Graph Properties of Graph Associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS)

March 24th, 2014

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

An *associahedron* is a polytope whose face lattice is isomorphic to the lattice of dissections of a convex polygon.

Flip graph on the triangulations of the polygon:

Vertices: triangulations

Edges: *flips*

< ロ > < 同 > < 回 > < 回 >

Useful configuration (Loday's)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

 $\{\text{diagonals of } G_{n+3}\} \longleftrightarrow \{\text{subpaths of the path } \{1,\ldots,n+1\}\}$

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

non-adjacent subpaths

イロト イポト イヨト イ

3.1

nested subpaths

Pay attention to the second case:

The right condition is indeed *non-adjacent*, disjoint is not enough!

Now do it on graphs

$$G = (V, E)$$
 a graph.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

$$G = (V, E)$$
 a graph.

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$G = (V, E)$$
 a graph.

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 t and t' are compatible if they are nested or non-adjacent;

$$G = (V, E)$$
 a graph.

- A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;
- A *tubing* of G is a set of pairwise compatible tube of G.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Graph associahedra

Theorem (Carr and Devadoss '06)

The simplicial complex of tubings of G can be realized as the face lattice of a polytope. Such a polytope is called a graph associahedron of G and is denoted $Asso_G$.

Classical polytopes...

The associahedron

The cyclohedron

The permutahedron

ж

.can be seen as graph associahedra

The associahedron

The cyclohedron The permutahedron

・ロト・日本・モト・モー シックの

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

The diameter of the n-dimensional permutahedron is

$$\binom{n+1}{2}$$
.

うして ふゆう ふほう ふほう うらつ

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \ge 2$.

Lemma

The diameter of the n-dimensional permutahedron is

$$\binom{n+1}{2}$$
.

うして ふゆう ふほう ふほう うらつ

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \ge 2$.

Theorem (Lucas 87, Hurtado and Noy '99)

The n-dimensional associatedron is hamiltonian for $n \ge 2$.

Lemma

The diameter of the n-dimensional permutahedron is

$$\binom{n+1}{2}$$
.

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \ge 2$.

Theorem (Lucas 87, Hurtado and Noy '99)

The n-dimensional associatedron is hamiltonian for $n \ge 2$.

Theorem (Pournin '12)

The diameter of the n-dimensional associahedron is 2n - 4 for $n \ge 10$.

Theorem (M. and Pilaud '14⁺)

Any graph associahedron with more than one edge is hamiltonian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M. and Pilaud '14 $^+)$

Any graph associahedron with more than one edge is hamiltonian.

ldea:

 \rightarrow Carr and Devadoss build the graph associahedron by iterated truncations of faces of a simplex. Vertices are truncated first, and then faces by growing dimension.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M. and Pilaud '14 $^+)$

Any graph associahedron with more than one edge is hamiltonian.

Idea:

 \rightarrow Carr and Devadoss build the graph associahedron by iterated truncations of faces of a simplex. Vertices are truncated first, and then faces by growing dimension.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$\delta(G) = \text{diameter of the flip graph on tubings of } G.$

$\delta(G) = {\sf diameter} \ {\sf of} \ {\sf the} \ {\sf flip} \ {\sf graph} \ {\sf on} \ {\sf tubings} \ {\sf of} \ G.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M. and Pilaud '14⁺)

The function δ is non-decreasing: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

$\delta(G) = {\sf diameter} \ {\sf of} \ {\sf the} \ {\sf flip} \ {\sf graph} \ {\sf on} \ {\sf tubings} \ {\sf of} \ G.$

Theorem (M. and Pilaud '14⁺)

The function δ is non-decreasing: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

Idea:

 \rightarrow The truncation hyperplanes correspond to tubes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\delta(G) = {\sf diameter} \ {\sf of} \ {\sf the} \ {\sf flip} \ {\sf graph} \ {\sf on} \ {\sf tubings} \ {\sf of} \ G.$

Theorem (M. and Pilaud '14⁺)

The function δ is non-decreasing: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

Idea:

- \rightarrow The truncation hyperplanes correspond to tubes.
- \rightarrow If $G \subseteq G'$, then we can truncate \mathbf{Asso}_G to get $\mathbf{Asso}_{G'}$.

