Compatibility Fan Realizations of Graph Associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

January 7th, 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Polytope

Definition

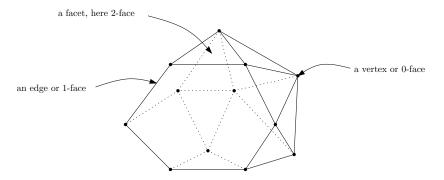
A polytope P is the convex hull of a finite number of points.

Polytope

Definition

A polytope P is the convex hull of a finite number of points.

 \rightarrow Faces, edges, vertices.



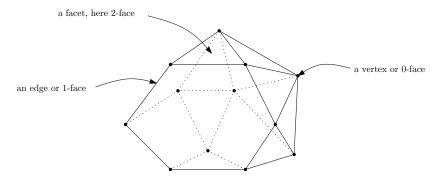
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polytope

Definition

A polytope P is the convex hull of a finite number of points.

 \rightarrow Faces, edges, vertices.

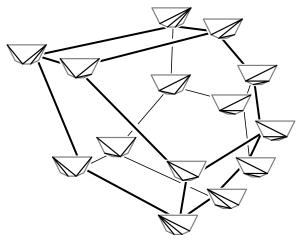


- 日本 - (理本 - (日本 - (日本 - 日本

 \rightarrow simple: the graph is regular of degree dim(P).

Definition

An *associahedron* is a polytope whose graph is the flip graph of triangulations of a convex polygon.

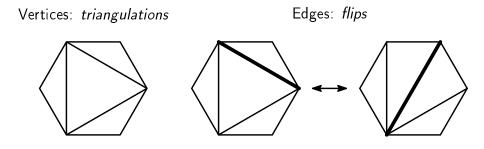


Faces \leftrightarrow dissections of the polygon

イロト イポト イヨト イ

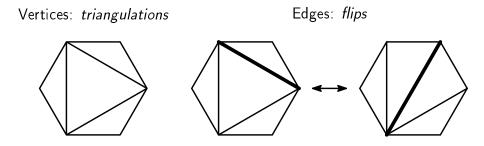
э

Flip graph on the triangulations of the polygon:



< ロ > < 同 > < 回 > < 回 >

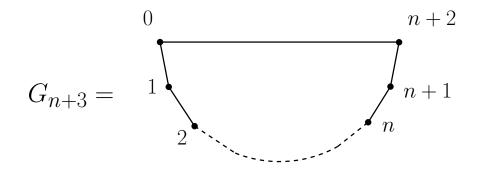
Flip graph on the triangulations of the polygon:



n diagonals \Rightarrow the flip graph is n-regular.

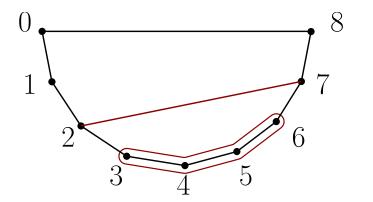
(日) (四) (日) (日)

Useful configuration (Loday's)



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

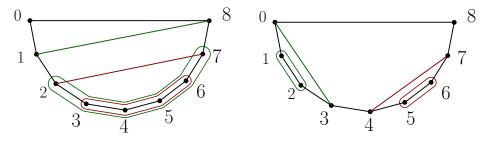
 $\{\text{diagonals of } G_{n+3}\} \longleftrightarrow \{\text{strict subpaths of the path } [n+1]\}$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:



non-adjacent subpaths

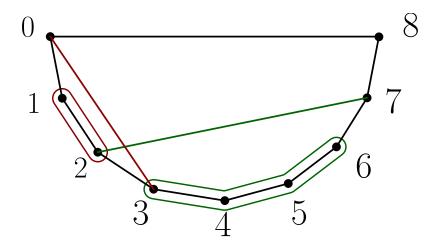
イロト イポト イヨト イ

3.1

nested subpaths

Pay attention to the second case:

The right condition is indeed *non-adjacent*, disjoint is not enough!



$$G = (V, E)$$
 a (connected) graph.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Definition

$$G = (V, E)$$
 a (connected) graph.

Definition

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

G = (V, E) a (connected) graph.

