Une étude comparée de deux ensembles de quadrangulations

Emmanuel Guitter (IPhT, CEA Saclay)

28 oct 2015

travail en commun avec Éric Fusy

Quadrangulations planaires à bord

 \equiv cartes planaires enracinées dont toutes les faces internes ont degré 4

 \Rightarrow la face externe a degré pair (= longueur du bord)

1ère caractérisation

 F_n = fonction génératrice des quadrangulations à bord de longueur 2n

ou sous forme compacte

$$F(z) = \sum_{n \ge 0} F_n z^n$$

Emmanuel Guitter (IPhT, CEA Saclay)

"Slices" = portions de quadrangulation

 \equiv quadrangulations à bord particulières

apex \equiv sommet à distance ℓ du sommet racine le long du bord (de longueur 2ℓ)

- est à distance l du sommet racine sur la carte (bord gauche = géodésique)
- est à distance $\ell 1$ de l'extrémité de l'arête racine (bord droit = géodésique)
- le bord droit est l'unique géodésique entre ses extrémités

2ème caractérisation

 R_i = fonction génératrice des slices avec $\ell \leq i$

Emmanuel Guitter (IPhT, CEA Saclay)

Étude comparée (LIX, 28 oct 2015)

ce que nous savons bien ...

• les F_n et les R_i sont intimement liés \rightarrow on a typiquement

Emmanuel Guitter (IPhT, CEA Saclay)

1er ensemble: quadrangulations bicoloriées

On bicolorie la quadrangulation en noir et blanc (sommet racine = noir)

- poids *t* par sommet noir autre que le sommet racine
- poids t_{\circ} par sommet blanc

R_i se décline sous deux espèces

2ème ensemble: maxima locaux pour la distance au sommet racine

(introduit par Ambjørn et Budd)

On étiquette les sommets par leur distance de graphe au sommet racine On distingue les maxima locaux pour cet étiquetage

- poids t_{\circ} par maximum local

- poids t_{\bullet} pour les autres sommets différents du sommet racine

$$F_n \to F_n^{(2)}(t_{\bullet}, t_{\circ})$$

Pour les slices, on regarde les maxima locaux pour la distance à l'apex

Emmanuel Guitter (IPhT, CEA Saclay)

Bijection d'Ambjørn-Budd (généralisée)

- dans chaque face interne, on relie les deux coins suivis (dans le sens horaire) par une étiquette plus grande
- dans la face externe, on relie cycliquement les coins successifs suivis (dans le sens anti-horaire) par une étiquette plus grande

Emmanuel Guitter (IPhT, CEA Saclay)

Étude comparée (LIX, 28 oct 2015)

on a l'identité
$$F_n^{(2)}(t_ullet,t_\circ)=F_n^{(1)}(t_ullet,t_\circ)$$

carte à bord sans ponts^{*} de longueur navec un \circ dans chaque face

 \ast en fait la face externe est une hyperarête

Bijection d'Ambjørn-Budd (généralisée)

- dans chaque face interne, on relie les deux coins suivis (dans le sens horaire) par une étiquette plus grande
- dans la face externe, on relie cycliquement les coins successifs suivis (dans le sens anti-horaire) par une étiquette plus grande

Emmanuel Guitter (IPhT, CEA Saclay)

Bijection classique (généralisée)

- on colorie les sommets gris en blanc !
- dans chaque face interne, on relie le sommet blanc aux coins noirs de la face

Bijection classique (généralisée)

- on colorie les sommets gris en blanc !
- dans chaque face interne, on relie le sommet blanc aux coins noirs de la face

Comparaison des (B_i, W_i) et des (P_i, Q_i)

 $P_i = t_{\bullet} + P_i(P_{i-1} + Q_i + Q_{i+1})$

Comparaison des slices à bord de longueur arbitraire

Si on supprime la contrainte $\ell \leq i$:

$$B_i \to \mathbf{B} \equiv \lim_{i \to \infty} B_i$$

On définit de même les limites W, P et Q de W_i , P_i et Q_i alors

$$B = t_{\bullet} + B(2W + B) \qquad W = t_{\circ} + W(2B + W)$$
$$P = t_{\bullet} + P(2Q + P) \qquad Q = t_{\circ} + Q(2P + Q)$$

et donc

$$P = B \qquad Q = W$$

Comparaison des deux ensembles

ensemble 1	ensemble 2
$F_n^{(1)}$	$F_n^{(2)}$
В	P
W	Q

en revanche, les B_i et W_i ne sont pas égaux aux P_i et Q_i

$$B_{2} = t_{\bullet} + t_{\bullet}(t_{\bullet} + 2t_{\circ}) + t_{\bullet}(2t_{\bullet}^{2} + 9t_{\bullet}t_{\circ} + 6t_{\circ}^{2}) + \cdots$$
$$W_{2} = t_{\circ} + t_{\circ}(2t_{\bullet} + t_{\circ}) + t_{\circ}(6t_{\bullet}^{2} + 9t_{\bullet}t_{\circ} + 2t_{\circ}^{2}) + \cdots$$
$$P_{2} = t_{\bullet} + t_{\bullet}(t_{\bullet} + 2t_{\circ}) + t_{\bullet}(t_{\bullet}^{2} + 10t_{\bullet}t_{\circ} + 6t_{\circ}^{2}) + \cdots$$
$$Q_{2} = t_{\circ} + t_{\circ}(2t_{\bullet} + t_{\circ}) + t_{\circ}(5t_{\bullet}^{2} + 10t_{\bullet}t_{\circ} + 2t_{\circ}^{2}) + \cdots$$

