Factorisations d’un élément de Coxeter dans les groupes de réflexions (complexes)

Guillaume Chapuy (CNRS – Université Paris 7)

travail commun avec
Christian Stump (Hannover)
Part 1: the objects
Minimal factorizations of a full cycle – Cayley’s formula

• In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

• **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \{\tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \ldots, n)\} = n^{n-2}$$
Minimal factorizations of a full cycle – Cayley’s formula

• In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions

• **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \{ \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \ldots, n) \} = n^{n-2}$$

[a Cayley tree with labelled edges: there are $(n - 1)! n^{n-2}$ of them]
Minimal factorizations of a full cycle – Cayley’s formula

- In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

- **Theorem** [Cayley’s formula] The number of such factorizations is

 $$\#\{\tau_1 \tau_2 \ldots \tau_{n-1} = (1, 2, \ldots, n)\} = n^{n-2}$$

- A factorization of an arbitrary full cycle:

 $$(1\ 2)\ (1\ 6)\ (3\ 5)(1\ 7)\ (1\ 3)\ (3\ 4)\ (1\ 8)$$

 $$=(1\ 8\ 5\ 3\ 4\ 7\ 6\ 2)$$

- A Cayley tree with labelled edges: there are $(n - 1)!n^{n-2}$ of them.
Minimal factorizations of a full cycle – Cayley’s formula

- In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

- **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \{ \tau_1 \tau_2 \ldots \tau_{n-1} = (1, 2, \ldots, n) \} = n^{n-2}$$

A Cayley tree with labelled edges: there are $(n - 1)! n^{n-2}$ of them.

A factorization of an arbitrary full cycle:

$$(1 2) (1 6) (3 5)(1 7) (1 3) (3 4) (1 8) = (1 8 5 3 4 7 6 2)$$

Diagram: a Cayley tree with labelled edges.
Minimal factorizations of a full cycle – Cayley’s formula

- In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

- **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \left\{ \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \ldots, n) \right\} = n^{n-2}$$

- A factorization of an arbitrary full cycle:

$$(1 2) (1 6) (3 5)(1 7) (1 3) (3 4) (1 8) = (1 8 5 3 4 7 6 2)$$

- A Cayley tree with labelled edges: there are $(n - 1)! n^{n-2}$ of them.
Minimal factorizations of a full cycle – Cayley’s formula

In the symmetric group \mathbb{S}_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

Theorem [Cayley’s formula] The number of such factorizations is

$$\# \{\tau_1 \tau_2 \ldots \tau_{n-1} = (1, 2, \ldots, n)\} = n^{n-2}$$

A factorization of an arbitrary full cycle

$$\tau_7 \tau_6 \tau_5 \tau_4 \tau_3 \tau_2 \tau_1 = (1 \ 8 \ 5 \ 3 \ 4 \ 7 \ 6 \ 2)$$

A Cayley tree with labelled edges: there are $(n - 1)!n^{n-2}$ of them.
Minimal factorizations of a full cycle – Cayley’s formula

- In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

- **Theorem [Cayley's formula]** The number of such factorizations is

$$\# \\{ \tau_1 \tau_2 \ldots \tau_{n-1} = (1, 2, \ldots, n) \} = n^{n-2}$$

A factorization of an arbitrary full cycle

$(1 2) (1 6) (3 5)(1 7) (1 3) (3 4) (1 8)$

$= (1 8 5 3 4 7 6 2)$

A Cayley tree with labelled edges: there are $(n - 1)!n^{n-2}$ of them.
Minimal factorizations of a full cycle – Cayley’s formula

- In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

- **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \{\tau_1 \tau_2 \ldots \tau_{n-1} = (1, 2, \ldots, n)\} = n^{n-2}$$

A factorization of an arbitrary full cycle:

$$(1 2) (1 6) (3 5)(1 7) (1 3) (3 4) (1 8) = (1 8 5 3 4 7 6 2)$$

A Cayley tree with labelled edges: there are $(n - 1)!n^{n-2}$ of them.
Minimal factorizations of a full cycle – Cayley’s formula

