Chiral symmetry in polytopes

Isabel Hubard Instituto de Matemáticas UNAM

September 2015

Chirality

The term "chiral" comes from the greek χειρ (kheir), which means hand.

The term "chiral" comes from the greek χειρ (kheir), which means hand.

In 1893 Lord Kelvin use the term "chiral" in a scientific context for the first time:

The term "chiral" comes from the greek χειρ (kheir), which means hand.

In 1893 Lord Kelvin use the term "chiral" in a scientific context for the first time:

"I call any geometrical figure, or group of points, 'chiral', and say that it has chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself"

Chirality in nature

Chirality in nature

Chirality in nature

Chirality in chemistry

Chirality in chemistry

Thalidomide

One is a sedative, the other one weakens the bones (and can produce birth defects)

Trefoil knot

Trefoil knot

Trefoil knot

Trefoil knot

Snob cube

Abstract polytopes

Abstract polytopes generalize the (face lattice) of convex (and some other "classic" geometric) polytopes to combinatorial structures.

Polyhedra

Platonic solids

Kepler (~1620)

Kepler (~1620)

Poinsot (~1810)

Kepler-Poinsot polyhedra

In the 1920's...

In the 1920's...

In the 1920's...

Polyhedra

Brahana: maps in surfaces (he was in algebra!)

Projective plane

Higher dimensions

Convex polytopes Ludwig Schläfli (1852)

Convex hull of a finite number of points

Higher dimensions

Polyhedra and polytopes:

Higher dimensions

Polyhedra and polytopes:

Geometry

Combinatorics

Group Theory

Topology

maps on surfaces

convex polytopes

1970´s

Grünbaum

1970´s

Proposes to study "polytopes" whose facets and vertex-figures are not spherical

maps on surfaces

convex polytopes

1970's

Proposes to study "polytopes" whose facets and vertex-figures are not spherical

Tits

Develops the ideas of incidence geometries

Grünbaum

Coxeter

Tits

Coxeter

Danzer & Schulte (early 1980's)

Incidence polytopes, now called abstract polytopes

Tits

Technical: Min and max element

Technical: Min and max element

Flags: n+2 elements

Technical: Min and max element

Flags: n+2 elements

Technical: Min and max element

Flags: n+2 elements

Strongly connected

Technical: Min and max element

Flags: n+2 elements

Strongly connected

Diamond

Technical: Min and max element

Flags: n+2 elements

Strongly connected

Diamond

Technical: Min and max element

Flags: n+2 elements

Strongly connected

Diamond

is NOT determined by its 1-skeleton

is NOT determined by its 1-skeleton

Given an abstract polytope P

Two flags are adjacent if they differ in exactly on one face.

Given an abstract polytope P

Two flags are adjacent if they differ in exactly on one face.

Given an abstract polytope P

Two flags are adjacent if they differ in exactly on one face.

Φ

Flag

Φ^{i}

Its (unique!) i-adjacent

Symmetries

An automorphism of a polytope P is a order preserving bijection of P.

An automorphism of a polytope P is a order preserving bijection of P.

An automorphism of a polytope P is a bijection of the set of flags of P that preserves the incidences. An automorphism of a polytope P is a order preserving bijection of P.

An automorphism of a polytope P is a bijection of the set of flags of P that preserves the incidences.

We often study automorphisms through their action on the flags of the polytope.

If a polytope is regular, fixing a base flag Φ , there exist automorphisms ρ_i , for each i, such that $\Phi \rho_i = \Phi^i$

If a polytope is such that, fixing a base flag $\Phi,$ there exist automorphisms $\rho_i,$ for each i, satisfying $\Phi\rho_i=\Phi^i$

then the polytope is regular.

Chirality in polytopes

All rank 2 polytopes are regular (easy to see)

All rank 2 polytopes are regular (easy to see)

There are no finite chiral polytopes in Euclidian 3-space (Schulte)

All rank 2 polytopes are regular (easy to see)

There are no finite chiral polytopes in Euclidian 3-space (Schulte)

There are no convex chiral polytopes (McMullen)

Rank 4

Coxeter ~1970's constructed some by making quotients of hyperbolic tessellations and forcing right and left Petire polygons to be of different lenght Coxeter ~1970's constructed some by making quotients of hyperbolic tessellations and forcing right and left Petire polygons to be of different lenght

During the 1990's, Monson, Nostrand, Schulte, Weiss constructed infinite families

In the 1990's Schulte and Weiss gave a construction in which, given a finite chiral n-polytope, constructed a (locally) infinite chiral (n+1)-polytope

In the 1990's Schulte and Weiss gave a construction in which, given a finite chiral n-polytope, constructed a (locally) infinite chiral (n+1)-polytope

Rank 5 2006 Conder, H. Pisanski. First examples of finite chiral rank 5 polytopes.