Suppression du pointage: d = 0

 $F_n(t_{\bullet}, t_{\circ}) = \text{f.g.}$ des chemins de Dyck bicoloriés de longueur 2n (de $0 \ge 0$) restant ≥ 0), avec poids B_i (resp. W_i) par descente $i \to i - 1$ commençant par un sommet noir (resp. blanc)

Emmanuel Guitter (IPhT, CEA Saclay)

Étude comparée (LIX, 28 oct 2015)

maxima locaux pour la distance au sommet pointé = maxima locaux dans les slices pour la distance à l'apex SAUF pour le sommet racine de chaque slice. Si on suit une descente, ce n'est pas un maximum local pour la distance au sommet pointé même si c'en est un dans sa slice $\rightarrow t_{\bullet}$ \rightarrow la slice est énumérée par P_i

d = 0:

 $F_n(t_{\bullet}, t_{\circ}) = \text{f.g.}$ des chemins de Dyck de longueur 2n (de $0 \ge 0$ restant ≥ 0), avec poids Q_i (resp. P_i) par descente $i \to i - 1$ suivant une montée (resp. une descente)

 \rightarrow deux interprétations pour $F_n(t_{\bullet}, t_{\circ})$

Fractions continues

Résultat classique sur les chemins de Dyck

$$F(z) \equiv \sum_{n \ge 0} F_n z^n = \frac{1}{1 - zW_1}$$

Fractions continues

Résultat classique sur les chemins de Dyck

Fractions continues

 \rightarrow fraction continue de Stieltjes

Mais on a aussi

$$F(z) = \frac{1}{1 - zQ_1}$$

Mais on a aussi

$$F(z) = \frac{1}{1 - zQ_1 - zP_1\left(\frac{1}{1 - zQ_2} - 1\right)} = \frac{1}{1 - z(Q_1 - P_1) - z\frac{P_1}{1 - zQ_2}}$$

Mais on a aussi

$$F(z) = \frac{1}{1 - z(Q_1 - P_1) - z \frac{P_1}{1 - z(Q_2 - P_2) - z \frac{P_2}{1 - z(Q_3 - P_3) - z \frac{P_3}{1 - \dots}}}$$

qui se réécrit

$$F(z) = \frac{1}{1 - zY_1 - z \frac{Y_2}{1 - zY_3 - z \frac{Y_4}{1 - zY_5 - z \frac{Y_6}{1 - \cdots}}}$$

où

$$Y_{2i-1} \equiv Q_i - P_i , \qquad Y_{2i} = P_i$$

 \rightarrow fraction continue de Thron ou *T*-fraction (voir Roblet et Viennot 1994 - merci à A. Sokal)

Emmanuel Guitter (IPhT, CEA Saclay)

Etude comparée (LIX, 28 oct 2015

Expression pour F_n

De l'analyse de l'ensemble 1, on montre facilement que

$$F_{n} = A_{0} Z_{0,0}^{+}(2n; B, W) + A_{1} Z_{0,0}^{+}(2n+2; B, W)$$

$$A_{0} = \frac{B}{t_{\bullet}}(1-B-W), A_{1} = -\frac{B}{t_{\bullet}}$$
où
$$Z_{0,0}^{+}(2n; B, W) = W$$

Expression pour F_n

On en déduit immédiatement que pour l'ensemble 2

$$F_n = A_0 \ Z_{0,0}^+(2n; P, Q) + A_1 \ Z_{0,0}^+(2n+2; P, Q)$$
$$A_0 = \frac{P}{t_{\bullet}}(1 - P - Q), \ A_1 = -\frac{P}{t_{\bullet}}$$

Expression pour F_n

On en déduit immédiatement que pour l'ensemble 2

$$F_n = A_0 \ Z_{0,0}^+(2n; P, Q) + A_1 \ Z_{0,0}^+(2n+2; P, Q)$$
$$A_0 = \frac{P}{t_{\bullet}}(1 - P - Q), \ A_1 = -\frac{P}{t_{\bullet}}$$

Posons en effet

$$Z(z; P, Q) \equiv \sum_{n \ge 0} Z_{0,0}^+(2n; P, Q) z^n$$

D'après la définition de l'ensemble 1, ${\cal Z}(z;P,Q)$ est solution de

$$Z(z; P, Q) = \frac{1}{1 - z \frac{Q}{1 - z P Z(z; P, Q)}}$$

Cette équation est équivalente à

$$Z(z; P, Q) = \frac{1}{1 - z (Q - P) - z P Z(z; P, Q)}$$

d'où l'interprétation dans l'ensemble 2

Rq: $[Q^m P^{n-m}]Z^+_{0,0}(2n; P, Q) =$ nombre de Narayana N(n, m)