- In the symmetric group S_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

- **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \left\{ \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \ldots, n) \right\} = n^{n-2}$$

A factorization of an arbitrary full cycle:

$$\tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2) (1, 6) (3, 5) (1, 7) (1, 3) (3, 4) (1, 8) = (1, 8, 5, 3, 4, 7, 6, 2)$$

A Cayley tree with labelled edges: there are $(n - 1)!n^{n-2}$ of them.
Minimal factorizations of a full cycle – Cayley’s formula

• In the symmetric group \mathcal{S}_n we consider factorizations of the full cycle $(1, 2, \ldots, n)$ into a product of $(n - 1)$ transpositions.

• **Theorem** [Cayley’s formula] The number of such factorizations is

$$\# \{ \tau_1 \tau_2 \ldots \tau_{n-1} = (1, 2, \ldots, n) \} = n^{n-2}$$

A factorization of an arbitrary full cycle:

$$(1 \ 2) \ (1 \ 6) \ (3 \ 5)(1 \ 7) \ (1 \ 3) \ (3 \ 4) \ (1 \ 8)$$

$$= (1 \ 8 \ 5 \ 3 \ 4 \ 7 \ 6 \ 2)$$

A Cayley tree with labelled edges: there are $(n - 1)!n^{n-2}$ of them.
Hurwitz numbers, (Shapiro-Shapiro-Vainshtein)

- From a topological viewpoint, we are considering two restrictions:
 - planar (∼ factorizations of minimal length)
 - one-face (∼ factorizations of a full cycle)
Hurwitz numbers, *(Shapiro-Shapiro-Vainshtein)*

- From a topological viewpoint, we are considering two restrictions:
 - planar (∼ factorizations of minimal length)
 - one-face (∼ factorizations of a full cycle)

- Let us keep the one-face condition but consider an arbitrary genus \(g \geq 0 \)

\[
h_{n,g} = \# \{ \tau_1 \tau_2 \cdots \tau_{n-1+2g} = (1, 2, \ldots, n) \} =?
\]

- **Theorem** [Shapiro-Shapiro-Vainshtein 1997] The generating function of one-face Hurwitz numbers is

\[
F(t) = \sum_{g \geq 0} \frac{t^{n-1+2g}}{(n-1+2g)!} h_{n,g} = \frac{1}{n!} \left(e^{\frac{nt}{2}} - e^{-\frac{nt}{2}} \right)^{n-1}.
\]
Hurwitz numbers, (Shapiro-Shapiro-Vainshtein)

- From a **topological viewpoint**, we are considering two restrictions:
 - planar (\sim factorizations of minimal length)
 - one-face (\sim factorizations of a full cycle)

- Let us keep the **one-face condition** but consider an arbitrary genus $g \geq 0$

 \[h_{n,g} = \#\{ \tau_1 \tau_2 \ldots \tau_{n-1+2g} = (1, 2, \ldots, n) \} = ? \]

- **Theorem** [Shapiro-Shapiro-Vainshtein 1997] The generating function of one-face Hurwitz numbers is

 \[F(t) = \sum_{g \geq 0} \frac{t^{n-1+2g}}{(n-1+2g)!} h_{n,g} = \frac{1}{n!} \left(e^{\frac{nt}{2}} - e^{-\frac{nt}{2}} \right)^{n-1} . \]

\[\sim \frac{1}{n!} (tn)^{n-1} = \frac{t^{n-1}}{(n-1)!} n^{n-2} \]

\[\rightarrow \text{at order 1, this is Cayley's formula.} \]
Reflection groups (I)

• Let V be a complex vector space, $n = \dim_{\mathbb{C}} V$.

A **reflection** is an element $\tau \in \text{GL}(V)$ such that $\ker(\text{id} - \tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \text{Diag}(1, 1, \ldots, 1, \zeta)$ for ζ a root of unity.

• A **complex reflection group** is a finite subgroup of $\text{GL}(V)$ generated by reflections. We can always assume $W \subset \text{U}(V)$ for some inner product.
Reflection groups (I)

- Let V be a complex vector space, $n = \dim_{\mathbb{C}} V$.

