

Dyck path triangulations of products of simplices and extendability

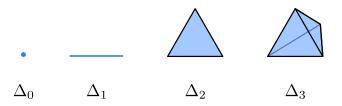
Arnau Padrol (j.w.w. César Ceballos & Camilo Sarmiento) Freie Universität Berlin

Séminaire Équipe Modèles Combinatoires — 17/12/2014

200

A *d-simplex*, is the convex hull of d + 1 affinely independent points in \mathbb{R}^d . The *standard simplex* is

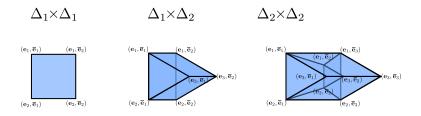
$$\Delta_{n-1} := \operatorname{conv} \left\{ \mathbf{e}_i : \mathbf{e}_i \in \mathbb{R}^n \right\}.$$



The (cartesian) product of two (standard) simplices is the polytope

$$\Delta_{m-1} \times \Delta_{n-1} := \operatorname{conv} \left\{ (\mathbf{e}_i, \overline{\mathbf{e}}_j) : \mathbf{e}_i \in \mathbb{R}^m, \ \overline{\mathbf{e}}_j \in \mathbb{R}^n \right\} \subset \mathbb{R}^{m+n}$$

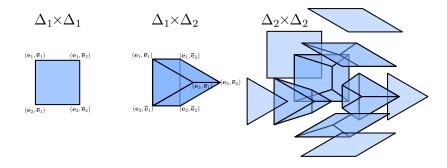
with $m \cdot n$ vertices and of dimension m + n - 2.



The (cartesian) product of two (standard) simplices is the polytope

$$\Delta_{m-1} \times \Delta_{n-1} := \operatorname{conv} \left\{ (\mathbf{e}_i, \overline{\mathbf{e}}_j) : \mathbf{e}_i \in \mathbb{R}^m, \ \overline{\mathbf{e}}_j \in \mathbb{R}^n \right\} \subset \mathbb{R}^{m+n}$$

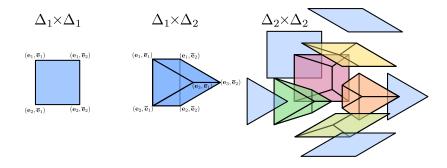
with $m \cdot n$ vertices and of dimension m + n - 2.



The (cartesian) product of two (standard) simplices is the polytope

$$\Delta_{m-1} \times \Delta_{n-1} := \operatorname{conv} \left\{ (\mathbf{e}_i, \overline{\mathbf{e}}_j) : \mathbf{e}_i \in \mathbb{R}^m, \ \overline{\mathbf{e}}_j \in \mathbb{R}^n \right\} \subset \mathbb{R}^{m+n}$$

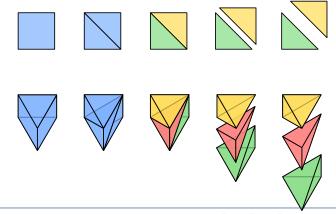
with $m \cdot n$ vertices and of dimension m + n - 2.



Triangulations

A *triangulation* of *P* is a subdivision of *P* into simplices $\{T_1, ..., T_n\}$ spanned by the vertices that "intersect well":

- ► $V(T_i) \subseteq V(P)$,
- $\blacktriangleright \bigcup T_i = P,$
- $T_i \cap T_j$ is a common face of T_i and T_j .



► Among the simplest polytopes: *P d*-polytope with d + 2 facets $\Leftrightarrow P = pyr_k(\Delta_{m-1} \times \Delta_{n-1})$

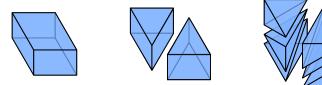
- Among the simplest polytopes: *P d*-polytope with d + 2 facets $\Leftrightarrow P = pyr_k(\Delta_{m-1} \times \Delta_{n-1})$
- Specially nice:

every triangulation of $\Delta_{m-1} \times \Delta_{n-1}$ has $\binom{n+m-2}{n-1}$ simplices.

- Among the simplest polytopes: *P d*-polytope with d + 2 facets $\Leftrightarrow P = pyr_k(\Delta_{m-1} \times \Delta_{n-1})$
- Specially nice:

every triangulation of $\Delta_{m-1} \times \Delta_{n-1}$ has $\binom{n+m-2}{n-1}$ simplices.

Building block for triangulations of products:



Open: What is the minimal # simplicies in a triangulation of $[0, 1]^d$?