Definition

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

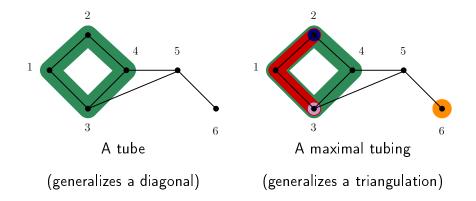
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 t and t' are compatible if they are nested or non-adjacent; G = (V, E) a (connected) graph.

Definition

- A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;
- A tubing of G is a set of pairwise compatible tubes of G.

ション ふゆ く 山 マ チャット しょうくしゃ



(日) (同) (日) (日)

э

Graph associahedra

The simplicial complex of tubings is spherical

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph !

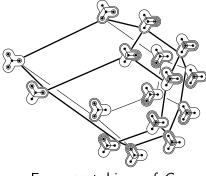
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph !

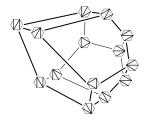
Theorem (Carr-Devadoss '06)

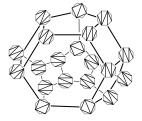
There exists a polytope called **graph associahedron** of G, denoted **Asso**_G, whose graph is this flip graph.

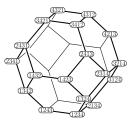


Faces \leftrightarrow tubings of *G*.

Classical polytopes...







The associahedron

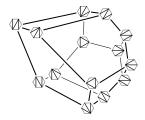
The cyclohedron

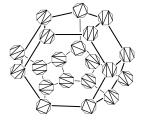
The permutahedron

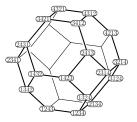
ж

(a)

.can be seen as graph associahedra

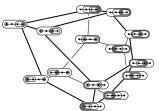


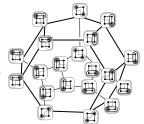


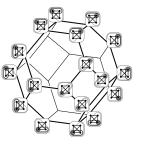


The associahedron

The cyclohedron The permutahedron







Simplicial Cone = positive span of independent vectors.

Simplicial Cone = positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simplicial Cone = positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simplicial Fan = fan whose cones all are simplicial.

Simplicial Cone = positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

Simplicial Fan = fan whose cones all are simplicial.

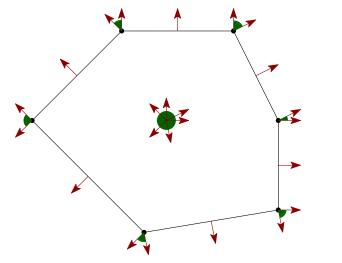
Complete Fan = fan whose cones cover the whole space.

 $polytope \Rightarrow normal Fan.$

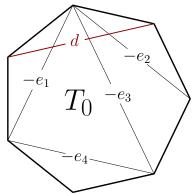
(ロ)、(型)、(E)、(E)、 E) のQで

polytope \Rightarrow normal Fan.

simple polytope \Rightarrow complete simplicial Fan.



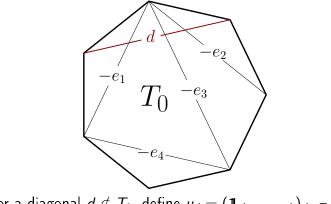
 \rightarrow choose an initial triangulation \mathcal{T}_0 of the polygon.



◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

э

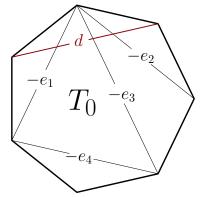
 \rightarrow choose an initial triangulation \mathcal{T}_0 of the polygon.



 \rightarrow for a diagonal $d \notin T_0$, define $u_d = (\mathbb{1}_{d \text{ crosses } d_i})_{d_i \in T_0}$.

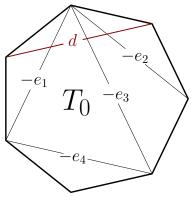
<ロ> (四) (四) (三) (三) (三) (三)

 \rightarrow choose an initial triangulation \mathcal{T}_0 of the polygon.



→ for a diagonal $d \notin T_0$, define $u_d = (\mathbb{1}_{d \text{ crosses } d_i})_{d_i \in T_0}$. → for a triangulation T, define $C(T) = cone(u_d | d \in T)$.

 \rightarrow choose an initial triangulation T_0 of the polygon.