A **reflection** is an element $\tau \in \text{GL}(V)$ such that $\ker(\text{id} - \tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \text{Diag}(1, 1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A **complex reflection group** is a finite subgroup of $\text{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $S_n \subset \text{GL}(\mathbb{C}^n)$ generated by transpositions.
Reflection groups (I)

- Let V be a complex vector space, $n = \dim_{\mathbb{C}} V$.

A reflection is an element $\tau \in \text{GL}(V)$ such that $\ker(\text{id} - \tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \text{Diag}(1, 1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of $\text{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $S_n \subset \text{GL}(\mathbb{C}^n)$ generated by transpositions.
- finite Coxeter groups (same definition, but over \mathbb{R})
Reflection groups (I)

- Let V be a complex vector space, $n = \dim_{\mathbb{C}} V$.

A **reflection** is an element $\tau \in \text{GL}(V)$ such that $\ker(\text{id} - \tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \text{Diag}(1, 1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A **complex reflection group** is a finite subgroup of $\text{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $S_n \subset \text{GL}(\mathbb{C}^n)$ generated by transpositions.
- finite Coxeter groups (same definition, but over \mathbb{R})
- complex reflection group $G(r, 1, n) \subset \text{GL}(\mathbb{C}^n)$ with $r, n \geq 1$

\[
\begin{pmatrix}
0 & \zeta & 0 \\
\zeta^2 & 0 & 0 \\
0 & 0 & \zeta^5
\end{pmatrix}
\]

take an $n \times n$ permutation matrix

replace entries by r-th roots of unity
Reflection groups (I)

- Let V be a complex vector space, $n = \dim \mathbb{C} V$.

 A reflection is an element $\tau \in \text{GL}(V)$ such that $\ker(\text{id} - \tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \text{Diag}(1, 1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of $\text{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $S_n \subset \text{GL}(\mathbb{C}^n)$ generated by transpositions.
- finite Coxeter groups (same definition, but over \mathbb{R})
- complex reflection group $G(r, p, n) \subset \text{GL}(\mathbb{C}^n)$ with $r, p, n \geq 1$ and $p|r$

 \[
 \begin{pmatrix}
 0 & \zeta & 0 \\
 \zeta^2 & 0 & 0 \\
 0 & 0 & \zeta^5
 \end{pmatrix}
 \]

 take an $n \times n$ permutation matrix
 replace entries by r-th roots of unity
 product of all entries is an r/p-th root of unity.
Reflection groups (II)

- If $W \subset \GL(V)$ is irreducible (=no stable subspace) then $\dim V$ is called its rank. If W is irreducible and is generated by $\dim V$ reflections then it is well-generated.

- $S_n \subset \GL(\mathbb{C}^n)$ is not irreducible since $V_0 = \{\sum_i x_i = 0\}$ is stable.

- $S_n \subset \GL(V_0)$ is irreducible. It has rank $(n - 1)$. It is well-generated, take $s_i = (i \; i + 1)$ for $1 \leq i < n$.
If $\mathcal{W} \subset \text{GL}(V)$ is irreducible (=no stable subspace) then $\dim V$ is called its rank. If \mathcal{W} is irreducible and is generated by $\dim V$ reflections then it is well-generated.

- $\mathcal{S}_n \subset \text{GL}(\mathbb{C}^n)$ is not irreducible since $V_0 = \{\sum_i x_i = 0\}$ is stable.
- $\mathcal{S}_n \subset \text{GL}(V_0)$ is irreducible. It has rank $(n - 1)$. It is well-generated, take $s_i = (i \ i + 1)$ for $1 \leq i < n$.

If \mathcal{W} is irreducible and well-generated there is a notion of Coxeter element that plays the same role as the full cycle for the symmetric group. In general: it is an element having an eigenvalue ζ a primitive d-th root of unity with d as large as possible.

