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Université Montpellier 2

Jounées EGOS
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The (primal) Problem [Pach 80]:
Decompose multiply covering covers into multiple covers...

Given some axix alligned rectangles, 2-color them such that any
point contained in three of them is contained in one of each color.
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Why these examples were pedagogically bad:

Given some axix alligned rectangles, 2-color them such that any
point contained in three of them is contained in one of each color.

Given some points, 2-color them such that any axis alligned
rectangle containing three of them is contains in one of each color.

Thm[Pach, Tardos, Tóth ’09]: For every c there is set Rc of axis
alligned rectangles such that in every 2-coloring of Rc there is point
contained in ≥ c rectangles but all of the same color.

Thm[Chen, Pach, Szegedy, Tardos ’09]: For every p there is set Pp of
points such that for every 2-coloring of Pp there is an axis alligned
rectangle containing ≥ p points but all of the same color.
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Making bottomless rectangles colorful
Thm[Asinowski, C, Cohen, Collette, Hackl, Hoffmann,
K, Langerman, Lasoń, M, Rote, U ’13]: For
bottomless rectangles we have 1.6k ≤ p(k) ≤ 3k − 2.
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Thm[Asinowski, C, Cohen, Collette, Hackl, Hoffmann,
K, Langerman, Lasoń, M, Rote, U ’13]: For
bottomless rectangles we have 1.6k ≤ p(k) ≤ 3k − 2.

sweep

obs: rectangle based at
sweepline corresponds to
interval on sweepline!

make rectancle
colorful when top
edge sweeped



For bottomless rectangles we have p(k) ≤ 3k − 2.

invariants: for every color i ∈ [k]
◦ not more than 3k − 3 consecutive points
without i

◦ maximal consecutive i-free set of points
has at least k − 1 points

via semi-online k-coloring
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Making bottomless rectangles colorful
Thm[Asinowski, C, Cohen, Collette, Hackl, Hoffmann,
K, Langerman, Lasoń, M, Rote, U ’13]: For
bottomless rectangles we have 1.6k ≤ p(k) ≤ 3k − 2.

lower bound �

Question: p(k) ∼ 2k?
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Negative octant covering decomposition is the same

as making positive octants colorfulnegative

� c(k) = p(k) for negative octants
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Thm[Keszegh, Palvögly ’12]: p(2) ≤ 12 =: a and p(k) ≤ 122
k
.

Thm[CMKU ’13]: p(k) ≤ k6.

Lemma: P ⊂ R3 independent =⇒ k-color such that every
octant containing aklog2(2a−1) points is colorful.



Making Octants Colorful
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2a−1 � = f(k)
many points
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Making Octants Colorful
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f(2) = a

f(2k) = (2a− 1)f(k)
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this gives p(k) ≤ 12k4.6 for homothetic
triangles and bottomless rectangles...
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Question: What is c(k) or p(k) for squares?


