypergraphs).



Related works

m = n − 1 trees Borchardt 1860
Cayley formula

m = n unicycles Rényi 1959

m − n = O(1) fixed excess Wright 1977, 1978, 1980
Flajolet Schaeffer Salvy 2004

m − n→∞ large excess Bender Canfield McKay 1990
Pittel Wormald 2005
Hofstad Spencer 2006

m = o(n)  Luczak 1990

2m
n − log(n)→∞ almost all graphs Erdős Rényi 1959



Structure of the proof

Multigraphs with degree constraints (all vertices have their degree in D)

remove loops and double edges

Graphs with degree constraints (E.d.P Ramos 2006)

counting graphs without trees
(same principle as in Pittel Wormald 2005)

Connected graphs



Multigraphs with degree constraints

Multigraphs: labelled vertices, labelled oriented edges

Degree constraints: all vertices have their degree in a given set D

δd =

{
1 if d ∈ D

0 otherwise
∆(x) =

∑
d≥0

δd
xd

d!
.

Generating function:

MG(z ,w) =
∑

multigraph G

∏
d≥0

δ
degd (G)
d

wm(G)

2m(G)m(G )!

zn(G)

n(G )!

Half-edges representation:

MG(z ,w) =
∑
m≥0

(2m)![x2m]ez∆(x) wm

2mm!
.
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From multigraphs to simple graphs

Simple graphs: unlabelled unoriented edges, no loops nor multiple edges

SG(z ,w) =
∑

graph G

∏
d≥0

δ
degd (G)
d wm(G) z

n(G)

n(G )!

Any (n,m)-graph matches 2mm! multigraphs

Corollary: set MG(z ,w , u) :=
gf of multigraphs with loops

and double edges marked by u

MG(z ,w , 0) =
∑

multigraph G
no loop, no double edge

∏
d≥0

δ
degd (G)
d

wm(G)

2m(G)m(G )!

zn(G)

n(G )!
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From multigraphs to simple graphs

Simple graphs: unlabelled unoriented edges, no loops nor multiple edges

SG(z ,w) =
∑

graph G

∏
d≥0

δ
degd (G)
d wm(G) z

n(G)

n(G )!

Any (n,m)-graph matches 2mm! multigraphs

Corollary: set MG(z ,w , u) :=
gf of multigraphs with loops

and double edges marked by u

MG(z ,w , 0) = SG(z ,w)



Removing loops and double edges

Inclusion-exclusion: express MG(z ,w , u + 1): each loop and double
edge is either marked or left unmarked. Then set u = −1.

Patchwork: set of marked loops and double edges

P(z ,w , (δd)d≥0, u) =
∑

patchwork P

uLD(P)
∏
d≥0

δ
degd (P)
d

wm(P)

2m(P)m(P)!

zn(P)

n(P)!

Building a multigraph from MG(z ,w , u + 1):

start with a patchwork (the marked loops and double edges),

add isolated vertices,

add half edges on each vertex,

match them to form edges and relabel the edges.
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Asymptotic analysis

Gauss transform:

√
2

π

∫ +∞

0
t2me−t

2/2dt =
(2m)!

2mm!

SG(z ,w) =

√
2

π

∫ +∞

0
P
(
z ,w , (∂d∆(

√
wt))d≥0,−1

)
ez∆(

√
wt)e−t

2/2dt

Changes of variables: n![znwm] SG(z ,w) becomes

un[znx2m]

∫ +∞

0
P

(
nz

∆(x)
,

x2

2mt2
, (∂d∆(x))d≥0,−1

)
∆(x)nenz t2me−mt2

dt

Saddle-point: for m = Θ(n) at z = t = 1 and x = ζ computable.

Each (p, q)-patchwork counts for
(

nz
∆(x)

)p( x2

2mt2

)q
= O

(
1

nq−p

)
.

Non-negligible only for p = q: disjoint loops and double edges.
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Connected multigraphs

2-Core: multigraph with mininum degree at least 2

MG≥2(z ,w) =
∑
k≥0

(2k)![x2k ]

(
1− zw

ex − 1− x

x2/2

)−k− 1
2 wk

2kk!

A connected multigraph is either

a tree U(z),

a unicyclic component V (z),

a connected 2-Core where vertices are replaced by rooted trees

CMG(z ,w) =
U(zw)

w
+ V (z) + log

(
MG≥2

(T (zw)

w
,w
)
e−V (z)

)
Dominant coefficient for m = Θ(n):

n![znwm] CMG(z ,w) ≈ n![znwm] MG≥2
(T (zw)

w
,w
)
e−V (z)
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2



Contributions and future extensions

Develop the analytic combinatorics of graphs.

Multigraphs: new interpretation of the model used by Flajolet
Knuth Pittel 1989, Janson Knuth  Luczak Pittel 1993.

Degree constraints: we could also consider a different set of
degrees for each vertex.

Remove loops and double edges: working on other subgraph
families.

Structure of random graphs: beyond the birth of the giant
component.

Other models: hypergraphs, inhomogeneous graphs.