For real groups, it is the product (in any order) of the $(n - 1)$ generators. The Coxeter number, h, is the order of the Coxeter element.
Deligne’s formula

Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible well-generated complex reflection group of rank n. Then the number of factorizations of a Coxeter element into a product of n reflections is

$$\#\{\tau_1 \tau_2 \ldots \tau_n = \text{cox. element}\} = \frac{n!}{|W|} h^n.$$
Deligne’s formula

• Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible well-generated complex reflection group of rank n. Then the number of factorizations of a **Coxeter element** into a product of n reflections is

$$\#\{\tau_1 \tau_2 \ldots \tau_n = \text{cox. element}\} = \frac{n!}{|W|} h^n.$$
Deligne's formula

- **Theorem** [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible well-generated complex reflection group of rank n. Then the number of factorizations of a **Coxeter element** into a product of n reflections is

$$ \# \{ \tau_1 \tau_2 \ldots \tau_n = \text{cox. element} \} = \frac{n!}{|W|} h^n. $$

- **Translation** for the symmetric group S_m.
 - **cox. element** = full cycle; its order $h = m$
 - **reflection** = transposition
 - **rank** $n = m - 1$
 $$ \rightarrow \frac{(m-1)!}{m!} m^{m-1} = m^{m-2} \quad \text{Cayley's formula!} $$
Our result – "higher genus" factorizations in w.g.c.r.g.

- **Theorem** [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$h_{\ell} = \# \{ \tau_1 \tau_2 \ldots \tau_\ell = c \text{ where } \tau_i \text{ are reflections} \}$$

Then the generating function is nice:

$$F'(t) = \sum_{\ell \geq 0} \frac{t^\ell}{\ell!} h_{\ell} = \frac{1}{|W|} \left(e^{\frac{h'}{2} t} - e^{-\frac{h''}{2} t} \right)^n.$$

- Parameters: $\frac{h'}{2} = \frac{\# \text{ reflections}}{n}$ and $\frac{h''}{2} = \frac{\# \text{ reflection hyperplanes}}{n}$
Our result – “higher genus” factorizations in w.g.c.r.g.

- **Theorem** [C.-Stump] Let \(W \) be an irreducible well-generated complex reflection group of rank \(n \). Consider factorizations of a Coxeter element \(c \) into reflections and let

\[
h_\ell = \# \{ \tau_1 \tau_2 \ldots \tau_\ell = c \text{ where } \tau_i \text{ are reflections} \}
\]

Then the generating function is nice:

\[
F'(t) = \sum_{\ell \geq 0} \frac{t^\ell}{\ell!} h_\ell = \frac{1}{|W|} \left(e^{\frac{h'}{2} t} - e^{-\frac{h''}{2} t} \right)^n
\]

- Parameters: \(\frac{h'}{2} = \frac{\# \text{reflections}}{n} \) and \(\frac{h''}{2} = \frac{\# \text{reflection hyperplanes}}{n} \)
Our result – “higher genus” factorizations in w.g.c.r.g.

Theorem [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$h_\ell = \# \{ \tau_1 \tau_2 \ldots \tau_\ell = c \text{ where } \tau_i \text{ are reflections} \}$$

Then the generating function is nice:

$$F'(t) = \sum_{\ell \geq 0} \frac{t^\ell}{\ell!} h_\ell = \frac{1}{|W|} \left(e^{\frac{h'}{2} t} - e^{\frac{-h''}{2} t} \right)^n$$

Parameters: $\frac{h'}{2} = \frac{\# \text{ reflections}}{n}$ and $\frac{h''}{2} = \frac{\# \text{ reflection hyperplanes}}{n}$

Known that $\frac{h'}{2} + \frac{h''}{2} = h$ Coxeter number \rightarrow Deligne’s formula at $t \sim 0$
Our result – “higher genus” factorizations in w.g.c.r.g.

