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pleinement commutatifs dans

les groupes de Coxeter finis

et affines

Frédéric Jouhet (ICJ, Université Lyon 1)
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Coxeter groups

(W,S) Coxeter group W given by Coxeter matrix (mst)s,t∈S

Relations:


s2 = 1

sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

Braid relations
mst = 2: commutation relation
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Coxeter groups

(W,S) Coxeter group W given by Coxeter matrix (mst)s,t∈S

Relations:


s2 = 1

sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

Braid relations

Length `(w)= minimal l such that w = s1s2 . . . sl with si ∈ S

Such a word is a reduced decomposition of w ∈W

Matsumoto property (1964): Given two reduced
decompositions of w, there is a sequence of braid relations
which can be applied to transform one into the other

mst = 2: commutation relation



FC elements

Equivalently, w is fully commutative if its reduced
decompositions form only one commutation class

An element w is fully commutative if given two reduced
decompositions of w, there is a sequence of commutation
relations which can be applied to transform one into the other

Full commutativity is a strenghtening of Matsumoto’s property



Type An−1 → The symmetric group Sn

s1 sn−1

An−1

s2

ϑ : si 7→ (i, i+ 1) extends to an isomorphism with Sn

sisi+1si = si+1sisi+1

sisj = sjsi, |j − i| > 1

Consider S = {s1, . . . , sn−1}, with relations s2
i = 1 and

{



Type An−1 → The symmetric group Sn

s1 sn−1

An−1

s2

ϑ : si 7→ (i, i+ 1) extends to an isomorphism with Sn

sisi+1si = si+1sisi+1

sisj = sjsi, |j − i| > 1

Theorem [Billey-Jockush-Stanley (1993)]

w is fully commutative ⇔ ϑ(w) is 321-avoiding

One can use this to show that FC elements in type An−1 are

counted by Catalan numbers, i.e., |SFCn | =
1

n+ 1

(
2n

n

)

Consider S = {s1, . . . , sn−1}, with relations s2
i = 1 and

{
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Previous work

• [Stembridge (1996, 1998)]: first properties, classification of
W with a finite number of FC elements, enumeration in each
of these cases

• [Green–Losonczy (2001), Shi (2003), ...] connect FC
elements to Kazhdan-Lusztig polynomials

• [Fan(1995), Graham (1995)] show that FC elements in any
Coxeter group W naturally index a basis of the (generalized)
Temperley–Lieb algebra of W
• [Fan–Green (1999)] study the affine Temperley–Lieb algebra:
cells, involutions, and diagram algebra

• [Barcucci et al (2001)] enumerate in type A with respect to
the Coxeter length using pattern-avoidance

• [Hanusa–Jones (2010)] enumerate in type Ã with respect to
the Coxeter length, using affine permutations



Outline

We enumerate FC elements and involutions according to the
Coxeter length for any finite or affine Coxeter group W

WFC(t) :=
∑
w is FC

t`(w) and W̄FC(t) :=
∑

w is FC involution

t`(w)



Outline

We enumerate FC elements and involutions according to the
Coxeter length for any finite or affine Coxeter group W

I will focus on types A and Ã, corresponding to the finite and
affine symmetric groups. The idea is to encode the FC
elements in these cases by certain lattice paths

[B-J-N (2012-14)] We compute WFC(t) and W̄FC(t) for any
finite or affine W . When W is affine, the coefficients of the
series form ultimately periodic sequences

WFC(t) :=
∑
w is FC

t`(w) and W̄FC(t) :=
∑

w is FC involution

t`(w)



Characterization of FC elements

Proposition[Stembridge] A reduced word represents a FC
element if and only if no element of its commutation class
contains a factor sts · · ·︸ ︷︷ ︸

mst

for a mst ≥ 3

How to see if a commutation class verifies the above property ?
⇒ use the theory of heaps, which are posets encoding
commutation classes



Example of heaps in A4(= S5)

Heap of a word = poset H labeled by generators si of W

s1 s2 s3 s4

s1s3s4s1s2s3

Linear extensions of H ⇔ words of the commutation class
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Heap of a word = poset H labeled by generators si of W
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s1s3s4s1s2s3

Linear extensions of H ⇔ words of the commutation class

Vertex stays above if corresponding
generators do not commute.
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Example of heaps in A4(= S5)

