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Simplices

A d-simplex, is the convex hull of d + 1 affinely independent points in Rd.

The standard simplex is

∆n−1 := conv
�

ei : ei ∈ Rn
	

.

,
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Products of simplicies

The (cartesian) product of two (standard) simplices is the polytope

∆m−1 × ∆n−1 := conv
�

(ei,ej): ei ∈ Rm, ej ∈ Rn
	

⊂ Rm+n

with m · n vertices and of dimension m + n− 2.

,
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Triangulations

A triangulation of P is a subdivision of P into simplices {T1, . . . ,Tn}
spanned by the vertices that “intersect well”:
É V(Ti) ⊆ V(P),
É

⋃

Ti = P,
É Ti ∩ Tj is a common face of Ti and Tj.

,
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Triangulations of products of simplices

É Among the simplest polytopes:
P d-polytope with d + 2 facets⇔ P = pyrk(∆m−1 × ∆n−1)

É Specially nice:
every triangulation of ∆m−1 × ∆n−1 has

�n+m−2
n−1

�

simplices.
É Building block for triangulations of products:

Open: What is the minimal # simplicies in a triangulation of [0,1]d?
É Many combinatorial & algebraic interpretations:

É Newton polytopes of products of all minors of a matrix
[Babson-Billera ’98]

É Matroid polytope subdivisions of hypersimplices
[Kapranov ’92, Speyer ’08, Herrmann-Joswig-Speyer ’12]

É Matroid of lines of arrangements of complete flags
[Ardila-Billey ’07, Ardila-Ceballos ’11]

É Arrangements of tropical hyperplanes
[Sturmfels-Develin ’04, Ardila-Develin ’09 et al.]

,
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Grid representation

Vertices of ∆m−1 × ∆n−1 can be represented in a
n×m rectangular grid:

A simplex of ∆m−1 × ∆n−1 is a subset of the grid:

So a triangulation of ∆m−1 × ∆n−1 can look like:

1 2

2
1

1 2

2
1

1 2 3

2
1

1 2 3

2
1

1 2 3

2
1
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Staircase triangulation

É Consider a staircase in a n×m grid.
É The corresponding vertices of ∆m−1 × ∆n−1 span a

(n + m− 2)-simplex.

É The
�n+m−2

n−1

�

simplices obtained from all staircases cover ∆m−1 ×∆n−1
and intersect well:

É They form the staircase triangulation of ∆m−1 × ∆n−1.

,
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When m = 2...

1 2 3 4

 
2
1

1 2 3 4

 
2
1

1 2 3 4

 
2
1

1 2 3 4

 
2
1

É When m = 2 there are n!
staircase triangulations

É and these are all triangulations.
É The secondary polytope of

∆1 × ∆n−1 is a Permutahedron.
The Permutahedron

(figure from Wikipedia)

It is an open problem due to Gel’fand, Kapranov and Zelevinsky
to find an explicit description of all triangulations of ∆m−1 ×∆n−1.

[Sturmfels ’91]

,
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Minkowski sums

The Minkowski sum: A + B = {a + b : a ∈ A,b ∈ B}

Mixed subdivisions of P + Q with cells F + G where F,G are faces of
subdivisions of P and Q.

,
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The Cayley trick

Theorem (The Cayley trick [Huber-Rambau-Santos ’00])
§

mixed subdivisions
of P + Q

ª

Cayley trick
←−−−−−−→

§

subdivisions
of Cay(P,Q)

ª

,
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The Cayley trick

Theorem (The Cayley trick [Huber-Rambau-Santos ’00])
§
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The Cayley trick

3

1

2

,
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The Cayley trick
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The Cayley trick
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Tropical arrangements

Tropical semiring
(R ∪ {∞},⊕,�)

where x⊕ y := min(x,y) and x� y = x + y

 

Tropical Geometry
Tropical polynomials, tropical curves, tropical

hyperplanes, tropical lines . . .