うして ふゆう ふほう ふほう うらつ

$\delta(G) = ext{diameter}$ of the flip graph on tubings of G.

Theorem (M. and Pilaud '14⁺)

The function δ is non-decreasing: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

Idea:

- \rightarrow The truncation hyperplanes correspond to tubes.
- \rightarrow If $G \subseteq G'$, then we can truncate \mathbf{Asso}_G to get $\mathbf{Asso}_{G'}$.
- \rightarrow Truncating \iff replacing vertices by complete graphs.

Corollary

For any graph G, one has
$$\delta(G) \leq \binom{|V(G)|}{2}$$
.

Corollary

For any graph G, one has
$$\delta(G) \leq \binom{|V(G)|}{2}$$
.

A graph is included in the complete graph on its vertices...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

For any graph G, one has
$$\delta(G) \leq inom{|V(G)|}{2}.$$

A graph is included in the complete graph on its vertices... \blacksquare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M. and Pilaud 14⁺)

For any graph G, one has $2|V(G)| - 18 \le \delta(G)$.

Corollary

For any graph G, one has
$$\delta(G) \leq inom{|V(G)|}{2}.$$

A graph is included in the complete graph on its vertices...

うして ふゆう ふほう ふほう うらつ

Theorem (M. and Pilaud 14⁺)

For any graph G, one has $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

Corollary

For any graph G, one has
$$\delta(\mathsf{G}) \leq inom{|V(\mathsf{G})|}{2}.$$

A graph is included in the complete graph on its vertices...

うして ふゆう ふほう ふほう うらつ

Theorem (M. and Pilaud 14⁺)

For any graph G, one has $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

• δ is non-decreasing;

Corollary

For any graph G, one has
$$\delta(\mathsf{G}) \leq inom{|V(\mathsf{G})|}{2}.$$

A graph is included in the complete graph on its vertices...

うして ふゆう ふほう ふほう うらつ

Theorem (M. and Pilaud 14⁺)

For any graph G, one has $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

- δ is non-decreasing;
- Technical metric properties of flip graphs;

Corollary

For any graph G, one has
$$\delta(G) \leq inom{|V(G)|}{2}.$$

A graph is included in the complete graph on its vertices...

Theorem (M. and Pilaud 14⁺)

For any graph G, one has $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

- δ is non-decreasing;
- Technical metric properties of flip graphs;
- Pournin's result for the classical associahedron.

Hamiltonicity

- - - ・ロト < 母 > < 言 > < 言 > こ つ へ ()

Hamiltonicity

• Algorithmic inefficience of the proof.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Hamiltonicity

• Algorithmic inefficience of the proof.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• How many Hamiltonian cycles?

Diameter

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

• What happens between
$$2n$$
 and $\binom{n}{2}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

• What happens between 2n and $\binom{n}{2}$? The key is either in trees or in cycles.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

• What happens between 2n and $\binom{n}{2}$? The key is either in trees or in cycles. The cyclohedron has a diameter smaller than $\frac{5}{2}n$ (Pournin).

うして ふゆう ふほう ふほう うらつ

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

 What happens between 2n and ⁿ
 ₂?
 The key is either in trees or in cycles.
 The cyclohedron has a diameter smaller
 than ⁵/₂n (Pournin).
 Hardness of δ(G)?

うして ふゆう ふほう ふほう うらつ

Other problems

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

• What happens between 2n and $\binom{n}{2}$? The key is either in trees or in cycles. The cyclohedron has a diameter smaller

うして ふゆう ふほう ふほう うらつ

- than $\frac{5}{2}n$ (Pournin)
- Hardness of $\delta(G)$?

Other problems

 \bullet How many tubings ?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between 2n and $\binom{n}{2}$?
- The key is either in trees or in cycles.
 The cyclohedron has a diameter smaller than ⁵/₂n (Pournin).
 Hardness of δ(G)?

うして ふゆう ふほう ふほう うらつ

Other problems

- \bullet How many tubings ?
- ۲

THANK YOU FOR YOUR ENTHUSIASTIC ATTENTION !

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●