- Among the simplest polytopes: *P d*-polytope with d + 2 facets $\Leftrightarrow P = pyr_k(\Delta_{m-1} \times \Delta_{n-1})$
- Specially nice:

every triangulation of $\Delta_{m-1} \times \Delta_{n-1}$ has $\binom{n+m-2}{n-1}$ simplices.

Building block for triangulations of products:

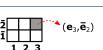
Open: What is the minimal # simplicies in a triangulation of $[0, 1]^d$?

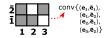
- Many combinatorial & algebraic interpretations:
 - Newton polytopes of products of all minors of a matrix [Babson-Billera '98]
 - Matroid polytope subdivisions of hypersimplices
 [Kapranov '92, Speyer '08, Herrmann-Joswig-Speyer '12]
 - Matroid of lines of arrangements of complete flags [Ardila-Billey '07, Ardila-Ceballos '11]
 - Arrangements of tropical hyperplanes
 [Sturmfels-Develin '04, Ardila-Develin '09 et al.]

 $n \times m$ rectangular grid:

A simplex of $\Delta_{m-1} \times \Delta_{n-1}$ is a subset of the grid:

Vertices of $\Delta_{m-1} \times \Delta_{n-1}$ can be represented in a





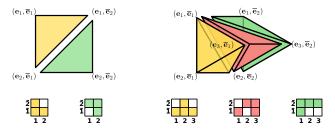
Arnau Padrol — FU Berlin — 17/12/2014

Grid representation

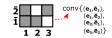
Vertices of $\Delta_{m-1} \times \Delta_{n-1}$ can be represented in a $n \times m$ rectangular grid:

A simplex of $\Delta_{m-1} \times \Delta_{n-1}$ is a subset of the grid:

So a triangulation of $\Delta_{m-1} \times \Delta_{n-1}$ can look like:



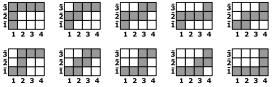
 $(\mathbf{e}_3, \mathbf{\overline{e}}_2)$

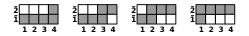


123

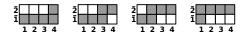
- Consider a staircase in a n × m grid.
- ► The corresponding vertices of $\Delta_{m-1} \times \Delta_{n-1}$ span a (n+m-2)-simplex.

- Consider a *staircase* in a $n \times m$ grid.
- ► The corresponding vertices of $\Delta_{m-1} \times \Delta_{n-1}$ span a (n+m-2)-simplex.
 - The $\binom{n+m-2}{n-1}$ simplices obtained from all staircases cover $\Delta_{m-1} \times \Delta_{n-1}$ and intersect well:



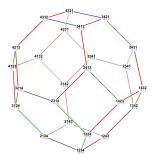


When m = 2 there are n! staircase triangulations



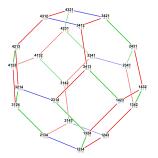
- When m = 2 there are n! staircase triangulations
- and these are all triangulations.

- When m = 2 there are n! staircase triangulations
- and these are all triangulations.
- The secondary polytope of $\Delta_1 \times \Delta_{n-1}$ is a Permutahedron.



The Permutahedron (figure from Wikipedia)

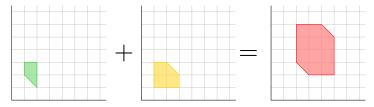
- When m = 2 there are n! staircase triangulations
- and these are all triangulations.
- The secondary polytope of $\Delta_1 \times \Delta_{n-1}$ is a Permutahedron.



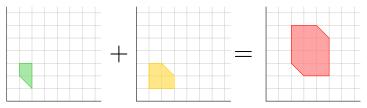
The Permutahedron (figure from Wikipedia)

It is an open problem due to Gel'fand, Kapranov and Zelevinsky to find an explicit description of all triangulations of $\Delta_{m-1} \times \Delta_{n-1}$. [Sturmfels '91]

The *Minkowski sum*: $A + B = \{a + b : a \in A, b \in B\}$



The *Minkowski sum*: $A + B = \{a + b : a \in A, b \in B\}$



Mixed subdivisions of P + Q with cells F + G where F, G are faces of subdivisions of P and Q.