Comparaison des deux ensembles

 $= A_0 Z_{0,0}^+(2n; B, W)$ $+ A_1 Z_{0,0}^+(2n+2; B, W)$

$$+A_1 Z_{0,0}^+(2n+2; P, Q)$$

 P_i, Q_i : développement de F(z) en fraction continue de Thron

Le cas Stieltjes

On peut obtenir B_i et W_i à partir des F_n

En effet, un résultat standard de la théorie des fractions continues de Stieltjes dit que

$$B_{2i} = \frac{h_i^{(0)}}{h_{i-1}^{(0)}} / \frac{h_{i-1}^{(1)}}{h_{i-2}^{(1)}} \qquad \qquad W_{2i-1} = \frac{h_{i-1}^{(1)}}{h_{i-2}^{(1)}} / \frac{h_{i-1}^{(0)}}{h_{i-2}^{(0)}}$$

pour $i \ge 1$, en termes des déterminants de Hankel

$$\begin{split} h_i^{(0)} &= \det(F_{n+m})_{0 \leq n, m \leq i} \qquad \qquad h_i^{(1)} = \det(F_{n+m+1})_{0 \leq n, m \leq i} \\ \\ \text{et la convention } h_{-1}^{(0)} &= h_{-1}^{(1)} = 1 \end{split}$$

Pour l'autre parité B_{2i-1} et W_{2i} , il suffit d'échanger t_{\bullet} et t_{\circ}

Expressions pour B_i et W_i

Le calcul explicite des déterminants de Hankel conduit à

$$B_{2i} = B \frac{(1 - x^{2i})(1 - \gamma x^{2i+3})}{(1 - \gamma x^{2i+1})(1 - x^{2i+2})} \quad W_{2i+1} = W \frac{(1 - \gamma x^{2i+1})(1 - x^{2i+4})}{(1 - x^{2i+2})(1 - \gamma x^{2i+3})}$$
$$B_{2i+1} = B \frac{(1 - x^{2i+1}/\gamma)(1 - x^{2i+4})}{(1 - x^{2i+2})(1 - x^{2i+3}/\gamma)} \quad W_{2i} = W \frac{(1 - x^{2i})(1 - x^{2i+3}/\gamma)}{(1 - x^{2i+1}/\gamma)(1 - x^{2i+2})}$$

où x et γ sont obtenus en fonction de B et W (eux-mêmes fonctions de t_{\bullet} et t_{\circ}) via

$$1 - 2(B + W) - \sqrt{BW}\left(x + \frac{1}{x}\right) = 0$$
$$\gamma = \frac{\sqrt{B/W} + x}{1 + \sqrt{B/W}x}$$

Le cas Thron

Peut-on obtenir de la même façon les P_i et Q_i à partir des F_n ?

Un résultat un peu moins standard (voir Di Francesco et Kedem 2010) nous dit que

 P_i et Q_i s'expriment en termes de déterminants "de type Hankel" $\det(F_{n+m-i-2})_{0\leq n,m\leq i} \quad \text{et} \quad \det(F_{n+m-i-1})_{0\leq n,m\leq i}$

<u>Problème</u>: Fait intervenir des F_n pour n négatif. Que valent-ils ?

En fait, n'importe quel choix de F_n pour n négatif donne une solution $(P_i, Q_i)_{i \ge 1}$ dont la fraction continue de Thron est égale à F(z)
Ce n'est pas surprenant car le système qui donne les P_i et Q_i en terme des F_n est sous-déterminé

$$F(z) = \frac{1}{1 - zY_1 - z \frac{Y_2}{1 - zY_3 - z \frac{Y_4}{1 - zY_5 - z \frac{Y_6}{1 - \cdots}}}$$

2

donne en développant en z

$$F_1 = (Y_1 + Y_2)$$

$$F_2 = (Y_1 + Y_2)^2 + Y_2(Y_3 + Y_4)$$

et on voit qu'à chaque étape, deux nouveaux Y_i apparaissent Il y a moins d'information dans les F_n que dans les P_i et Q_i NB: Le même problème est en fait déjà présent dans le cas bicolorié où la donnée de $F_n(t_{\bullet}, t_{\circ})$ ne permet pas de calculer tous les B_i et W_i mais seulement les B_{2i} et les W_{2i-1} . La moitié manquante de l'information n'est autre que $F_n(t_{\circ}, t_{\bullet})$ et est donc facilement accessible par symétrie.