- **Theorem** [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$h_\ell = \# \{ \tau_1 \tau_2 \ldots \tau_\ell = c \text{ where } \tau_i \text{ are reflections} \}$$

Then the generating function is nice:

$$F'(t) = \sum_{\ell \geq 0} \frac{t^\ell}{\ell!} h_\ell = \frac{1}{|W|} \left(e^{\frac{h'}{2} t} - e^{-\frac{h''}{2} t} \right)^n$$

- Parameters: $\frac{h'}{2} = \frac{\# \text{reflections}}{n}$ and $\frac{h''}{2} = \frac{\# \text{reflection hyperplanes}}{n}$

- Known that $\frac{h'}{2} + \frac{h''}{2} = h$ Coxeter number \rightarrow Deligne’s formula at $t \sim 0$

- For real groups $h' = h'' = h$ (e.g. Shapiro-Shapiro-Vainshtein for S_m).
Part 2: group characters
Let $\mathcal{R} = \{\text{reflections}\}$ and $c = \text{Coxeter element}$. Let $h_\ell = \# \{\tau_1 \tau_2 \ldots \tau_\ell = c \text{ where } \tau_i \in \mathcal{R} \}$.

Lemma [the Frobenius formula] Let $\chi_\lambda, \lambda \in \Lambda$ be the list of all irreducible characters of W. Then one has:

$$h_\ell = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \left(\frac{\chi_\lambda(R)}{\dim \lambda} \right)^\ell \chi_\lambda(c^{-1}).$$

where $\chi_\lambda(R) := \sum_{\tau \in \mathcal{R}} \chi_\lambda(\tau)$.

Counting factorizations in groups (I)

- Let $\mathcal{R} = \{\text{reflections}\}$ and $c = \text{Coxeter element}$.
 Let $h_\ell = \#\{\tau_1 \tau_2 \ldots \tau_\ell = c \mid \tau_i \in \mathcal{R}\}$

- **Lemma** [the Frobenius formula] Let $\chi_\lambda, \lambda \in \Lambda$ be the list of all irreducible characters of W. Then one has:

 $$h_\ell = \frac{1}{|W|} \sum_{\lambda \in \Lambda} \left(\frac{\dim \lambda}{\dim \lambda}\right)^\ell \chi_\lambda(c^{-1}).$$
 where $\chi_\lambda(R) := \sum_{\tau \in \mathcal{R}} \chi_\lambda(\tau)$.

- **Sketch of a proof:** Consider the group algebra $\mathbb{C}[W]$.

 Then $h_\ell = \text{coeff. of } 1 \text{ in } \left(R^\ell c^{-1}\right)$ where $R = \sum_{\tau \in \mathcal{R}} \tau$

 $$= \frac{1}{|W|} \text{Tr} \left(R^\ell c^{-1}\right) \quad \text{since if } \sigma \in W, \text{ then } \text{Tr}_{\mathbb{C}[W]} \sigma = \begin{cases} |W| & \text{if } \sigma = 1 \\ 0 & \text{if } \sigma \neq 1 \end{cases}$$

 Now use: - the (classical) decomposition of $\mathbb{C}[W]$ as $C[W] = \bigoplus_{\lambda \in \Lambda} (\dim V^\lambda) V^\lambda$

 - the fact that R is central and therefore acts as a scalar on each V^λ.
Immediate consequence of the Frobenius formula:

- **Proposition** For a given group W, our generating function is a finite sum:

$$F_W(t) := \sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_{\lambda}(c^{-1}) \exp \left(\frac{\chi_{\lambda}(R)}{\dim \lambda} \cdot t \right)$$
Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$F_W(t) := \sum_{\ell \geq 0} \frac{h_\ell}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\text{dim } \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\text{dim } \lambda} \cdot t \right)$$
Immediate consequence of the Frobenius formula:

• **Proposition** For a given group W, our generating function is a finite sum:

$$F_W(t) := \sum_{\ell \geq 0} \frac{h_\ell}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\text{dim } \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\text{dim } \lambda} \cdot t \right)$$

• Now you can prove the main theorem for your favorite fixed group, e.g. the group $W = W(E_8)$.
Immediate consequence of the Frobenius formula:

- **Proposition** For a given group W, our generating function is a finite sum:

\[
F_W(t) := \sum_{\ell \geq 0} \frac{h_\ell}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)
\]

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W = W(\mathcal{E}_8)$. - plug your computer in
Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- **Proposition** For a given group W, our generating function is a finite sum:

\[
F_W(t) := \sum_{\ell \geq 0} \frac{h_\ell}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)
\]