 \rightarrow for a diagonal $d \notin T_0$, define $u_d = (\mathbb{1}_{d \text{ crosses } d_i})_{d_i \in T_0}$.

- ightarrow for a triangulation T, define $C(T) = cone(u_d | d \in T)$.
- \rightarrow Define $\mathcal{F} = \{ \text{faces of } C(T) | T \text{ triangulation} \}.$

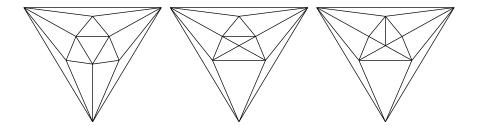
Theorem (Santos 13)

 ${\mathcal F}$ is a complete simplicial fan realizing the associahedron.

ション ふゆ アメリア メリア しょうくの

Theorem (Santos 13)

 ${\mathcal F}$ is a complete simplicial fan realizing the associahedron.



◆□> ◆圖> ◆ヨ> ◆ヨ> 三日

Idea of the proof

 \rightarrow The cone $C(T_0)$ is the negative orthant.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Idea of the proof

\rightarrow The cone $C(T_0)$ is the negative orthant. \Rightarrow full-dimensional and simplicial

Idea of the proof

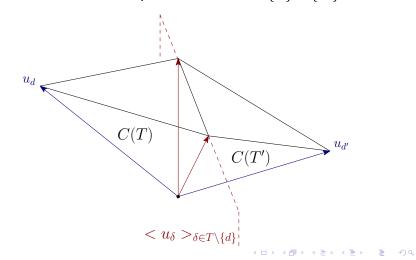
→ The cone $C(T_0)$ is the negative orthant. ⇒ full-dimensional and simplicial

 \rightarrow Local condition on flips $T \leftrightarrow T' = T \setminus \{d\} \cup \{d'\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Idea of the proof

→ The cone $C(T_0)$ is the negative orthant. ⇒ full-dimensional and simplicial → Local condition on flips $T \leftrightarrow T' = T \setminus \{d\} \cup \{d'\}$.



Checking local conditions

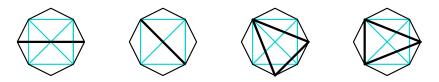
$$\rightarrow \text{ Formulation: } \alpha u_d + \alpha' u_{d'} + \sum_{\delta \in T \setminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

Checking local conditions

$$\rightarrow \text{ Formulation: } \alpha u_d + \alpha' u_{d'} + \sum_{\delta \in T \setminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$$

 \rightarrow Reduction:

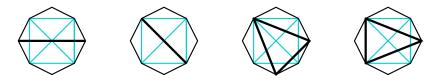


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Checking local conditions

$$\rightarrow \text{ Formulation: } \alpha u_d + \alpha' u_{d'} + \sum_{\delta \in T \setminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$$

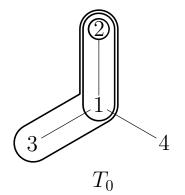
 \rightarrow Reduction:

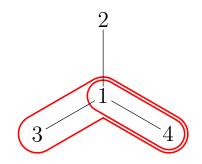


ightarrow Finite number of linear dependences to check explicitly.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

For graphs?

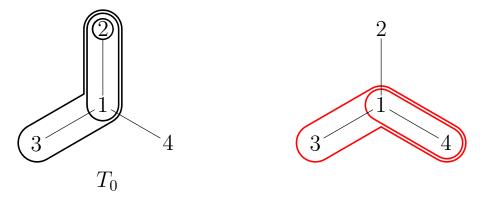




・ロト ・個ト ・モト ・モト

æ

For graphs?



\rightarrow impossible to choose -1, 0, 1 coordinates.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

 \rightarrow notion of compatibility degree between two tubes $(t \parallel t')$.

ightarrow notion of compatibility degree between two tubes ($t\parallel t'$).

$$(t \parallel t') = \begin{cases} -1 \text{ if } t = t', \\ \#(\text{neighbors of } t' \text{ in } t \smallsetminus t') \text{ if } t' \not\subseteq t, \\ 0 \text{ otherwise.} \end{cases}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

ightarrow notion of compatibility degree between two tubes ($t\parallel t'$).

$$(t \parallel t') = \begin{cases} -1 \text{ if } t = t', \\ \#(\text{neighbors of } t' \text{ in } t \smallsetminus t') \text{ if } t' \not\subseteq t, \\ 0 \text{ otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \rightarrow Counts compatibility obstructions.

ightarrow notion of compatibility degree between two tubes ($t\parallel t'$).

$$(t \parallel t') = \begin{cases} -1 \text{ if } t = t', \\ \#(\text{neighbors of } t' \text{ in } t \smallsetminus t') \text{ if } t' \not\subseteq t, \\ 0 \text{ otherwise.} \end{cases}$$

 \rightarrow Counts compatibility obstructions.