lci, on a accès uniquement à certaines combinaisons de Y_i . La moitié manquante de l'information est la donnée de la fraction continue de Thron duale (voir Roblet et Viennot)

$$\tilde{F}(z) \equiv \sum_{n \ge 0} \tilde{F}_n z^n = \frac{1}{1 - z\tilde{Y}_1 - z \frac{\tilde{Y}_2}{1 - z\tilde{Y}_3 - z \frac{\tilde{Y}_4}{1 - z\tilde{Y}_5 - z \frac{\tilde{Y}_6}{1 - \cdots}}}$$

où nous avons défini (en supposant $Y_{2i-1} \neq 0$ pour tout $i \geq 1$)

$$\tilde{Y}_{2i-1} \equiv \frac{1}{Y_{2i-1}}, \qquad \tilde{Y}_{2i} \equiv \frac{Y_{2i}}{Y_{2i-1}Y_{2i+1}}$$

Emmanuel Guitter (IPhT, CEA Saclay)

En développant en z

$$F_{1} = (Y_{1} + Y_{2})$$

$$\tilde{F}_{1} = \frac{(Y_{2} + Y_{3})}{Y_{1}Y_{3}}$$

$$F_{2} = (Y_{1} + Y_{2})^{2} + Y_{2}(Y_{3} + Y_{4})$$

$$\tilde{F}_{2} = \frac{(Y_{2} + Y_{3})^{2}}{(Y_{1}Y_{3})^{2}} + \frac{Y_{2}(Y_{4} + Y_{5})}{Y_{1}Y_{3}^{2}Y_{5}}$$
:

et la donnée de F(z), $\tilde{F}(z)$ et Y_1 fixe les Y_i (donc les P_i et Q_i)

Formules de Di Francesco Kedem

Si on pose

$$f_n \equiv \begin{cases} 1 & \text{si } n = 0 \\ Y_1 F_{n-1} & \text{si } n \ge 1 \\ \tilde{F}_{-n} & \text{si } n \le -1 \end{cases}$$

et on définit

$$H_i^{(0)} \equiv \det(f_{n+m-i-1})_{1 \le n,m \le i} \qquad \qquad H_i^{(1)} \equiv (f_{n+m-i})_{1 \le n,m \le i}$$

alors

$$Y_{2i} = \frac{H_{i-1}^{(0)}}{H_i^{(0)}} \Big/ \frac{H_i^{(1)}}{H_{i+1}^{(1)}}$$

avec la convention ${\cal H}_0^{(0)}={\cal H}_0^{(1)}=0$

$$Y_{2i-1} = \frac{H_i^{(1)}}{H_i^{(1)}} \Big/ \frac{H_i^{(0)}}{H_i^{(0)}} \Big|$$

Emmanuel Guitter (IPhT, CEA Saclay)

i

Ces formules découlent immédiatement des expressions explicites

$$H_{i}^{(0)} \equiv \begin{vmatrix} f_{-(i-1)} & \cdots & f_{0} \\ \vdots & \ddots & \ddots & f_{1} \\ \vdots & \ddots & \ddots & \vdots \\ f_{0} & f_{1} & \cdots & f_{i-1} \end{vmatrix}$$
$$= \left(\frac{Y_{2}}{Y_{3}}\right)^{i-1} \left(\frac{Y_{4}}{Y_{5}}\right)^{i-2} \cdots \left(\frac{Y_{2i-4}}{Y_{2i-3}}\right)^{2} \left(\frac{Y_{2i-2}}{Y_{2i-1}}\right)$$
$$H_{i}^{(1)} \equiv \begin{vmatrix} f_{-(i-2)} & \cdots & \cdots & f_{1} \\ \vdots & \ddots & \ddots & f_{2} \\ \vdots & \ddots & \ddots & \vdots \\ f_{1} & f_{2} & \cdots & f_{i} \end{vmatrix} = Y_{1} Y_{3} Y_{5} \cdots Y_{2i-1} H_{i}^{(0)}$$

Peut-on facilement comprendre ces expressions ?

Une démonstration à coup d'empilements

$$\text{On a } f_n \equiv \begin{cases} 1 & \text{si } n = 0 \\ Y_1 F_{n-1} & \text{si } n \ge 1 \\ \tilde{F}_{-n} & \text{si } n \le -1 \end{cases} \quad \text{et donc}$$

$$f^{+}(z) \equiv \sum_{n \ge 0} f_n z^n = 1 + z Y_1 F(z) = \frac{1}{1 - z \frac{Y_1}{1 - z \frac{Y_2}{1 - z Y_3 - z \frac{Y_4}{1 - z Y_5 - z \frac{Y_6}{1 - \dots}}}}$$

$$f^{-}(z) \equiv \sum_{n \ge 0} f_{-n} z^{n} = \tilde{F}(z) = \frac{1}{1 - z \tilde{Y}_{1} - z \frac{\tilde{Y}_{2}}{1 - z \tilde{Y}_{3} - z \frac{\tilde{Y}_{4}}{1 - z \tilde{Y}_{5} - z \frac{\tilde{Y}_{6}}{1 - \cdots}}}$$