Heap of a word = poset H labeled by generators si of W

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

s1s3s4s1s2s3 s1s3s2s4s1s3 s2s3s1s4s2s3

NOT REDUCED NOT FC FC

Linear extensions of H ⇔ words of the commutation class



Characterization of FC heaps

In type A and Ã: FC heaps above are particularly simple

FC element w Heap H avoiding

Length `(w) Number of elements |H|

s
s

s
s
s

t
t

mst

s
s
s

t
t

mstand



Type A

FC heaps avoid
precisely

They have the following form

si si+1 si+2

∅

si si+1 si+2

∅

si

s1 s2 sn−2 sn−1



Type A

FC heaps avoid
precisely

They have the following form

Proposition FC Heaps of type A are characterized by:
(a) At most one occurrence of s1 (resp. sn−1)
(b) ∀i, elements with labels si, si+1 form an alternating chain

si si+1 si+2

∅

si si+1 si+2

∅

si

s1 s2 sn−2 sn−1



Type A: bijection with Motzkin-type paths

s1 s2
sn−2 sn−1

FC Heap
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Type A: bijection with Motzkin-type paths

s1 s2
sn−2 sn−1

FC Heap

Path

An extra information is needed

To finish, add initial and final steps to the path

L

R
R

L
this one is a convention

0 n



Type A: bijection with Motzkin paths

Theorem [BJN (2012)]: this is a bijection between FC heaps
of type An−1 and Motzkin paths of length n with horizontal
steps at height h > 0 (resp. h = 0) labeled L or R (resp.
labeled L)

Size of the heap ⇔ Area of the path
(Sum of the heights of all vertices)



Type A: bijection with Motzkin paths

Theorem [BJN (2012)]: this is a bijection between FC heaps
of type An−1 and Motzkin paths of length n with horizontal
steps at height h > 0 (resp. h = 0) labeled L or R (resp.
labeled L)

Size of the heap ⇔ Area of the path

Remark

L R

transforms these paths into Dyck paths ⇒ Catalan numbers

(Sum of the heights of all vertices)



Generating functions

( * indicates that horizontal steps at height h = 0 must have label L)

We have: AFC(x) :=
∑
n≥1

AFCn−1(t)xn = M∗(x)− 1



Generating functions

We have to count our labeled Motzkin paths with respect to
their area → use recursive decompositions

( * indicates that horizontal steps at height h = 0 must have label L)

We have: AFC(x) :=
∑
n≥1

AFCn−1(t)xn = M∗(x)− 1

Corollary [Barcucci et al. (2001)] We have:

AFC(x) = x+ xAFC(x) + txAFC(x)(AFC(tx) + 1)



What about FC involutions?

FC involutions in W̄ are FC elements whose commutation class
is palindromic: it includes the mirror images of its members
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What about FC involutions?

FC involutions in W̄ are FC elements whose commutation class
is palindromic: it includes the mirror images of its members

Not palindromic

s2s4s8s1s3s5s2s4s6s3s5 s3s8s2s4s1s3s5s2s4s3

Palindromic

Motzkin path
M∗(x)− 1

0

LR

0

R

L

Dyck paths and h steps
Cat(x)

1−xCat(x) − 1



Major index

Descent set of w ∈W is Des(w) = {s ∈ S | `(ws) < `(w)}
Major index of w ∈W is the sum of the labels of its descents

maj(w) :=
∑

si∈Des(w)

i
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Major index

Descent set of w ∈W is Des(w) = {s ∈ S | `(ws) < `(w)}
Major index of w ∈W is the sum of the labels of its descents

maj(w) :=
∑

si∈Des(w)

i

2 8 10

n = 13 odd

2 8 10

7

6

λ =

(
4, 3, 0
5, 4, 1

)(0, 2)

(3, 5)

(4, 6)



Major index generating functions of FC involutions

λ =

(
a1 · · · aj
b1 · · · bj

)
with a1 < bn2 c, b1 < d

n
2 e ⇔ λ ⊂ bn2 c × d

n
2 e

Barnabei et al use 321-avoiding permutations and RSK

Proposition [Barnabei et al, BJN (2014)]∑
w∈ĀFCn−1

qmaj(w) =

[
n

bn/2c

]
q



Major index generating functions of FC involutions

λ =

(
a1 · · · aj
b1 · · · bj

)
with a1 < bn2 c, b1 < d

n
2 e ⇔ λ ⊂ bn2 c × d

n
2 e

Barnabei et al use 321-avoiding permutations and RSK

Proposition [Barnabei et al, BJN (2014)]∑
w∈ĀFCn−1

qmaj(w) =

[
n

bn/2c

]
q

Our approach generalizes to types B and D

Proposition [BJN (2014)]

