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De�nition
An associahedron is a polytope whose face lattice is
isomorphic to the lattice of dissections of a convex polygon.
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Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations Edges: �ips



Useful con�guration (Loday's)
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Graph point of view

{diagonals of Gn+3} ←→ {subpaths of the path {1, . . . , n + 1}}
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Non-crossing diagonals

Two ways to be non-crossing in Loday's con�guration:
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Pay attention to the second case:
The right condition is indeed non-adjacent, disjoint is not
enough!
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Now do it on graphs

G = (V ,E ) a graph.

De�nition

A tube of G is a proper subset t ⊆ V inducing a
connected subgraph of G ;

t and t ′ are compatible if they are nested or
non-adjacent;

A tubing of G is a set of pairwise compatible tube of G .
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(generalizes a diagonal)
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Graph associahedra

Theorem (Carr and Devadoss '06)

The simplicial complex of tubings of G can be realized as the

face lattice of a polytope. Such a polytope is called a graph

associahedron of G and is denoted AssoG .



Classical polytopes...
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...can be seen as graph associahedra
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Hamiltonicity and diameter of �ip graphs

Lemma

The diameter of the n-dimensional permutahedron is

(
n + 1
2

)
.

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for n ≥ 2.

Theorem (Lucas 87, Hurtado and Noy '99)

The n-dimensional associaedron is hamiltonian for n ≥ 2.

Theorem (Pournin '12)

The diameter of the n-dimensional associahedron is 2n − 4
for n ≥ 10.
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Hamiltonicity

Theorem (M. and Pilaud '14+)

Any graph associahedron with more than one edge is

hamiltonian.

Idea:

→ Carr and Devadoss build the graph associahedron by
iterated truncations of faces of a simplex. Vertices are
truncated �rst, and then faces by growing dimension.
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Diameter

δ(G ) = diameter of the �ip graph on tubings of G .

Theorem (M. and Pilaud '14+)

The function δ is non-decreasing:

G partial subgraph of G ′ =⇒ δ(G ) ≤ δ(G ′).

Idea:

→ The truncation hyperplanes correspond to tubes.
→ If G ⊆ G ′, then we can truncate AssoG to get AssoG ′ .
→ Truncating ⇐⇒ replacing vertices by complete graphs.

truncating an edge
of a 3-dimensional
simple polytope
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Inequalities for the diameter

Corollary

For any graph G , one has δ(G ) ≤
(
|V (G )|

2

)
.

A graph is included in the complete graph on its vertices... �

Theorem (M. and Pilaud 14+)

For any graph G , one has 2|V (G )| − 18 ≤ δ(G ).

Ingredients of the proof:

δ is non-decreasing;

Technical metric properties of �ip graphs;

Pournin's result for the classical associahedron.
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Discussion

Hamiltonicity

Algorithmic ine�cience of the proof.
How many Hamiltonian cycles?

Diameter

What happens between 2n and

(
n
2

)
?

The key is either in trees or in cycles.
The cyclohedron has a diameter smaller
than 5

2
n (Pournin).

Hardness of δ(G )?

Other problems

How many tubings ?
...
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