Theorem (The Cayley trick [Huber-Rambau-Santos '00])

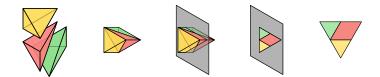
 $\left\{ \begin{matrix} mixed \ subdivisions \\ of \ P+Q \end{matrix} \right\} \xleftarrow{ \mathsf{Cayley trick}} \left\{ \begin{matrix} subdivisions \\ of \ \mathsf{Cay}(P,Q) \end{matrix} \right\}$

Theorem (The Cayley trick [Huber-Rambau-Santos '00])

 $\begin{cases} \text{fine mixed} \\ \text{subdivisions of } m\Delta_{n-1} \end{cases} \xrightarrow{\text{Cayley trick}} \begin{cases} \text{triangulations} \\ \text{of } \Delta_{m-1} \times \Delta_{n-1} \end{cases}$

Theorem (The Cayley trick [Huber-Rambau-Santos '00])

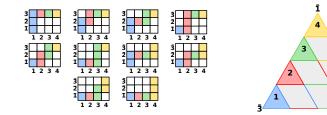
 $\begin{cases} \textit{fine mixed} \\ \textit{subdivisions of } \textbf{m} \Delta_{n-1} \end{cases} \overset{\textbf{Cayley trick}}{\longleftrightarrow} \begin{cases} \textit{triangulations} \\ \textit{of } \Delta_{m-1} \times \Delta_{n-1} \end{cases}$



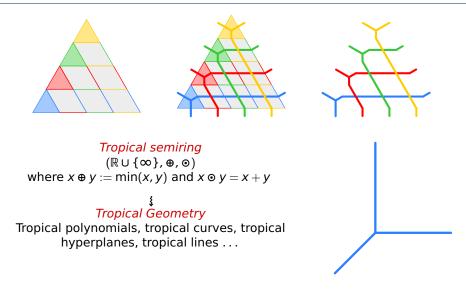
$\land + \land + \land + \land = \land$

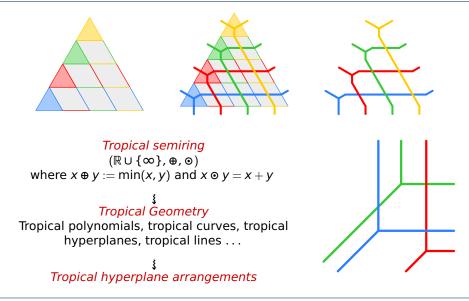
Arnau Padrol — FU Berlin — 17/12/2014

5

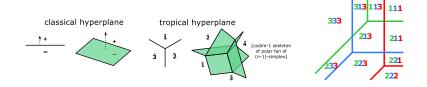


Tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \min(x, y)$ and $x \odot y = x + y$

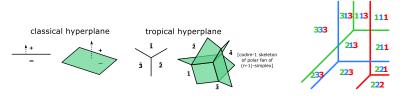




Tropical Oriented Matroids



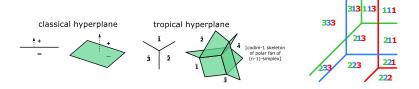
Tropical Oriented Matroids



Theorem (Develin-Sturmfels '04)

 $\begin{cases} \textbf{regular triangulations} \\ of \Delta_{m-1} \times \Delta_{n-1} \end{cases} \longleftrightarrow \begin{cases} (combintorial types of) generic arrangements of \\ m \text{ tropical hyperplanes in } \mathbb{TP}^{n-1} \end{cases}$

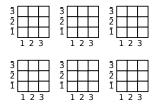
Tropical Oriented Matroids

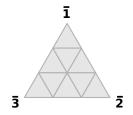


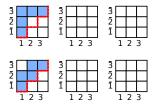
Theorem (Develin-Sturmfels '04, Santos '04, Ardila-Develin '09, Oh-Yoo '12, Horn '12)

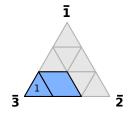
 $\begin{cases} triangulations \\ of \Delta_{m-1} \times \Delta_{n-1} \end{cases} \longleftrightarrow \begin{cases} (combintorial types of) generic arrangements of \\ m tropical pseudohyperplanes in \mathbb{TP}^{n-1} \\ (= generic tropical oriented matroids) \end{cases}$

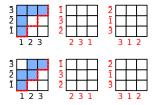
The Dyck path triangulations

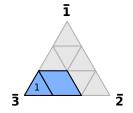


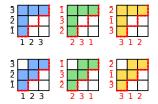


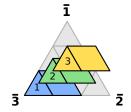


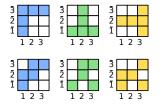


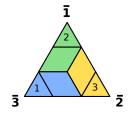




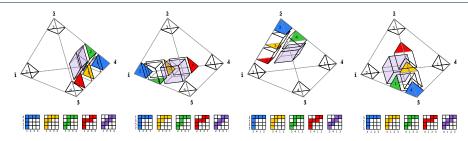




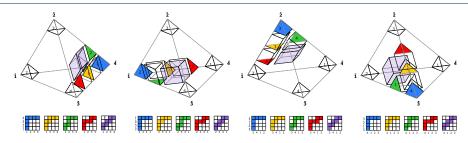




Dyck path triangulation of $\Delta_{n-1} \times \Delta_{n-1}$



Dyck path triangulation of $\Delta_{n-1} \times \Delta_{n-1}$



Theorem (CPS '14)