∑
w∈B̄FCn

qmaj(w) =
n∑
h=1

qh
h−1∑
i=0

[
h− 1

i

]
q

+

[
n

bn/2c

]
q



Affine types

s1 sn−1

Ãn−1

s2

s0

Theorem [Green (2001)] FC elements of type Ãn−1

correspond to 321-avoiding affine permutations



Affine types

s1 sn−1

Ãn−1

s2

s0

Hanusa–Jones used this to compute ÃFCn−1(t) and derived a
complicated expression for this infinite series

Theorem [Green (2001)] FC elements of type Ãn−1

correspond to 321-avoiding affine permutations

Theorem [Hanusa-Jones (2010)] The coefficients of ÃFCn−1(t)
are ultimately periodic of period dividing n



Generating functions

f3(t) = 1 + 3t+ 6t2 + 6t3 + 6t4 + · · ·

f4(t) = 1 + 4t+ 10t2 + 16t3 + 18t4 + 16t5 + 18t6 + · · ·

f5(t) = 1 + 5t+ 15t2 + 30t3 + 45t4

+50t5 + 50t6 + 50t7 + 50t8 + 50t9 + · · ·

f6(t) = 1 + 6t+ 21t2 + 50t3 + 90t4 + 126t5 + 146t6

+150t7 + 156t8 + 152t9 + 156t10 + 150t11 + 158t12

+150t13 + 156t14 + 152t15 + 156t16 + 150t17 + 158t18

+ · · ·

They computed the generating functions fn(t) = ÃFCn−1(t);
here are the first ones



FC elements in type Ã

FC heaps satisfy the same local conditions as in finite type A

→ The heaps must avoid

Difference: the cyclic shape of the Coxeter diagram

s1 sn−1s2

s0

→ The labels above must be taken with index modulo n; the
heaps must be thought of as “drawn on a cylinder”

si si+1 si+2

∅

si si+1 si+2

∅

si



Heaps become Motzkin-type paths

We can form a path as before from a heap: because of the
cyclic diagram, our paths will start and end at the same height

Example:

Path The area does not take into
account the final height

R

R

Heap

the same

s0 s1 s2 s3 s4 s5 s0



Bijection

Starting from a FC element in Ãn−1, we thus obtain a path in
O∗n, the set of length n paths with starting and ending point at
the same height
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1. FC elements in Ãn−1 and
2. O∗n \{paths at constant height h > 0 with all steps having

the same label L or R}



Bijection

Starting from a FC element in Ãn−1, we thus obtain a path in
O∗n, the set of length n paths with starting and ending point at
the same height

Indeed such paths can clearly not correspond to FC elements

Corollary ÃFCn−1(t) = O∗n(t)− 2tn

1− tn
= tn

Ǒn(t)− 2

1− tn
+ Ǒ∗n(t)

Theorem[BJN (2012)] This is a bijection between

1. FC elements in Ãn−1 and
2. O∗n \{paths at constant height h > 0 with all steps having

the same label L or R}



Other affine types

There are 3 classical types

4
s1 sn−1

t1

t2 u

B̃n+1

s1

t1

t2

u1

u2
sn−1

D̃n+2

4 4
t s1 usn−1

C̃n



Other affine types

There are 3 classical types

Affine Type Ãn−1 C̃n B̃n+1 D̃n+2 Ẽ6 Ẽ7 G̃2 F̃4, Ẽ8

Periodicity n n+ 1 (n+ 1)(2n+ 1) n+ 1 4 9 5 1

Theorem [BJN (2012)]: for each irreducible affine group W ,
the sequence of coefficients of WFC(t) is ultimately periodic,
with period dividing the following values:

4
s1 sn−1

t1

t2 u

B̃n+1

s1

t1

t2

u1

u2
sn−1

D̃n+2

4 4
t s1 usn−1

C̃n

Moreover, we have the same kind of table for FC involutions



What are the exact periods?

ÃFCn−1(t) ≡ 1

1− tn
n−1∑
k=1

[
n

k

]2

t

≡ 1

1− tn
(
Ǒn(t)− 2

)
(Hanusa–Jones) (BJN)
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What are the exact periods?