 

Tropical hyperplane arrangements

,
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Tropical Oriented Matroids

111113133

333

132 112

122

222
332 322

,
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Tropical Oriented Matroids

111113133

333

132 112

122

222
332 322

Theorem (Develin-Sturmfels ’04)

§

regular triangulations
of ∆m−1 ×∆n−1

ª

↔
§

(combintorial types of) generic arrangements of
m tropical hyperplanes in TPn−1

ª

,
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Tropical Oriented Matroids

111113133

333

132 112

122

222
332 322

Theorem (Develin-Sturmfels ’04, Santos ’04, Ardila-Develin ’09, Oh-Yoo ’12, Horn ’12)

§

triangulations
of ∆m−1 ×∆n−1

ª

↔

(

(combintorial types of) generic arrangements of
m tropical pseudohyperplanes in TPn−1

(= generic tropical oriented matroids)

)

,
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The Dyck path triangulations

,
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Dyck path triangulation of ∆n−1 × ∆n−1

Consider the Dyck paths in an n× n grid

1 2 3

3
2
1

1 2 3

3
2
1

1 2 3

3
2
1

1 2 3

3
2
1

1 2 3

3
2
1

1 2 3

3
2
1

1

23

with their orbits under (i, j) 7→ (i + 1 mod n, j + 1 mod n)

Theorem (CPS ’14)

The resulting n · 1
n

�2(n−1)
n−1

�

simplices form a regular triangulation of
∆n−1 × ∆n−1: the Dyck path triangulation.

,
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Dyck path triangulation of ∆n−1 × ∆n−1

Consider the Dyck paths in an n× n grid
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Some relatives

Theorem (CPS ’14)
The following are all (regular)
triangulations.

Flipped Dyck path triangulation:

Extended Dyck path triangulation:

“Rational” Dyck path triangulation

,
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Extendability

,
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Skeletons

The k-skeleton of P, P(k), is the complex of (≤ k)-faces of P.

,
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Semiskeletons

∆
(k−1)

m−1 × ∆n−1 ⊂ (∆m−1 × ∆n−1)(k+n−2)

,
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Partial triangulations

Triangulations of ∆m−1 × ∆n−1   triangulations of ∆
(k−1)

m−1 × ∆n−1.

Question

Which triangulations of ∆
(k−1)

m−1 × ∆n−1 can be extended to ∆m−1 × ∆n−1?.

É k = 2, min{m,n} ≤ 3: one obstruction, complete characterization
[Ardila-Ceballos ’11]

É k = 2, min{m,n} > 3: more obstructions,open [Santos ’11,
CPS ’14]

É Conjecture: for k = 2, general m,n, there are ∞-many obstructions
É m ≥ n > k: open. Conjecture: there are ∞-many obstructions
É m ≥ k ≥ n: solved [CPS ’14]

,
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Extendability result

Theorem (CPS ’14)

Let m ≥ k ≥ n ∈ N. If a triangulation of ∆
(k−1)

m−1 × ∆n−1 extends, then the
extension is unique triangulation of ∆m−1 × ∆n−1.

Theorem (CPS ’14)

Let m ≥ k > n ∈ N. Every triangulation of ∆
(k−1)

m−1 × ∆n−1 extends to a
unique triangulation of ∆m−1 × ∆n−1.

Some alternative interpretations

É “as m increases, triangulations of ∆m−1 × ∆n−1 don’t get much more
complicated than triangulations of ∆n × ∆n−1”

É “when m� n, compatibly piecing together triangulations
of ∆n × ∆n−1 we can always build any triangulation of ∆m−1 × ∆n−1”

,
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Extendability result “tropically”
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Extendability result “tropically”

Tropically, when m ≥ n:
É a generic arrangement of m tropical pseudohyperplanes in TPn−1 is

completely determined by its
�m

n

�

generic subarrangements of n

tropical pseudohyperplanes in TPn−1.

when m > n:
É a generic arrangement of m tropical pseudohyperplanes in TPn−1

gives rise to a “compatible collection” of
� m
n+1

�

generic
subarrangements of n + 1 tropical pseudohyperplanes in TPn−1.

É conversely, every “compatible” collection of
� d
n+1

�

generic
subarrangements of n + 1 tropical pseudohyperplanes in TPn−1

equals the collection of restrictions of a unique generic arrangement
of m tropical pseudohyperplanes in TPn−1

without adjective “tropical”, this is in

.

,
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Non-extendability result

The bound is optimal: k > n is necessary for existence, i.e.,

Theorem (CPS ’14)

For every natural number n ≥ 2 there is a non-extendable triangulation of

∆
(n−1)
n × ∆n−1.

,
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More rational Dyck path triangulations?

Dyck path triangulations exploit the identity

n ·Cn−1 =

�

2n− 2

n− 1

�

,

Rational Dyck path triangulations use that

n ·C(n, rn− 1) =

�

(r + 1)n− 2

n− 1

�

,

Question

What about these?

a ·C(a,b) =

�

a + b− 1

a− 1

�

or (a + b) ·C(a,b) =

�

a + b

a

�

where C(a,b) = 1
a+b

�a+b
a

�

(for a and b relatively prime) are the rational
Catalan numbers.
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Moltes Gràcies! Merci Beaucoup!
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