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Binary Search Trees and Young tableaux ...
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... are very similar combinatorial objects:

Robinson-Schensted
correspondence;
Plactic/Sylvester monoïd;
Hook formula;

Hopf algebra;

Tamari lattice/tableau
lattice.

I don’t think we fully understand why.
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Plactic like monoïds

Motivation: construct combinatorial Hopf algebras by taking
quotient in FQSym (Malvenuto-Reutenauer algebra of
permutations).

Plactic monoïd 7→ FSym (Poirier-Reutenauer algebra of
tableau). Application: proof of the Littlewood-Richardson rule.
sylvester monoïd 7→ BT (Loday-Ronco algebra of binary tree).
Application: dendriform algebra (shuffle/quasi-shuffle ...).

hypoplactic monoid 7→ (QSym,NCSF). Application: descent
of permutations, degenerate Hecke algebra Hn(0).
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Schensted’s algorithm

Algorithm

Start with an empty row r , insert the letters l of the word one by
one from left to right by the following rule:

replace the first letter strictly larger that l by l ;
append l to r if there is no such letter.

Insertion of ababcabbadbab

∅ a−→ a
b−→ a b

a−→ a a
b−→ a a b

c−→ a a b c
a−→

a a a c
b−→ a a a b

b−→ a a a b b
a−→

a a a a b
d−→ a a a a b d

b−→ a a a a b b
a−→

a a a a a b
b−→ a a a a a b b
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The Robinson-Schensted’s map

Bumping the letters: when a letter is replaced in Schensted
algorithm, insert it in a next row (placed on top in the drawing).

∅ a−→ a
b−→ a b

a−→ b
a a

b−→ b
a a b

c−→ b
a a b c

a−→

b b
a a a c

b−→ b b c
a a a b

b−→ b b c
a a a b b

a−→
c
b b b
a a a a b

d−→

c
b b b
a a a a b d

b−→
c
b b b d
a a a a b b

a−→
c d
b b b b
a a a a a b



Background: plactic like monoïds 7 de 43

The Robinson-Schensted’s correspondence

Going backward: If we record the order in which the box are added
then we can undo the whole process.

ababcabbadba ←→

 c d
b b b b
a a a a a b

,
9 13
3 6 7 11
1 2 4 5 8 1012

 .

Theorem
This define a bijection between words w and pairs

(semi standard Young tableau, standard Young tableau)

of the same shape.
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The plactic monoïd

Quotient of the free monoid by Knuth’s relations:

acb ≡ cab if a ≤ b < c

bac ≡ bca if a < b ≤ c

The letter b allowing the exchange is called catalytic.

Theorem
Two words give the same tableau under the RS map if and only if,
is it possible to go from one to the other using Knuth’s relations.

Proof: rewriting to the row reading of the tableau + green
invariants.
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A plactic class

153642

561342

156324

516342

516324 513642

513624

513264

156342

5613245 36 124

153624

153264

531624

531264

563124

5
3 6
1 2 4

1
3 1
5 3 1

6!
3·3·5 = 16
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Words and trees !

b≤ <

a d
a b d e

c

8< >

7 5
6 4 3 2

1
binary tree (BT) search tree (BST) decreasing tree (DT)

The underlying tree of a BST or a DT is called its shape.
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Sylvester RS correspondence for the word cadbaedb

∅, ∅ b,8−−−−→ b , 8
d ,7−−−−→ b

d
,

8
7

e,6−−−−→
b

d
e
,

8
7

6

a,5−−−−→

b
a d

e
,

8
5 7

6

b,4−−−−→
b

a d
b e

,
8

5 7
4 6

d ,3−−−−→

b
a d

b d e
,

8
5 7

4 3 6

a,2−−−−→
b

a d
a b d e

,
8

5 7
2 4 3 6

c,1−−−−→
b

a d
a b d e

c

,

8
5 7

2 4 3 6
1
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The sylvester monoïd

Quotient of the free monoid by the relations:

ac · · · b ≡ ca · · · b if a ≤ b < c

(· · · stands for any number of letters).

Theorem
Two words give the same binary search tree if and only if, is it
possible to go from one to the other using the sylvester relations.

Proof: orienting the relations + permutations avoiding 312.
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135624

153624

153264

563124

351264 315624

315264

531624

531264

561324

513624

513264

135264

351624

536124

356124

312564

132564

516324

156324

4
2

13
6

5

6
3

11
2

1

6!
6·3·2 = 20
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Standardization of a word

word of length n 7−→ permutation of Sn

w = l1l2 . . . ln 7−→ σ = Std(w)

for i < j then σ(i) > σ(j) iff li > lj .