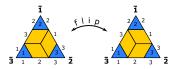
The resulting $n \cdot \frac{1}{n} \binom{2(n-1)}{n-1}$ simplices form a regular triangulation of $\Delta_{n-1} \times \Delta_{n-1}$: the Dyck path triangulation.

Some relatives

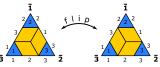
Flipped Dyck path triangulation:

Some relatives

Flipped Dyck path triangulation:

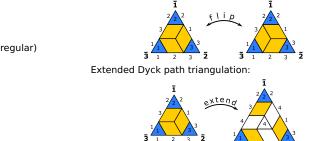


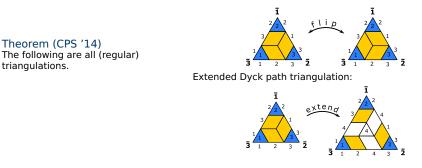
Flipped Dyck path triangulation:



Theorem (CPS '14) The following are all (regular) triangulations.

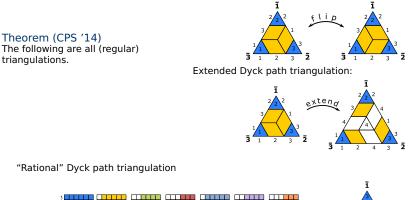
Extended Dyck path triangulation:

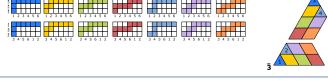


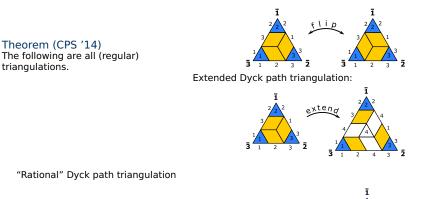


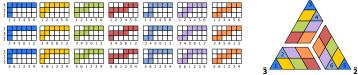
"Rational" Dyck path triangulation









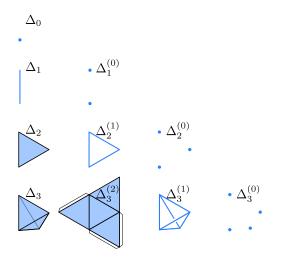


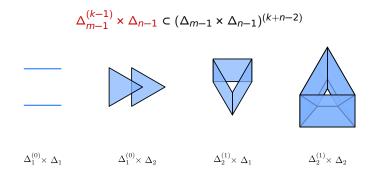
Arnau Padrol — FU Berlin — 17/12/2014

Extendability

Skeletons

The *k*-skeleton of *P*, $P^{(k)}$, is the complex of $(\leq k)$ -faces of *P*.





Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Question

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Question

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Question

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Question

Triangulations of $\Delta_{m-1} \times \Delta_{n-1} \twoheadrightarrow$ triangulations of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$.

Question

- k = 2, min{m, n} ≤ 3: one obstruction, complete characterization [Ardila-Ceballos '11]
- k = 2, min{m, n} > 3: more obstructions, open [Santos '11, CPS '14]
- **Conjecture:** for k = 2, general m, n, there are ∞ -many obstructions
- ▶ $m \ge n > k$: open. **Conjecture:** there are ∞-many obstructions
- *m* ≥ *k* ≥ *n*: solved [CPS '14]

Theorem (CPS '14)

Let $m \ge k \ge n \in \mathbb{N}$. If a triangulation of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$ extends, then the extension is unique triangulation of $\Delta_{m-1} \times \Delta_{n-1}$.

Theorem (CPS '14)

Let $m \ge k \ge n \in \mathbb{N}$. If a triangulation of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$ extends, then the extension is unique triangulation of $\Delta_{m-1} \times \Delta_{n-1}$.

Theorem (CPS '14)

Let $m \ge k > n \in \mathbb{N}$. Every triangulation of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1} \times \Delta_{n-1}$.

Theorem (CPS '14)

Let $m \ge k \ge n \in \mathbb{N}$. If a triangulation of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$ extends, then the extension is unique triangulation of $\Delta_{m-1} \times \Delta_{n-1}$.