On voit que f_n et f_{-n} comptent des empilements de pièces sur le graphe

On voit que f_n et f_{-n} comptent des empilements de pièces sur le graphe

On voit que f_n et f_{-n} comptent des empilements de pièces sur le graphe

On voit que f_n et f_{-n} comptent des empilements de pièces sur le graphe

 f_{-n} compte les empilements de n pièces de base $\{1, 2\}$ avec poids \tilde{Y}_i par pièce à position i

Si on se limite aux empilements sur un sous-graphe fini

 $f_n^{(\alpha)} \equiv$ empilements de n pièces de base {1} avec poids Y_i par pièce à position i

 $f_{-n}^{(\alpha)} \equiv \text{empilements de } n \text{ pièces de base } \{1,2\}$ avec poids \tilde{Y}_i par pièce à position i

 $X_n^{(\alpha)} \equiv \text{configurations de } n \text{ pièces dures}$ avec poids Y_i par pièce à position i

alors pour tout n, on a la dépendence linéaire à $\alpha+1$ termes

$$\sum_{m=0}^{\alpha} (-1)^m X_m^{(\alpha)} f_{n-m}^{(\alpha)} = 0$$

exemple: $\alpha = 3$ (relation linéaire à 4 termes)

$$\begin{aligned} X_0^{(3)} &= 1\\ X_1^{(3)} &= Y_1 + Y_2 + Y_3 + Y_4 + Y_5\\ X_2^{(3)} &= Y_1(Y_3 + Y_4 + Y_5) + (Y_2 + Y_3)Y_5\\ X_3^{(3)} &= Y_1Y_3Y_5 \end{aligned}$$

$$f_0^{(3)} = 1$$

$$f_1^{(3)} = Y_1$$

$$f_2^{(3)} = Y_1(Y_1 + Y_2)$$

$$f_{-1}^{(3)} = \frac{1}{Y_1} + \frac{Y_2}{Y_1Y_3}$$

pour n = 2, la relation s'écrit

$$\begin{split} & f_2^{(3)} X_0^{(3)} - f_1^{(3)} X_1^{(3)} + f_0^{(3)} X_2^{(3)} - f_{-1}^{(3)} X_3^{(3)} = \\ & Y_1(Y_1 + Y_2) \times 1 - Y_1 \times (Y_1 + Y_2 + Y_3 + Y_4 + Y_5) + 1 \times (Y_1(Y_3 + Y_4 + Y_5) + (Y_2 + Y_3)Y_5) - (\frac{1}{Y_1} + \frac{Y_2}{Y_1Y_3}) \times Y_1Y_3Y_5 = 0 \checkmark \end{split}$$

Dans le calcul de $H_i^{(0)} = \det(f_{n+m-i-1})_{1 \le n,m \le i}$, on a i colonnes

Pour utiliser la relation linéaire à *i* termes (qui donnerait un déterminant nul !), il faudrait rester sur le graphe de taille finie avec $\alpha = i - 1$

Dans le calcul de $H_i^{(0)} = \det(f_{n+m-i-1})_{1 \leq n,m \leq i},$ on a i colonnes

Pour utiliser la relation linéaire à *i* termes (qui donnerait un déterminant nul !), il faudrait rester sur le graphe de taille finie avec $\alpha = i - 1$

Dans le calcul de $H_i^{(0)} = \det(f_{n+m-i-1})_{1 \leq n,m \leq i},$ on a i colonnes

Pour utiliser la relation linéaire à *i* termes (qui donnerait un déterminant nul !), il faudrait rester sur le graphe de taille finie avec $\alpha = i - 1$

Dans le calcul de $H_i^{(0)} = \det(f_{n+m-i-1})_{1 \le n,m \le i}$, on a i colonnes

Pour utiliser la relation linéaire à *i* termes (qui donnerait un déterminant nul !), il faudrait rester sur le graphe de taille finie avec $\alpha = i - 1$

$$H_i^{(0)} = \begin{vmatrix} \tilde{Y}_2 \tilde{Y}_4 \cdots \tilde{Y}_{2i-2} & f_{-(i-2)} & \cdots & f_0 \\ 0 & f_{-(i-3)} & \ddots & f_1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & f_1 & \cdots & f_{i-1} \end{vmatrix} = \tilde{Y}_2 \tilde{Y}_4 \cdots \tilde{Y}_{2i-2} H_{i-1}^{(1)}$$

Dans le calcul de $H_i^{(0)} = \det(f_{n+m-i-1})_{1 \le n,m \le i}$, on a i colonnes

Pour utiliser la relation linéaire à *i* termes (qui donnerait un déterminant nul !), il faudrait rester sur le graphe de taille finie avec $\alpha = i - 1$