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W = W(E_8)$. - plug your computer in - ask for the character table of E_8
Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- **Proposition** For a given group W, our generating function is a finite sum:

$$F_W(t) := \sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_{\lambda}(c^{-1}) \exp \left(\frac{\chi_{\lambda}(R)}{\dim \lambda} \cdot t \right)$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W = W(E_8)$.
 - plug your computer in
 - ask for the character table of E_8
 - compute the sum (many terms...)

$$F_{E_8}(t) = \frac{1}{|E_8|} \left(e^{102t} + 28 e^{-1680t} + \ldots \right)$$
Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- **Proposition** For a given group W, our generating function is a finite sum:

$$F_W(t) := \sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!} = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda (c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W = W(E_8)$.
 - plug your computer in
 - ask for the character table of E_8
 - compute the sum (many terms...)

$$F_{E_8}(t) = \frac{1}{|E_8|} \left(e^{102t} + 28 e^{-1680t} + \ldots \right)$$

 - ask your computer to factor it... it works!

$$F_{E_8}(t) = \frac{1}{|E_8|} \left(e^{15t} - e^{-15t} \right)^8.$$
Part 3: Classification
...and case-by-case proof
Classification and proof strategy

• **Theorem**[Sheppard, Todd, 54] Let W be an irreducible complex reflection group. Then W is (isomorphic to) either:
 - the symmetric group $S_n \subset GL(V_0)$
 - $G(r, p, n)$ for some integer $r \geq 2$, $p, n \geq 1$ with $p|r$.
 - one of 34 exceptional groups

• Well-generated: S_n, $G(r, 1, n)$ and $G(r, r, n)$ + 26 exceptional groups.
Classification and proof strategy

• **Theorem** [Sheppard, Todd, 54] Let W be an irreducible complex reflection group. Then W is (isomorphic to) either:

 - the **symmetric group** $S_n \subset GL(V_0)$

 - $G(r, p, n)$ for some integer $r \geq 2$, $p, n \geq 1$ with $p|r$.

 - one of **34 exceptional groups**

• **Well-generated**: S_n, $G(r, 1, n)$ and $G(r, r, n)$ + **26 exceptional groups**.

\[\text{finitely many groups} \]

COMPUTER !
Classification and proof strategy

- **Theorem** [Sheppard, Todd, 54] Let \(W \) be an irreducible complex reflection group. Then \(W \) is (isomorphic to) either:

 - the symmetric group \(S_n \subset \text{GL}(V_0) \)

 - \(G(r, p, n) \) for some integer \(r \geq 2, p, n \geq 1 \) with \(p|r \).

 - one of 34 exceptional groups

- **Well-generated** \(S_n, G(r, 1, n) \) and \(G(r, r, n) \) + 26 exceptional groups.

INfinitely many groups

MATHS !

finitely many groups

COMPUTER !
Example of S_n (what is so special about the Coxeter element ?)

- We start from $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$

Here $\Lambda = \{\text{partitions of } n\}$ and $c^{-1} = \text{full cycle.}$
Example of S_n (what is so special about the Coxeter element?)

- We start from $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$.

Here $\Lambda = \{\text{partitions of } n\}$ and $c^{-1} = \text{full cycle}$.

- Crucial fact: There are very few partitions λ such that $\chi_\lambda(c^{-1}) \neq 0$.
Example of \mathbb{S}_n (what is so special about the Coxeter element ?)

- We start from \(F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right) \)

Here $\Lambda = \{\text{partitions of } n\}$ and $c^{-1} = \text{full cycle}$.

- Crucial fact: There are very few partitions λ such that $\chi_\lambda(c^{-1}) \neq 0$

Murnaghan-Nakayama rule

$\lambda = [3, 3, 2, 1]$ and $\sigma = (1, 3, 4)(2, 8, 9)(5, 7)(6)$

\[
\chi_\lambda(\sigma) = (-1) + (-1) = (-2)
\]

[Diagram of ribbon strip]
Example of S_n (what is so special about the Coxeter element?)

- We start from $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right))$

Here $\Lambda = \{\text{partitions of } n\}$ and $c^{-1} = \text{full cycle}$.

