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Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions



Since when do we count paths?

. Chevalier de Méré’s problem
L’impatience me prend aussi bien qu’à vous et, quoique je sois encore
au lit, je ne puis m’empêcher de vous dire que [. . . ]. Voici à peu près
comme je fais pour savoir la valeur de chacune des parties, quand
deux joueurs jouent, par exemple, en trois parties, et chacun a mis 32
pistoles au jeu [. . . ].

Extrait de la lettre de Pascal à Fermat du 29 juillet 1654

. Bertrand’s Ballot problem
In combinatorics, Bertrand’s ballot problem (solved in 1878) is the
question:

In an election where candidate A receives p votes and candidate B
receives q votes with p > q, what is the probability that A will be
strictly ahead of B throughout the count?

The answer is
p − q

p + q
.
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50’s, 60’s and 70’s

. Fun with lattice paths, Howard Grossman (1950)

. How many roads, Bob Dylan (1962)

.
Sur une classe de problèmes liés au treillis des
partitions d’entiers, Germain Kreweras (1965)

.
An Introduction to Probability Theory and Its
Applications, William Feller (1950–1966)
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Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consisting
of exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane).

. Example with
S = {↙, ←, ↗, →}.

fS(0; 0, 0) = 1
fS(2n + 1; 0, 0) = 0
fS(2; 0, 0) = 2
fS(4; 0, 0) = 11 -
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Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consisting
of exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane). Complete generating function

QS(t; x , y) =
∞∑

n=0

 ∞∑
i ,j=0

fS(n; i , j)x i y j

 tn ∈ Q[x , y ][[t]].

Questions: Given S, what can be said about QS(t; x , y)?
Structure? (algebraic/holonomic) Explicit form? Asymptotics?

QS(t; 0, 0) ; counts S-walks returning to the origin (excursions);
QS(t; 1, 1) ; counts S-walks with prescribed length.
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First example: Kreweras walk
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Theorem [Kreweras (1965); 100 pages combinatorial proof!]

QS(t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3

)
=
∞∑

n=0

4n
(3n

n

)
(n + 1)(2n + 1)

t3n.

Theorem [Gessel (1986), Bousquet-Mélou (2005), . . . ]
The trivariate generating function QS(t; x , y) is algebraic.
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Second example: the simple random walk (1/2)

SRW in the plane
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. Rational generating function
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. Algebraic (Bousquet-Mélou and Petkovšek, 2003) and holonomic
generating functions (Bousquet-Mélou and Mishna, 2010),
respectively
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Second example: the simple random walk (2/2)

SRW in the angle 45◦
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. Formula for the excursions (Gouyou-Beauchamps, 1986)

. Holonomic generating function (Bousquet-Mélou and Mishna,
2010)

What about the SRW in the angle 135◦?
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Statement of Gessel’s conjecture
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Conjecture [Gessel (2001)]

QS(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2

)
=
∞∑

n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Opinion in the combinatorics community
The generating function QS(t; 0, 0) (thus a fortiori QS(t; x , y))
is not algebraic.



Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions



The conjecture is shared (and made public)

Gessel sends the conjecture to Bousquet-Mélou (2001)

. Bousquet-Mélou and Petkovšek (1998) Linear recurrences with
constant coefficients: the multivariate case (Nature of the
generating function)

. Bousquet-Mélou (2000) Counting walks in the quarter plane
(Basis of a new approach for studying walks in the quarter plane,
based on functional equation for generating functions)

Denoting the kernel

KS(t; x , y) = xyt
[∑

(i ,j)∈S x i y j − 1/t
]

,

one has the functional equation

KSQS(t; x , y) =

KSQS(t; x , 0) + KSQS(t; 0, y)− KSQS(t; 0, 0)− xy .