In the 1990's Schulte and Weiss gave a construction in which, given a finite chiral n-polytope, constructed a (locally) infinite chiral (n+1)-polytope

Rank 5 2006 Conder, H. Pisanski. First examples of finite chiral rank 5 polytopes.

Ranks 6-8 2009 Conder, Devillers

2010 Pellicer. Gave a recursive construction and showed that they exist for every rank...

2010 Pellicer.

Gave a recursive construction and showed that they exist for every rank...

Their groups are uncontrollable

2010 Pellicer.

Gave a recursive construction and showed that they exist for every rank...

Their groups are uncontrollable

2014 Cunningham, Pellicer. Constructed chiral (n+1)-polytopes provided they have chiral n-polytopes with regular facets

Why is it so difficult???

Why is it so difficult???

Why is it so difficult???

The faces of rank n-2 are always regular A polytope is chiral if its automorphism group has two orbits on flags with adjacent flags in different orbits

The automorphism of a chiral n-polytope P can be generated by $\sigma_1, ..., \sigma_{n-1}$ such that

$$(\sigma_i...\sigma_j)^2 = \epsilon \text{ for } i < j$$

A polytope is chiral if its automorphism group has two orbits on flags with adjacent flags in different orbits

The automorphism of a chiral n-polytope P can be generated by $\sigma_1, ..., \sigma_{n-1}$ such that

$$(\sigma_i...\sigma_j)^2 = \epsilon \text{ for } i < j$$

and the generators satisfy certain "intersection conditions"

1991. Schulte and Weiss Given a group Γ with distinguished generators

 $\sigma_1, ..., \sigma_{n-1}$

such that:

$$(\sigma_i...\sigma_j)^2 = \epsilon \text{ for } i < j$$

and satisfying certain "intersection conditions", one can construct an n-polytope with Γ acting on it.

1991. Schulte and Weiss Given a group Γ with distinguished generators

 $\sigma_1, ..., \sigma_{n-1}$

such that:

$$(\sigma_i...\sigma_j)^2 = \epsilon \text{ for } i < j$$

and satisfying certain "intersection conditions", one can construct an n-polytope with Γ acting on it.

The resulting polytope is either chiral or regular

Some open questions

- Given a (finite) group Γ, is there a chiral polytope having Γ as its automorphism group?
- Given a (finite/simple) group Γ, can one determine all chiral polytopes having Γ as automorphism group?
- Given a (finite) regular n-polytope P, is there a (finite) chiral polytope whose facets are all isomorphic to P? Can one classify them all?

Some open questions

- For each dimension n, is there a finite "geometrically chiral" n-polytope in Rⁿ? Can one classify them all?
- Can one classify all chiral (n-1)-polytopes in \mathbb{R}^n ?
- Given a graph G, is there a chiral polytope having G as its 1-skeleton? Can one classify them all?

Some open questions

- The smallest chiral polytopes are known for ranks 3, 4 and 5. What are is the smallest chiral polytope of rank 6? Of rank n?
- How prevalent is chirality (vs. regularity) among n-chiral polytopes? (or among polytopes with certain properties, for example, with a given automorphism group or with a given 1-skeleton)

• For each dimension n, is there a finite "geometrically chiral" n-polytope in Rⁿ?

In a work with Javier Bracho and Daniel Pellicer, we found the first example of a chiral 4-polytope in R⁴. (The one on the video!)

The polytope is combinatorially regular, but geometrically chiral.

It's 1-skeleton is the hypercube.

The facets are double covers of a cube.

The automorphism group is the rotational group of the hyper-cube.

•Given a (finite) group Γ , is there a chiral polytope having Γ as its automorphism group?

•Given a (finite) group Γ , is there a chiral polytope having Γ as its automorphism group?

For $\Gamma = A_n$ or $\Gamma = S_n$

(work with Marston Conder, Eugenia O'Reilly and Daniel Pellicer)

Recently we showed that: For all but finitely many n, both S_n and A_n are the automorphism group of a chiral 4-polytope For $\Gamma = A_n$ or $\Gamma = S_n$

(work with Marston Conder, Eugenia O'Reilly and Daniel Pellicer)

Recently we showed that: For all but finitely many n, both S_n and A_n are the automorphism group of a chiral 4-polytope

We are working on showing that that: Given d>4, for infinitely many n, both S_n and A_n are the automorphism group of a chiral d-polytope • How prevalent is chirality (vs. regularity) among n-chiral polytopes with Suzuki simple groups Sz(q)?

In a work with Dimitri Leemans we showed that:

- there are no chiral n-polytopes for n>4, with automorphism group Sz(q).
- if a(q) is the number of regular 3-polytopes with Sz(q), and b(q) the number of chiral ones, then

 $b(q) = O(q \cdot a(q))$

THANK YOU!