Proposition

• $(t \parallel t') < 0 \Leftrightarrow (t' \parallel t) < 0 \Leftrightarrow t = t'.$

•
$$(t \parallel t') = 0 \Leftrightarrow (t' \parallel t) = 0 \Leftrightarrow t$$
 and t' are compatible.

• $(t \parallel t') = (t' \parallel t) = 1 \Leftrightarrow t$ and t' are exchangeable.

 \rightarrow for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$

→ for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$ → for a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \rightarrow for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow for a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 \rightarrow Define $\mathcal{F}_{G} = \{ \text{faces of } C(T) | T \text{ triangulation} \}.$

- \rightarrow for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow for a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

うして ふゆう ふほう ふほう うらつ

 \rightarrow Define $\mathcal{F}_{G} = \{ \text{faces of } C(T) | T \text{ triangulation} \}.$

Theorem (M., Pilaud 15⁺)

 \mathcal{F}_{G} is a complete simplicial fan realizing $Asso_{G}$.

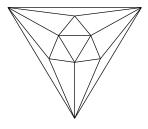
- \rightarrow for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow for a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

うして ふゆう ふほう ふほう うらつ

 \rightarrow Define $\mathcal{F}_{G} = \{ \text{faces of } C(T) | T \text{ triangulation} \}.$

Theorem (M., Pilaud 15⁺)

 \mathcal{F}_{G} is a complete simplicial fan realizing $Asso_{G}$.



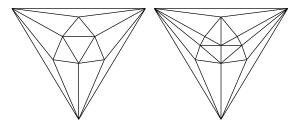
- \rightarrow for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow for a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

うして ふゆう ふほう ふほう うらつ

 \rightarrow Define $\mathcal{F}_{G} = \{ \text{faces of } C(T) | T \text{ triangulation} \}.$

Theorem (M., Pilaud 15⁺)

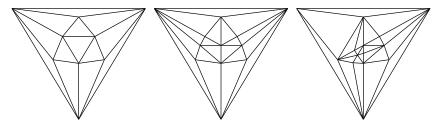
 \mathcal{F}_{G} is a complete simplicial fan realizing $Asso_{G}$.



- \rightarrow for $T_0 = \{t_1, \ldots, t_n\}$, define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow for a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.
- \rightarrow Define $\mathcal{F}_{G} = \{ \text{faces of } C(T) | T \text{ triangulation} \}.$

Theorem (M., Pilaud 15⁺)

 \mathcal{F}_{G} is a complete simplicial fan realizing $Asso_{G}$.



\rightarrow [CFZ]: compatibility degrees between roots in finite types to construct generalized associahedra.

うして ふゆう ふほう ふほう うらつ

{Generalized Associahedra} \cap {Graph Associahedra} = A, B, C.

\rightarrow [CFZ]: compatibility degrees between roots in finite types to construct generalized associahedra.

うして ふゆう ふほう ふほう うらつ

{Generalized Associahedra} \cap {Graph Associahedra} = A, B, C.

type	graph
A	path
B	cycle
C	cycle

\rightarrow [CFZ]: compatibility degrees between roots in finite types to construct generalized associahedra.

{Generalized Associahedra} \bigcap {Graph Associahedra} = A, B, C.

type	graph	roots	tubes
A	path	$(\alpha \parallel \alpha')$	$(t \parallel t'$
В	cycle	$(\alpha \parallel \alpha')$	$(t \parallel t'$
C	cycle	$(\alpha \parallel \alpha')$	$(t' \parallel t$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

THANK YOU FOR YOUR PASSIONATED LISTENING!

◆□▶ ◆帰▶ ◆三▶ ◆三▶ ○○○