- Crucial fact: There are very few partitions λ such that $\chi_\lambda(c^{-1}) \neq 0$

Murnagahan-Nakayama rule

$\lambda = [3, 3, 2, 1]$ and $\sigma = (1, 3, 4)(2, 8, 9)(5, 7)(6)$

$$\chi_\lambda(\sigma) = (-1) + (-1) = (-2)$$

ribbon strip
Example of S_n (what is so special about the Coxeter element?) – 2

- We have $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} (\dim h_k) \chi_{h_k}(c^{-1}) \exp \left(\frac{\chi_{h_k}(R)}{\dim h_k} \cdot t \right)$$
Example of S_n (what is so special about the Coxeter element?) – 2

- We have $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_{\lambda}(c^{-1}) \exp \left(\frac{\chi_{\lambda}(R)}{\dim \lambda} \cdot t \right)$

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} \dim \mathfrak{h}_k \chi_{\mathfrak{h}_k}(c^{-1}) \exp \left(\frac{\chi_{\mathfrak{h}_k}(R)}{\dim \mathfrak{h}_k} \cdot t \right)$$

$\mathfrak{h}_k = \text{hook}$

$\# \text{S.Y.T.}$

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} \binom{n-1}{k}$$
Example of S_n (what is so special about the Coxeter element?) – 2

- We have $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_{\lambda}(c^{-1}) \exp \left(\frac{\chi_{\lambda}(R)}{\dim \lambda} \cdot t \right)$

 $= \frac{1}{|W|} \sum_{k=0}^{n-1} (\dim \mathfrak{h}_k) \chi_{\mathfrak{h}_k}(c^{-1}) \exp \left(\frac{\chi_{\mathfrak{h}_k}(R)}{\dim \mathfrak{h}_k} \cdot t \right)$

 $= \frac{1}{|W|} \sum_{k=0}^{n-1} \left(\begin{array}{c} n-1 \\ k \end{array} \right) (-1)^k$

$\mathfrak{h}_k = \text{hook}$

$\# \text{ S.Y.T.}$

Murnaghan Nakayama.
Example of S_n (what is so special about the Coxeter element?) – 2

- We have $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$

\[= \frac{1}{|W|} \sum_{k=0}^{n-1} (\dim h_k) \chi_{h_k}(c^{-1}) \exp \left(\frac{\chi_{h_k}(R)}{\dim h_k} \cdot t \right) \]

- # S.Y.T. Murnaghan Nakayama.

\[= \frac{1}{|W|} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \exp \left(\frac{n(n-2k-2)}{2} \cdot t \right) \]

Use combinatorial rules (e.g. Jucys Murphy or Murnaghan-Nakayama)

$\mathfrak{h}_k = $ hook

\[n - k \]

BIG sum

SMALL sum
Example of S_n (what is so special about the Coxeter element ?) – 2

- We have $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda(c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} (\dim \mathfrak{h}_k) \chi_{\mathfrak{h}_k}(c^{-1}) \exp \left(\frac{\chi_{\mathfrak{h}_k}(R)}{\dim \mathfrak{h}_k} \cdot t \right)$$

$\mathfrak{h}_k = \text{hook}$

$\# S.Y.T. $ Murnagahan Nakayama.

Use combinatorial rules (e.g. Jucys Murphy or Murnagahan-Nakayama)

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \exp \left(\frac{n(n-2k-2)}{2} \cdot t \right)$$

$$= \frac{1}{|W|} \left(e^{\frac{n}{2} t} - e^{-\frac{n}{2} t} \right)^{n-1}.$$
Example of S_n (what is so special about the Coxeter element?) – 2

- We have $F(t) = \frac{1}{|W|} \sum_{\lambda \in \Lambda} (\dim \lambda) \chi_\lambda (c^{-1}) \exp \left(\frac{\chi_\lambda(R)}{\dim \lambda} \cdot t \right)$

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} (\dim \mathfrak{h}_k) \chi_{\mathfrak{h}_k} (c^{-1}) \exp \left(\frac{\chi_{\mathfrak{h}_k}(R)}{\dim \mathfrak{h}_k} \cdot t \right)$$

