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The (primal) Problem [Pach 80]:

Decompose multlply covering covers into multiple covers..

Given some geometric objects (ranges) 2-color them such that any
point contained in many of them is contained in one of each color.
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Why these examples were pedagogically bad:

Given some axix alligned rectangles, 2-color them such that any
point contained in three of them is contained in one of each color.

Given some points, 2-color them such that any axis alligned
rectangle containing three of them is contains in one of each color.

Thm[Pach, Tardos, Téth '09]: For every c there is set R, of axis
alligned rectangles such that in every 2-coloring of R, there is point
contained in > c rectangles but all of the same color.

Thm[Chen, Pach, Szegedy, Tardos '09]: For every p there is set P, of
points such that for every 2-coloring of P, there is an axis alligned
rectangle containing > p points but all of the same color.




 What we can do about it: O

Given some _geometric ranges, 2-color them such that any
point contained in three of them is contained in one of each color.

Given some points, 2-color them such that any ge;metri@
range )containing three of them is contains in one of each color.
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Making bottomless rectangles colorful
Thm[Asinowski, C, Cohen, Collette, Hackl, Hoffmann,

K, Langerman, Lason, M, Rote, U "13]: For
bottomless rectangles we have 1.6k < p(k) < 3k — 2.
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For bottomless rectangles we have p(k) < 3k — 2.
via semi-online k-coloring

O
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invariants: for every color i € [k]
o not more than 3k — 3 consecutive points
without 2
o maximal consecutive i-free set of points
has at least £ — 1 points
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Making negative octants colorful makes bottomless
rectangles and homothetic triangles colorful

just put all points inside the green plane
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as making positive octants colorful
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as making @gativoctants colorful

~ ¢(k) = p(k) for negative octants
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Question: What is ¢(k) or p(k) for squares?