ÃFCn−1(t) ≡ 1

1− tn
n−1∑
k=1

[
n

k

]2

t

≡ 1

1− tn
(
Ǒn(t)− 2

)
(Hanusa–Jones) (BJN)

n− k

n− k

k

k



What are the exact periods?

ÃFCn−1(t) ≡ 1

1− tn
n−1∑
k=1

[
n

k

]2

t

≡ 1

1− tn
(
Ǒn(t)− 2

)
(Hanusa–Jones) (BJN)

Partitions

n− k

n− k

k

k

ÃFCn−1(t) ≡ 1

1− tn
n−1∑
k=1

[
n

k

]2

t

tk
2

≡ 1

1− tn

([
2n

n

]
t

− 2

)



Exact period for type Ãn−1

Lemma 1:
P (t)

1− tn
≡ 1

n

n−1∑
j=0

P (ξ−jn )

1− tξjn
with ξn := e

2iπ
n , P ∈ C[t]



Exact period for type Ãn−1

Lemma 1:
P (t)

1− tn
≡ 1

n

n−1∑
j=0

P (ξ−jn )

1− tξjn
with ξn := e

2iπ
n , P ∈ C[t]

Lemma 2:

[
n

k

]
ξjn

=

(
d

kd/n

)
if n divides kd, and 0 otherwise,

where d denotes the greatest common divisor of n and j



Exact period for type Ãn−1

Lemma 1:
P (t)

1− tn
≡ 1

n

n−1∑
j=0

P (ξ−jn )

1− tξjn
with ξn := e

2iπ
n , P ∈ C[t]

Therefore ÃFCn−1(t) ≡ 1

n

n−1∑
j=0

(
2d
d

)
− 2

1− tξjn

The minimal period is the least common multiple of all the
integers in {order(ξjn) | d > 1}: it is the least common multiple
of the numbers n/d for j = 0, 1, . . . , n− 1 with d > 1

Lemma 2:

[
n

k

]
ξjn

=

(
d

kd/n

)
if n divides kd, and 0 otherwise,

where d denotes the greatest common divisor of n and j



Exact periods in classical affine types

We have the same kind of result regarding FC involutions

Theorem[JN (2013)]: in type Ãn−1, the minimal period is
pα−1 if n = pα, and n otherwise.
In type C̃n (resp. B̃n+1, resp. D̃n+2), the minimal period is
given by 2m+ 1 (resp. (2m+ 1)(2n+ 1), resp. n+ 1) where
2m+ 1 is the largest odd divisor of n+ 1



Exact periods in classical affine types

We have the same kind of result regarding FC involutions

Theorem[JN (2013)]: in type Ãn−1, the minimal period is
pα−1 if n = pα, and n otherwise.
In type C̃n (resp. B̃n+1, resp. D̃n+2), the minimal period is
given by 2m+ 1 (resp. (2m+ 1)(2n+ 1), resp. n+ 1) where
2m+ 1 is the largest odd divisor of n+ 1

Moreover, using Ramanujan sums, the number of elements of
large enough length ` in ÃFCn−1 is equal to(

2n
n

)
n

(1 + O(n 2−n)), n→ +∞

We deduce that for n and ` large enough, it is close to the

mean value over a period

(
2n
n

)
− 2

n



A cyclic sieving phenomenon

Definition[Reiner–Stanton–White (2004)]: (X,C, P ) exhibits

the cyclic sieving phenomenon if P (ξjn) = |Xcj | for any
j ∈ {0, . . . , n− 1}

Let X be a finite set endowed with the action of a finite cyclic
group C = 〈c〉 of order n.
Set P ∈ N[q] and Xg := {elements of X fixed by g ∈ C}



A cyclic sieving phenomenon

Definition[Reiner–Stanton–White (2004)]: (X,C, P ) exhibits

the cyclic sieving phenomenon if P (ξjn) = |Xcj | for any
j ∈ {0, . . . , n− 1}

Let X be a finite set endowed with the action of a finite cyclic
group C = 〈c〉 of order n.
Set P ∈ N[q] and Xg := {elements of X fixed by g ∈ C}

Proposition[JN (2013)]: The triple (Ǒn, 〈r〉 , Ǒn(t)) exhibits
the cyclic sieving phenomenon.

Choose the set X := Ǒn
Cyclic action: generated by the rotation r of
paths one unit to the right

Polynomial: Ǒn(t)

R

R


	Fully commutative elements
	Heaps and lattice paths