$\mathfrak{h}_k = \text{hook}$

$\# \text{ S.Y.T.}$

$\text{Murnaghan-Nakayama.}$

$\text{Use combinatorial rules (e.g. Jucys Murphy or Murnaghan-Nakayama)}$

$$= \frac{1}{|W|} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \exp \left(\frac{n(n-2k-2)}{2} \cdot t \right)$$

$$= \frac{1}{|W|} \left(e^{\frac{n}{2} t} - e^{-\frac{n}{2} t} \right)^{n-1}.$$
Other infinite families – $G(r, 1, n)$ and $G(r, r, n)$

- We need some **combinatorial representation theory** for these groups

- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]

r-tuples of partitions of total size n
Other infinite families – $G(r, 1, n)$ and $G(r, r, n)$

- We need some combinatorial representation theory for these groups
- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]
- $G(r, r, n) \rightarrow$ algebraically: “easy” exercise in representation theory
 combinatorially: a bit messy so not really done anywhere...
Other infinite families – $G(r, 1, n)$ and $G(r, r, n)$

- We need some **combinatorial representation theory** for these groups

- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]

- $G(r, r, n) \rightarrow$ algebraically: “easy” exercise in representation theory
 combinatorially: a bit messy so not really done anywhere...

- In both cases: - there are only $O(r^2n)$ characters to consider
 - we can (meticulously...) compute all the pieces
 - at the end, **Newton’s formula** collects the pieces!
Other infinite families – $G(r, 1, n)$ and $G(r, r, n)$

- We need some **combinatorial representation theory** for these groups
- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]
- $G(r, r, n) \rightarrow$ algebraically: “easy” exercise in representation theory
 combinatorially: a bit messy so not really done anywhere...
- In both cases: - there are **only $O(r^2n)$** characters to consider
 - we can (meticulously...) compute all the pieces
 - at the end, **Newton’s formula** collects the pieces!
- **Conclusion:** The formulas are nice but we don’t UNDERSTAND them!
Extended conclusion

- We end up with a nice formula but a classification dependent proof… (which is not so nice)
Extended conclusion

- We end up with a nice formula but a classification dependent proof... (which is not so nice)

 This is a general phenomenon in this context!

 - Deligne’s formula still has no classification-free proof
Extended conclusion

• We end up with a nice formula but a classification dependent proof… (which is not so nice)

This is a general phenomenon in this context!

- Deligne’s formula still has no classification-free proof

- vast litterature in algebraic combinatorics on non-crossing partitions [Armstong, Bessis-Reiner, Krattenthaler-Muller…]

These results deal with refinements of the planar case (=trees for S_n)

None of them has a classification-free proof
Extended conclusion

• We end up with a nice formula but a classification dependent proof… (which is not so nice)

This is a general phenomenon in this context!

- Deligne’s formula still has no classification-free proof
- vast literature in algebraic combinatorics on non-crossing partitions [Armstong, Bessis-Reiner, Krattenthaler-Muller…]

These results deal with refinements of the planar case (trees for S_n)
None of them has a classification-free proof

• Suprisingly we are the first ones to use representation theory in this context

• Hope: the rep-theoretic approach could lead to classification-free proofs

• Why? because I hope that the non-vanishing characters have a nice geometric description… we just have to find it!
Extended conclusion

- We end up with a **nice** formula but a **classification dependent** proof... (which is **not so nice**)

 This is a general phenomenon in this context!

 - Deligne’s formula still has no **classification-free** proof
 - **vast litterature** in algebraic combinatorics on **non-crossing partitions** [Armstrong, Bessis-Reiner, Krattenthaler-Muller...]

 These results deal with refinements of the **planar case** (=trees for S_n)

 None of them has a **classification-free** proof

- Suprisingly we are the first ones to use **representation theory** in this context

- **Hope**: the rep-theoretic approach could lead to **classification-free** proofs

- **Why?** because I **hope** that the non-vanishing characters have a **nice geometric description**... we just have to find it!
Thank you !