En fait, pour $1 \le n, m \le i$, $f_{n+m-i-1} = f_{n+m-i-1}^{(i-1)}$ sauf pour n = m = 1 car f_{-i+1} (empilement de i-1 pièces de base $\{1,2\}$) atteint la position 2i-2 sur le graphe infini \rightarrow terme $\tilde{Y}_2\tilde{Y}_4\cdots\tilde{Y}_{2i-2}$

$$H_i^{(0)} = \begin{vmatrix} \tilde{Y}_2 \tilde{Y}_4 \cdots \tilde{Y}_{2i-2} & f_{-(i-2)} & \cdots & f_0 \\ 0 & f_{-(i-3)} & \cdot & f_1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & f_1 & \cdots & f_{i-1} \end{vmatrix} = \tilde{Y}_2 \tilde{Y}_4 \cdots \tilde{Y}_{2i-2} H_{i-1}^{(1)}$$

De même, on montre

$$H_i^{(1)} = Y_1(Y_2Y_4\cdots Y_{2i-2}) H_{i-1}^{(0)}$$

et les formules de Di Francesco Kedem en découlent immédiatement

Peut-on deviner \tilde{F}_n connaissant F_n ?

On a besoin de connaître $f_n = \begin{cases} 1 & \text{si } n = 0\\ Y_1 F_{n-1} & \text{si } n \ge 1\\ \tilde{F}_{-n} & \text{si } n \le -1 \end{cases}$

Faute de mieux, on va deviner les valeurs de Y_1 et \tilde{F}_{-n} .

Il y a un choix naturel dicté par le cas des fractions de Thron finies ! Imaginons connue la fraction continue finie

$$F^{(\alpha)}(z) = \frac{1}{1 - zY_1 - z \frac{Y_2}{1 - zY_3 - z \frac{Y_4}{\frac{\cdot \cdot}{1 - zY_{2\alpha - 3} - z \frac{Y_{2\alpha - 2}}{1 - Y_{2\alpha - 1}}}}}$$

on voit aisément que

$$F^{(\alpha)}(z) = {{\rm pol. \ de \ degré \ } \alpha - 1} \over {{\rm pol. \ de \ degré \ } \alpha}$$

Emmanuel Guitter (IPhT, CEA Saclay)

Étude comparée (LIX, 28 oct 2015)

 $F^{(\alpha)}(z)$ dépend de $\alpha + (\alpha + 1) - 1$ (facteur global) -1 ($F^{(\alpha)}(0) = 1$) = $2\alpha - 1$ coefficients.

La connaissance de $F^{(\alpha)}(z)$ seule est suffisante pour déterminer les $2\alpha - 1$ inconnues Y_i en jeu (i.e. $i = 1, 3, \dots, 2\alpha - 1$)

Solution du "paradoxe"

est aussi une T-fraction finie

 $F^{(\alpha)}(z)$ dépend de $\alpha + (\alpha + 1) - 1$ (facteur global) -1 ($F^{(\alpha)}(0) = 1$) = $2\alpha - 1$ coefficients.

La connaissance de $F^{(\alpha)}(z)$ seule est suffisante pour déterminer les $2\alpha - 1$ inconnues Y_i en jeu (i.e. $i = 1, 3, \dots, 2\alpha - 1$)

Solution du "paradoxe"

on a

$$\tilde{F}^{(\alpha)}(z) = -\frac{Y_1}{z} F^{(\alpha)}\left(1/z\right)$$

ce qui, en demandant $\tilde{F}^{(\alpha)}(0) = 1$, fixe Y_1 à

$$Y_1 = -\frac{1}{\lim_{z \to \infty} z F^{(\alpha)}(z)}$$

ainsi que tous les \tilde{F}_n $(n \ge 0)$ via $\tilde{F}_n = -Y_1[z^{n+1}]F^{(\alpha)}\left(1/z\right)$

Une preuve via les pièces dures

Emmanuel Guitter (IPhT, CEA Saclay)

Étude comparée (LIX, 28 oct 2015)

Une preuve via les pièces dures

 $X_n^{(\alpha)} \equiv \text{configurations de } n \text{ pièces dures avec poids } Y_i \text{ par pièce à position}$ $i \to \text{f.g. } X^{(\alpha)}(z) = \sum_{n=0}^{\alpha} X_n^{(\alpha)} z^n \text{ (polynôme)}$

 $\tilde{X}_n^{(\alpha)} \equiv \text{configurations de } n \text{ pièces dures avec poids } \tilde{Y}_i \text{ par pièce à position}$ $i \to \text{f.g.} \quad \tilde{X}^{(\alpha)}(z) = \sum_{n=0}^{\alpha} \tilde{X}_n^{(\alpha)} z^n \text{ (polynôme)}$

alors on a le résultat classique

$$f^{+(\alpha)}(z) = \frac{X^{(\alpha)}(-z)|_{Y_1=0}}{X^{(\alpha)}(-z)}$$
$$f^{-(\alpha)}(z) = \frac{\tilde{X}^{(\alpha)}(-z)|_{\tilde{Y}_1=\tilde{Y}_2=0}}{\tilde{X}^{(\alpha)}(-z)}$$