Example: Std(abcadbcaa) = 157296834

a b c a d b c a a
a1 b5 c7 a2 d9 b6 c8 a3 a4
1 5 7 2 9 6 8 3 4
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Free Quasi symmetric functions

Definition
Sub-algebra of the free algebra generated by

Fσ :=
∑

Std(w)=σ−1

w ∈ Z 〈A〉 (1)

F123 =
∑

weakly increasing word of length 3

F321 =
∑

strictly decreasing word of length 3

F2143 = bacb + badc + cadc + cbdc + ...
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Product rule

Proposition

α ∈ Sm and β ∈ Sn. Then,

FαFβ =
∑

σ∈α β[m]

Fσ (2)

F132F21 = F13265 + F13625 + F13652 + F16325 + F16352

+ F16532 + F61325 + F61352 + F61532 + F65132

Isomorph to the algebra of permutations of Malvenuto-Reutenauer.
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Coproduct on FQSym

X and Y : infinite, totally ordered, mutually commuting alphabets.

Definitions
The ordered sum X +̂Y of X and Y is the union of X and Y where
the variables of X are smaller than the variables of Y .

Coproduct of Fσ defined by

Fσ 7−→ Fσ(X +̂Y ) 7−→
∑

Fα(X )Fβ(Y ) 7−→
∑

Fα ⊗ Fβ (3)

By construction, the compatibility relations holds !
This proves that FQSym is a Hopf algebra.
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Closed Formula

Proposition

The coproduct in FQSym is given by

∆(Fσ) =
n∑

k=0

FStd(w1...wk) ⊗ FStd(wk+1...wn) , (4)

for all permutation σ = w1 . . .wn.

∆(F312) = F312 ⊗ 1 + F21 ⊗ F1 + F1 ⊗ F12 + 1⊗ F312

Exercice: Prove the compatibility relation using the formulas.
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Compatibility with the standardization

Proposition

The sylvester and the plactic congruence are compatible with the
standardization:

w1 ≡ w2 ⇐⇒ Std(w1) ≡ Std(w2) (5)
and for all letter x ∈ A, |w1|x = |w2|x (6)

where |w |x denotes the number of occurrences of x in w.

ebcaddab ≡sylv abeacddb and 83516724 ≡sylv 13825674
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Compatibility with the restriction to intervals

I = [ak , . . . , al ] an interval of the alphabet

u/I : the word obtained by erasing the letters of u that are not in I

Proposition

The sylvester and the plactic congruence are compatible with the
restriction to intervals:

w1 ≡ w2 =⇒ w1/I ≡ w2/I

For I = [c , d , e]:

ebcaddab ≡sylv bcaadedb and ecdd ≡sylv cded
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Constructing Hopf algebras from a congruence

Theorem (H-Nzeutchap 2007)

Let ≡ be a congruence which is compatible with the
standardization and the restriction to the intervals. Then

PC :=
∑

class(σ)=C

Fσ

and
QC := Fσ(A/ ≡) for any σ ∈ C

span two dual Hopf algebras.

The base of these algebras are indexed by standard classes.
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The lattice

Proposition (Priez 2013)

The intersection and the union of two standardization / restriction
compatible monoids are also compatible.

Plactic ∪ Sylvester = Hypoplactic 7→ QSym.

Plactic ∩ Sylvester = 1
2 -plactic 7→ ???.
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The half plactic monoïd

Definition
Quotient of the free monoid by the relations:

acb ≡ cab if a ≤ b < c

The catalytic letter must be right after the exchanged letters.

How to describe the classes ?
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How to describe the classes ?

163524

361524

361254316524

163254

312654

631524

631254

136524

136254

365124

613254

316254

132654

635124

613524

1
2 -plactic
permutohedron

A 1
2 -plactic class
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Numerology

Number of classes:
n 0 1 2 3 4 5 6 7 8 9

#classes 1 1 2 5 16 61 274 1413 8266 54099

Distribution of size of the classes for n = 7:
size 1 2 3 4 5 6 7 9 10

#classes 454 320 194 90 132 44 40 54 16
size 12 14 15 16 19 20 21 26 35

#classes 18 16 2 14 2 1 10 2 4
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Poset and linear extensions

cadbaedb ←→
b

a d
a b d e

c

,

8
5 7

2 4 3 6
1

a

b
: a is after b

6

5

4

3

2

1
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Main Theorem

Theorem
For all 1

2 -plactic class C of size n permutations there exists a partial
order on {1, . . . , n} whose linear extensions are exactly the
elements of C .
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Another 1
2-plactic class

7 14 1 2 8 9 15 12 3 10 4 11 5 13 6

+ 1926 other linear extensions

14

15

10

9

8

7
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5

4

3

2

1

12

11
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Main Theorem (2)

Theorem
For all 1

2 -plactic class C of size n permutations there exists a partial
order on {1, . . . , n} whose linear extensions are exactly the
elements of C .