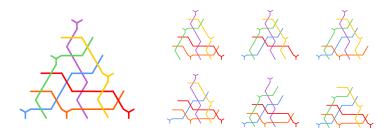
Theorem (CPS '14)

Let $m \ge k > n \in \mathbb{N}$. Every triangulation of $\Delta_{m-1}^{(k-1)} \times \Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1} \times \Delta_{n-1}$.

Some alternative interpretations

- "as *m* increases, triangulations of $\Delta_{m-1} \times \Delta_{n-1}$ don't get much more complicated than triangulations of $\Delta_n \times \Delta_{n-1}$ "
- "when $m \gg n$, compatibly piecing together triangulations of $\Delta_n \times \Delta_{n-1}$ we can always build any triangulation of $\Delta_{m-1} \times \Delta_{n-1}$ "

Extendability result "tropically"



Tropically, when $m \ge n$:

► a generic arrangement of *m* tropical pseudohyperplanes in TPⁿ⁻¹ is completely determined by its ^(m)_n generic subarrangements of *n* tropical pseudohyperplanes in TPⁿ⁻¹.

when m > n:

- ▶ a generic arrangement of *m* tropical pseudohyperplanes in \mathbb{TP}^{n-1} gives rise to a "compatible collection" of $\binom{m}{n+1}$ generic subarrangements of n+1 tropical pseudohyperplanes in \mathbb{TP}^{n-1} .
- conversely, every "compatible" collection of (^d_{n+1}) generic subarrangements of n + 1 tropical pseudohyperplanes in TPⁿ⁻¹ equals the collection of restrictions of a unique generic arrangement of *m* tropical pseudohyperplanes in TPⁿ⁻¹

Tropically, when $m \ge n$:

► a generic arrangement of *m* tropical pseudohyperplanes in TPⁿ⁻¹ is completely determined by its ^(m)_n generic subarrangements of *n* tropical pseudohyperplanes in TPⁿ⁻¹.

when m > n:

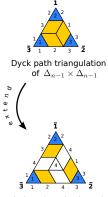
- ▶ a generic arrangement of *m* tropical pseudohyperplanes in \mathbb{TP}^{n-1} gives rise to a "compatible collection" of $\binom{m}{n+1}$ generic subarrangements of n+1 tropical pseudohyperplanes in \mathbb{TP}^{n-1} .
- conversely, every "compatible" collection of (^d_{n+1}) generic subarrangements of n + 1 tropical pseudohyperplanes in TPⁿ⁻¹ equals the collection of restrictions of a unique generic arrangement of *m* tropical pseudohyperplanes in TPⁿ⁻¹

without adjective "tropical", this is in

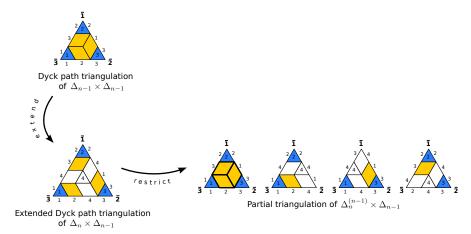
The bound is optimal: k > n is necessary for existence, i.e.,

Theorem (CPS '14)

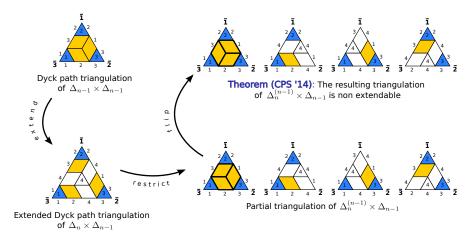
For every natural number $n \ge 2$ there is a non-extendable triangulation of $\Delta_n^{(n-1)} \times \Delta_{n-1}$.



Extended Dyck path triangulation of $\Delta_n \times \Delta_{n-1}$



Sketch of proof

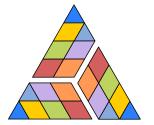


Dyck path triangulations exploit the identity

$$n \cdot C_{n-1} = \binom{2n-2}{n-1},$$

Rational Dyck path triangulations use that

$$n\cdot C(n,rn-1)=\binom{(r+1)n-2}{n-1},$$



Question

What about these?

$$a \cdot C(a, b) = \begin{pmatrix} a+b-1\\ a-1 \end{pmatrix}$$
 or $(a+b) \cdot C(a, b) = \begin{pmatrix} a+b\\ a \end{pmatrix}$

where $C(a, b) = \frac{1}{a+b} {a+b \choose a}$ (for a and b relatively prime) are the rational Catalan numbers.

Moltes Gràcies! Merci Beaucoup!