Par ailleurs

$$\begin{aligned} X_{m}^{(\alpha)} &= X_{\alpha}^{(\alpha)} \ \tilde{X}_{\alpha-m}^{(\alpha)} \\ X_{m}^{(\alpha)}|_{Y_{1}=0} &= X_{\alpha}^{(\alpha)} \ \left(\tilde{X}_{\alpha-m}^{(\alpha)} - \tilde{X}_{\alpha-m}^{(\alpha)}|_{\tilde{Y}_{1}=\tilde{Y}_{2}=0} \right) \end{aligned}$$

Emmanuel Guitter (IPhT, CEA Saclay)

 $\begin{array}{l} X_m^{(\alpha)}|_{Y_1=0} \rightarrow \text{position 1 non occupée à gauche} \rightarrow \text{position 1 ou 2 occupée} \\ \text{à droite} \rightarrow X_\alpha^{(\alpha)} \underbrace{\left(\tilde{X}_{\alpha-m}^{(\alpha)} - \tilde{X}_{\alpha-m}^{(\alpha)}|_{\tilde{Y_1}=\tilde{Y_2}=0}\right)}_{\left(\tilde{X}_{\alpha-m}^{(\alpha)} - \tilde{X}_{\alpha-m}^{(\alpha)}|_{\tilde{Y_1}=\tilde{Y_2}=0}\right)} \end{array}$

complémentaire de 1 et 2 vides

$$X_m^{(\alpha)} = X_\alpha^{(\alpha)} \ \tilde{X}_{\alpha-m}^{(\alpha)}$$
$$X_m^{(\alpha)}|_{Y_1=0} = X_\alpha^{(\alpha)} \left(\tilde{X}_{\alpha-m}^{(\alpha)} - \tilde{X}_{\alpha-m}^{(\alpha)}|_{\tilde{Y}_1=\tilde{Y}_2=0} \right)$$

$$X^{(\alpha)}(-1/z) = X^{(\alpha)}_{\alpha} \ (-1/z)^{\alpha} \ \tilde{X}^{(\alpha)}(-z)$$

$$X^{(\alpha)}(-1/z)|_{Y_1=0} = X^{(\alpha)}_{\alpha} \ (-1/z)^{\alpha} \ \left(\tilde{X}^{(\alpha)}(-z) - \tilde{X}^{(\alpha)}(-z)|_{\tilde{Y}_1=\tilde{Y}_2=0}\right)$$

$$f^{+(\alpha)}(1/z) = \frac{X^{(\alpha)}(-1/z)|_{Y_1=0}}{X^{(\alpha)}(-1/z)} = 1 - \frac{\tilde{X}^{(\alpha)}(-z)|_{\tilde{Y}_1=\tilde{Y}_2=0}}{\tilde{X}^{(\alpha)}(-z)} = 1 - f^{-(\alpha)}(z)$$
$$\Rightarrow 1 + \frac{Y_1}{z}F^{(\alpha)}(1/z) = 1 - \tilde{F}^{(\alpha)}(z) \qquad \Rightarrow \quad \tilde{F}^{(\alpha)}(z) = -\frac{Y_1}{z}F^{(\alpha)}(1/z)$$

Emmanuel Guitter (IPhT, CEA Saclay)

Explication de la relation linéaire: on a

$$f^{-(\alpha)}(1/z) + f^{+(\alpha)}(z) - 1 = 0$$

et donc

$$X^{(\alpha)}(-z)f^{-(\alpha)}(1/z) + X^{(\alpha)}(-z)f^{+(\alpha)}(z) - X^{(\alpha)}(-z) = 0$$

Chacun des trois termes est un polynôme dont on peut extraire le terme en z^n $(n \in \mathbb{Z})$ (pour le premier terme, on utilise le développement à grand z et pour le second, le développement à petit z):

$$\sum_{m=\max(n,0)}^{\alpha} (-1)^m X_m^{(\alpha)} f_{-(m-n)}^{(\alpha)} + \sum_{m=0}^{\min(\alpha,n)} (-1)^m X_m^{(\alpha)} f_{n-m}^{(\alpha)} - \underbrace{(-1)^n X_n^{(\alpha)}}_{\neq 0 \text{ pour } n \in [0,\alpha]} = 0$$

qui, pour tout $n \in \mathbb{Z}$, se réécrit

$$\sum_{m=0}^{\alpha} (-1)^m X_m^{(\alpha)} f_{n-m}^{(\alpha)} = 0$$

Une conjecture

on va supposer

$$\tilde{F}(z) = -\frac{Y_1}{z}F\left(1/z\right)$$

avec

$$Y_1 = -\frac{1}{\lim_{z \to \infty} zF(z)}$$

A partir de
$$F_n = A_0 Z_{0,0}^+(2n; P, Q) + A_1 Z_{0,0}^+(2n+2; P, Q)$$

 $A_0 = \frac{P}{t_{\bullet}}(1 - P - Q), \ A_1 = -\frac{Q}{t_{\bullet}}$

on en déduit

$$\tilde{F}_n = \frac{Y_1}{(Q-P)^{2n+1}} \left(A_0 \ Z_{0,0}^+(2n; P, Q) + A_1(Q-P)^2 \ Z_{0,0}^+(2n-2; P, Q) \right)$$