Sketch of the proof:
a rewriting system on the posets: removable edges;
rewriting commutes ⇒ the system is confluent;
For each permutation there is a unique minimal non rewritable
poset whose linear extensions contains its class;
induction on minimal elements ⇒ actual equality.
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Problem
Starting from a permutation σ, how to compute the poset P(σ)
associated to the class of sigma, without enumerating the class ?

Assuming the theorem is true, we work at minima: which are the
pair (i , j) which are not comparable ?

If ucabv = uacbv is a legible rewriting, then a and c are not
comparable in P .

Idea of the construction
Start with the linear poset associated to σ, and when we find two
element that are not comparable, remove the comparison.
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Removable edges

Notations:
< for comparison of integers, ≺ for the poset
Poset interval: ]a, b[:= {x | a ≺ x ≺ b}
Cover: a← b means a ≺ b and ]a, b[= ∅.

Definition
A cover a← c is removable if there exists a b such that

either a < b < c or c < b < a
b 6� c
if a ≺ b then ]a, b[ ⊂ {c}



The half plactic monoïd 33 de 43

a ≺ b and ]a, b[ ⊂ {c} 9

8

7

6

5

4

3

2

1

418293576

Lemma
A cover a← b is removable if and only if there exists a linear
extension uacbv of P such that uacbv ≡ ucabv.

Note: since a ≺ b then ucabv is not a linear extension of P .
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Proposition

If a poset P has no removable edge, then its set of linear extension
is closed by 1

2 -plactic rewriting; otherwise said, it is a union of
1
2 -plactic classes.

Problem
Given a permutation σ compute the minimal poset without
removable edge which contains σ as linear extension.
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Removing the edges

Warning !!! Removing is on the Poset (6= Hasse diagram)
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Removing commutes

Inclusion on poset Q ⊂ P means a ≺Q b implies a ≺P b.

Proposition

Suppose that Q ⊂ P and a←P b is a removable edge.
If a ≺Q b then a←Q b is a removable edge.

Corollary

Suppose (a, b) 6= (c , d). If both a←P b and c ←P d are
removable in P, then c ← d is removable in P/a← b.

One can do the removing in any order !
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The algorithm

Algorithm

Given a permutation σ compute the poset P(σ).

set P := σ seen as a total order;
while there is a removable edge pick one and remove it from P;
return P.

Theorem
The 1

2 -plactic class of σ is exactly the linear extensions of P(σ).

Proof by induction on the minimums.
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Binary search posets

Proposition

Let P be a poset without a removable edge, then for any x,
there is at most one a < x s.t. a← x
there is at most one a < x s.t. x ← a
there is at most one a > x s.t. a← x
there is at most one a > x s.t. x ← a
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A binary search posets
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The insertion algorithm

Lemma
For any letter x and word w, P(xw)/w = P(w).

15

14

13

12

11

10

9

8

7???

6

5

4

3

2

1



The half plactic monoïd 40 de 43

The insertion algorithm

Lemma
For any letter x and word w, P(xw)/w = P(w).

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1



Work in progress: further questions 41 de 43

Work in progress: further questions

Simple characterization of the posets

Classes are intervals of the permutohedron

k-sylvester monoïds:

acwb ≡ cawb if a ≤ b < c and |w | < k

The catalytic letter must not be too far
1 1 2 5 16 61 274 1413
1 1 2 5 14 45 162 636
1 1 2 5 14 42 136 472
1 1 2 5 14 42 132 434
1 1 2 5 14 42 132 429

analogues of the associahedron
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Thank You
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A characterisation of the posets

Inclusion on poset Q ⊂ P means a ≺Q b implies a ≺P b.

Proposition

Suppose that Q ⊂ P and a←P b is a removable edge.
If a ≺Q b then a←Q b is a removable edge.

Corollary

The posets associated to the 1
2 -plactic classes are exactly the

maximal (for the inclusion) posets among the posets without
removable edges.
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