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Polytope

De�nition
A polytope P is the convex hull of a �nite number of points.

→ Faces, edges, vertices.

a vertex or 0-face

a facet, here 2-face

an edge or 1-face

→ simple: the graph is regular of degree dim(P).
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De�nition
An associahedron is a polytope whose graph is the �ip graph
of triangulations of a convex polygon.

Faces ↔ dissections of the polygon



The �ip operation

Flip graph on the triangulations of the polygon:

Vertices: triangulations Edges: �ips

n diagonals ⇒ the �ip graph is n-regular.
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Useful con�guration (Loday's)
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Graph point of view

{diagonals of Gn+3} ←→ {strict subpaths of the path [n + 1]}
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Non-crossing diagonals

Two ways to be non-crossing in Loday's con�guration:

0

1

2

3 4 5

6

7

8

nested subpaths

0

1

2

3 4 5

6

7

8

non-adjacent subpaths



Pay attention to the second case:
The right condition is indeed non-adjacent, disjoint is not
enough!
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Now do it on graphs

G = (V ,E ) a (connected) graph.

De�nition

A tube of G is a proper subset t ⊆ V inducing a
connected subgraph of G ;

t and t ′ are compatible if they are nested or
non-adjacent;

A tubing of G is a set of pairwise compatible tubes of G .
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(generalizes a diagonal)
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A maximal tubing

(generalizes a triangulation)



Graph associahedra

The simplicial complex of tubings is spherical

⇒ �ip graph !

Theorem (Carr-Devadoss '06)

There exists a polytope called graph associahedron of G ,

denoted AssoG , whose graph is this �ip graph.

Faces ↔ tubings of G .
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Classical polytopes...
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...can be seen as graph associahedra
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Fans

Polyhedral Cone = positive span of �nitely many vectors.

Simplicial Cone = positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

Simplicial Fan = fan whose cones all are simplicial.

Complete Fan = fan whose cones cover the whole space.
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polytope ⇒ normal Fan.

simple polytope ⇒ complete simplicial Fan.



polytope ⇒ normal Fan.

simple polytope ⇒ complete simplicial Fan.



F. Santos' construction for the fan

→ choose an initial triangulation T0 of the polygon.

T0
−e1

−e2

−e3

−e4

d

→ for a diagonal d /∈ T0, de�ne ud = (11d crosses di )di∈T0
.

→ for a triangulation T , de�ne C (T ) = cone(ud |d ∈ T ).

→ De�ne F = {faces of C (T )|T triangulation}.
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Theorem (Santos 13)

F is a complete simplicial fan realizing the associahedron.
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Idea of the proof

→ The cone C (T0) is the negative orthant.

⇒ full-dimensional and simplicial
→ Local condition on �ips T ↔ T ′ = T r {d} ∪ {d ′}.

C(T )

C(T ′)

ud

ud′

< uδ >δ∈T\{d}
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Checking local conditions

→ Formulation: αud + α′ud ′ +
∑

δ∈Tr{d}

βδuδ = 0⇒ α.α′ > 0.

→ Reduction:

→ Finite number of linear dependences to check explicitly.
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For graphs?
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→ impossible to choose −1, 0, 1 coordinates.
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The compatibility degree

→ notion of compatibility degree between two tubes (t ‖ t ′).

(t ‖ t ′) =


−1 if t = t ′,
#(neighbors of t ′ in t r t ′) if t ′ 6⊆ t,
0 otherwise.

→ Counts compatibility obstructions.

Proposition

(t ‖ t ′) < 0⇔ (t ′ ‖ t) < 0⇔ t = t ′.

(t ‖ t ′) = 0⇔ (t ′ ‖ t) = 0⇔ t and t ′ are compatible.

(t ‖ t ′) = (t ′ ‖ t) = 1⇔ t and t ′ are exchangeable.
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The result!

→ for T0 = {t1, . . . , tn}, de�ne ut = ((t ‖ t1), . . . , (t ‖ tn))

→ for a maximal tubing T , de�ne C (T ) = cone(ut |t ∈ T ).

→ De�ne FG = {faces of C (T )|T triangulation}.

Theorem (M.,Pilaud 15+)

FG is a complete simplicial fan realizing AssoG .
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Link with cluster algebras

→ [CFZ]: compatibility degrees between roots in �nite types
to construct generalized associahedra.

{Generalized Associahedra}⋂{Graph Associahedra} = A,B ,C .

type graph
A path
B cycle
C cycle

roots tubes
(α ‖ α′) (t ‖ t ′)
(α ‖ α′) (t ‖ t ′)
(α ‖ α′) (t ′ ‖ t)
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