et

$$Y_1 = \frac{(Q-P)}{A_0 + A_1 (Q-P)} = \frac{(Q-P)(1-P-2Q)}{1-2Q}$$

Calcul des Y_i

$$\begin{array}{l} \text{On a} \\ f_n = \begin{cases} 1 = \frac{Y_1 A_0}{Y} \times 1 + \frac{Y_1 A_1}{Y} \times Y & \text{si } n = 0 \\ \\ \frac{Y_1 A_0}{Y} Y Z_{0,0}^+(2n-2;P,Q) + \frac{Y_1 A_1}{Y} Y Z_{0,0}^+(2n;P,Q) & \text{si } n \ge 1 \\ \\ \frac{Y_1 A_0}{Y} \frac{Z_{0,0}^+(2|n|;P,Q)}{Y^{2|n|}} + \frac{Y_1 A_1}{Y} \frac{Z_{0,0}^+(2|n|-2;P,Q)}{Y^{2|n|-2}} & \text{si } n \le -1 \\ \\ \text{où } Y \equiv Q - P \end{cases} \end{array}$$

On voit que

$$f_n = \frac{Y_1 A_0}{Y} k_n + \frac{Y_1 A_1}{Y} k_{n+1}$$

où k_n compte les empilements de n pièces avec poids Y et P et base $\{1\}$ pour $n\geq 0$ et avec poids 1/Y et P/Y^2 et base $\{1,2\}$ pour n<0

 \rightarrow spécialisation des résultats précédents à $Y_{2i-1}=Y$ et $Y_{2i}=P$ ($\Rightarrow \tilde{Y}_{2i-1}=1/Y$ et $\tilde{Y}_{2i}=P/Y^2$): il existe des relations linéaires entre les k_n consécutifs, à des termes de bord près

 \rightarrow permet comme précédemment d'écrire des récurrences sur les déterminants

$$\begin{split} L_i^{(0)} &\equiv \left(\frac{Y}{P}\right)^{\frac{i(i-1)}{2}} H_i^{(0)}, \qquad L_i^{(1)} \equiv \frac{1}{Y^{i-1}} \left(\frac{Y}{P}\right)^{\frac{i(i-1)}{2}} H_i^{(1)} \\ L_i^{(0)} &= A_0 \frac{Y_1}{Y^2} L_{i-1}^{(1)} + A_1 Y_1 L_{i-1}^{(0)} \\ L_i^{(1)} &= A_0 \frac{Y_1}{Y} L_{i-1}^{(1)} + A_1 Y_1 (Y+P) L_{i-1}^{(0)} \end{split}$$

ou encore

$$L_{i+1}^{(0)} = L_i^{(0)} - w L_{i-1}^{(0)} \qquad w \equiv -A_0 A_1 \frac{Y_1^2}{Y^2} P$$

c $L_0^{(0)} = L_1^{(0)} = 1 \qquad \Rightarrow L_i^{(0)} \propto \text{pol. de Tchebychev en } 1/\sqrt{4w}$

avec
$$L_0^{(0)} = L_1^{(0)} = 1 \implies L_i^{(0)} \propto \text{pol.}$$
 de Tchebychev en $1/2$
et $L_i^{(1)} = Y L_i^{(0)} + (Y_1 - Y) L_{i-1}^{(0)}$

Tous calculs faits, on obtient

$$P_i = P \frac{(1-y^i)(1-\alpha y^{i+3})}{(1-y^{i+1})(1-\alpha y^{i+2})} \qquad Q_i = Q \frac{(1-y^i)(1-\alpha^2 y^{i+3})}{(1-\alpha y^{i+1})(1-\alpha y^{i+2})} ,$$

où y et α sont obtenus en fonction de P et Q (eux-mêmes fonctions de t_{\bullet} et t_{\circ}) via

$$(1-2Q)^2 - P(1-P-Q)\left(2+y+\frac{1}{y}\right) = 0$$

$$\alpha = \frac{1}{y^2} \frac{y(1-P-2Q) - P}{(1-P-2Q) - yP}$$

(NB: on vérifie que $\alpha = 1/\gamma^2$ et $y = \gamma x$)

On retrouve les formules devinées par Ambjørn et Budd
Conclusion

Une méthode constructive pour calculer P_i et Q_i

Basée sur une conjecture (certes naturelle)

Peut-on la comprendre combinatoirement ?

Stieltjes et Thron sont deux extrêmes de fractions continues "mixtes" Di Francesco Kedem considèrent aussi ces cas mixtes (mutations) Correspondent-ils à d'autres ensembles de quadrangulations ?

Conclusion

Une méthode constructive pour calculer P_i et Q_i

Basée sur une conjecture (certes naturelle)

Peut-on la comprendre combinatoirement ?

Stieltjes et Thron sont deux extrêmes de fractions continues "mixtes" Di Francesco Kedem considèrent aussi ces cas mixtes (mutations) Correspondent-ils à d'autres ensembles de quadrangulations ?

Merci !