The conjecture is shared (and made public)

Gessel sends the conjecture to Bousquet-Mélou (2001)
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Walks with small steps in the quarter plane (1/2)

Systematic study of walks with small steps in the quarter plane
(Bousquet-Mélou and Mishna, 2003–2010)

There are 28 models of walks in the quarter plane:

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

Some of these 28 models are:

-
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trivial, simple, half-plane, symmetrical.

Finally, it remains 79 problems!

Classifying lattice walks restricted to the quarter plane
(Mishna, 2003–2009)



Walks with small steps in the quarter plane (1/2)

Systematic study of walks with small steps in the quarter plane
(Bousquet-Mélou and Mishna, 2003–2010)

There are 28 models of walks in the quarter plane:

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

Some of these 28 models are:

-

6

��	

-

6
���

-

6
���-
@@R?

6

-

6

@@R
�6@@I-
?

trivial, simple, half-plane, symmetrical.

Finally, it remains 79 problems!

Classifying lattice walks restricted to the quarter plane
(Mishna, 2003–2009)



Walks with small steps in the quarter plane (1/2)

Systematic study of walks with small steps in the quarter plane
(Bousquet-Mélou and Mishna, 2003–2010)

There are 28 models of walks in the quarter plane:

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

Some of these 28 models are:

-

6

��	

-

6
���

-

6
���-
@@R?

6

-

6

@@R
�6@@I-
?

trivial, simple, half-plane, symmetrical.

Finally, it remains 79 problems!

Classifying lattice walks restricted to the quarter plane
(Mishna, 2003–2009)



Walks with small steps in the quarter plane (2/2)

The group of the walk (Malyshev, 1970)

The polynomial∑
(i ,j)∈S x i y j =

∑1
i=−1 Bi (y)x i =

∑1
j=−1 Aj (x)y j

is left invariant under

ψ(x , y) =

(
x ,

A−1(x)

A+1(x)

1

y

)
, φ(x , y) =

(
B−1(y)

B+1(y)

1

x
, y

)
,

and thus under any element of the group
〈
ψ,φ

〉
.

Classification of the 79 = 22 + 1 + 56 models
(Bousquet-Mélou and Mishna, Bostan and Kauers, 2010)
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Order 4 (16) Order 6 (5) Order 8 (2) Order ∞ (56)
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January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)
at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Gröbner Bases, Manuel Kauers

Computer-aided approach to guess
and prove recurrence relations.
The quasi-holonomic ansatz and re-
stricted lattice walks, Manuel Kauers
and Doron Zeilberger (2008)
Illustration by Kreweras walks
First written appearance of Gessel’s
conjecture

No proof of the conjecture
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stricted lattice walks, Kauers and Zeil-
berger (2008)
. Illustration by Kreweras walks
. First written appearance of Gessel’s
conjecture

. No proof of the conjecture



Summer 2008: proof of Gessel’s conjecture

Proof of Ira Gessel’s lattice path conjecture

(Kauers, Koutschan and Zeilberger)

To that end, D.Z. offers a prize of one hundred (100) US dollars for a short, self-contained, human-generated (and
computer-free) proof of Gessel’s conjecture, not to exceed five standard pages typed in standard font. The longer
that prize would remain unclaimed, the more (empirical) evidence we would have that a proof of Gessel’s
conjecture is indeed beyond the scope of humankind.

The complete generating function for Gessel walks is algebraic

(Bostan and Kauers)
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History of the algebraicity

(waste of time because of the rumor of the non-algebraicity)

. January 28: talk of Manuel Kauers

. February 22: guessed diff. eq. for QS(t; x , 0) and QS(t; 0, y).

I The diff. eq. are huge: degree 11 in d
dt , 96 in t, 78 in x , and

integers of 61 decimal digits.

I In principle, sufficient to prove that QS(t; x , y) is holonomic
(closure properties of holonomic functions), but problem of
determining 1.5 billon integer coefficients. . .

. July 29: testing one more property expected from the operator
killing QS(t; x , y), a surprising result suggests that the functions
are in fact algebraic!

. August 26: They find vanishing polynomials for the generating
functions, and make their result public.

. People were surprised. (Why was the algebraicity of QS(t; 0, 0)
not discovered earlier?)

http://www.risc.jku.at/people/mkauers/gessel/deqx0.m
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Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions



Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positive
random walks, Malyshev (1972)
Two coupled processors: the reduction to a Riemann-Hilbert
problem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchy
integrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’s
walks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫
Ct

f (t; u)

u − x
du.
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Other methods

Petkovšek and Wilf (2008)

On a conjecture of Gessel
. Expression of Gessel’s numbers in terms of determinants

Ping (2009)

Proof of two conjectures of Petkovšek and Wilf on Gessel walks
. Probabilistic approach of Gessel’s conjecture (reflection principle,
etc.)

Ayyer (2009)

Towards a human proof of Gessel’s conjecture
. Representation theory and walks on alphabets

Fayolle and R. (2009)

On the holonomy or algebraicity of generating functions counting
lattice walks in the quarter plane
. Algebraic methods (Galois theory)
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Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) and
QS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),
find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only a
finite number of branches and allows to compute the poles of the
branches.

. With the theory of elliptic functions, we obtain an expression of
QS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of special
functions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.
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Main result (in terms of ζ-Weierstrass functions)

Bostan, Kurkova and R. (2013)
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with

I ζ(ω) = 1
ω+∑

(n1,n3)∈Z2\(0,0)
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I ω3 = 3
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∈ R,

I d(x) = (zx2 − x + z)2 − 4z2x2,
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Other Gessel’s conjectures



Open questions

. Combinatorial proof of Gessel’s conjecture
Towards a combinatorial understanding of lattice path
asymptotics, by Johnson, Mishna and Yeats (2013)

. How to win the 100 dollars?

. Combinatorics of walks with big jumps

. Combinatorics of walks with in higher dimension
On lattice walks confined to the positive octant, by
Bousquet-Mélou, Bostan, Kauers and Melczer

. Link between the finiteness of the group and the nature of the
generating function
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Merci pour votre attention !



Important classes of univariate power series



Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equation
with polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =
∑

n sntn such that sn+1

sn
∈ Q(n). E.g.

2F1

(
a b

c

∣∣∣∣ t

)
=
∞∑

n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).
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)
=
∞∑

n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).



Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equation
with polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =
∑

n sntn such that sn+1

sn
∈ Q(n). E.g.

2F1

(
a b

c

∣∣∣∣ t

)
=
∞∑

n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).



Important classes of multivariate power series

algebraic series

Holonomic series

S ∈ Q[[x , y , t]] is holonomic if the set of all partial derivatives of S
spans a finite-dimensional vector space over Q(x , y , t).

S ∈ Q[[x , y , t]] is algebraic if it is the root of a P ∈ Q[x , y , t, T ].



Important classes of multivariate power series

algebraic series

Holonomic series

S ∈ Q[[x , y , t]] is holonomic if the set of all partial derivatives of S
spans a finite-dimensional vector space over Q(x , y , t).

S ∈ Q[[x , y , t]] is algebraic if it is the root of a P ∈ Q[x , y , t, T ].



Main methods for proving holonomy and
non-holonomy



Main methods

(1) for proving non-holonomy

(1a) Infinite number of singularities, or lacunary
(1b) Asymptotics

(2) for proving holonomy

(2a) Diagonals, or positive parts, of rational functions
(2b) Guess’n’Prove

. All methods are algorithmic.



“Guess and Prove” approach



Methodology for proving algebraicity

Experimental mathematics—Guess’n’Prove—approach:

(S1) high order expansion of the generating series FS(t; x , y);

(S2) guessing candidates for minimal polynomials of FS(t; x , 0)
and FS(t; 0, y), based on Hermite-Padé approximation;

(S3) rigorous certification of the minimal polynomials, based on
(exact) polynomial computations.


