Three Ways to Cover a Graph

Kolja Knauer
Université Montpellier 2

Torsten Ueckerdt
Karlsruhe Institute of Technology

GT Combi du LIX, June 3, 2013
Interval graphs
Intersection graphs of intervals

every v represented by an interval
graph edges \iff interval intersections

• classical graph class
• efficient recognition
• chordal & perfect
• many applications
Intersection graphs of systems of intervals

every ν represented by $\leq k$ intervals

graph edges \iff interval intersections
Intersection graphs of systems of intervals

every \(v \) represented by \(\leq k \) intervals

graph edges \(\iff \) interval intersections

on one line
Intersection graphs of systems of intervals

every \(v \) represented by \(\leq k \) intervals

graph edges \(\iff \) interval intersections

at most one on each of \(k \) lines

on one line

Track number
Gyárfás, West '95

Interval number
Harary, Trotter '79
Intersection graphs of systems of intervals

every v represented by $\leq k$ intervals

graph edges \Leftrightarrow interval intersections

at most one on each of k lines

on one line

at most one on each line

Track number
Gyárfás, West '95

Local track number

Interval number
Harary, Trotter '79
Some Results

<table>
<thead>
<tr>
<th></th>
<th>track nr.</th>
<th>local track nr.</th>
<th>interval nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>outerplanar</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>bip. planar</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>planar</td>
<td>4</td>
<td>?</td>
<td>3</td>
</tr>
<tr>
<td>tw (\leq k)</td>
<td>(k + 1)</td>
<td>(k)</td>
<td>(k)</td>
</tr>
<tr>
<td>dg (\leq k)</td>
<td>(2k)</td>
<td>(k + 1)</td>
<td>(k + 1)</td>
</tr>
</tbody>
</table>

- Kostochka, West ’99
- Scheinermann, West ’83
- Gonçalves, Ochem ’09
- KU ’12
Intersection graphs of systems of intervals

- at most one on each of \(k \) lines
- at most one on each line
- on one line

- **Track number**
 Gyárfás, West '95

- **Local track number**

- **Interval number**
 Harary, Trotter '79
Intersection graphs of systems of intervals

at most one on each of k lines

edges covered by $\leq k$ interval graphs

Track number
Gyárfás, West '95

Local track number

Interval number
Harary, Trotter '79

on one line

at most one on each line
Intersection graphs of systems of intervals

at most one on each of \(k \) lines

at most one on each line

edges covered by interval graphs, \(\leq k \) at each vertex

\(\leq k \) interval graphs

Track number
Gyárfás, West '95

Local track number

Interval number
Harary, Trotter '79
Intersection graphs of systems of intervals

edges covered by \(\leq k \) interval graphs, \(\leq k \) at each vertex

at most one on each of \(k \) lines

homomorphism from an interval graph, each vertex hit \(\leq k \) times

at most one on each line

Track number
Gyárfás, West ’95

Local track number

Interval number
Harary, Trotter ’79
Global, Local, and Folded Covers
 ◦ Templates = Interval Graphs

Formal Definitions

Local and Folded Linear Arboricity
 ◦ Templates = Collections of Paths

Interrelations
 ◦ Templates = Forests, Pseudo-Forests, Star Forests

What is known and what is open
More Formally

\[\varphi : T_1 \sqcup \cdots \sqcup T_k \rightarrow G \]
edge-surjective homomorphism

\[\varphi \text{ injective} \iff \varphi \text{ restricted to each } T_i \text{ injective} \]

\[\text{size of } \varphi \iff \# \text{ template graphs in preimage} \]
More Formally

ϕ cover \iff \varphi : T_1 \sqcup \cdots \sqcup T_k \to G

edge-surjective homomorphism

ϕ injective \iff \varphi \text{ restricted to each } T_i \text{ injective}

size of ϕ \iff \# \text{ template graphs in preimage}

c_T^g(G) = \min \{ \text{size of } \varphi : \varphi \text{ injective cover of } G \}

global

c_T^\ell(G) = \min \{ \max_{v \in V(G)} |\varphi^{-1}(v)| : \varphi \text{ injective cover of } G \}

local

c_T^f(G) = \min \{ \max_{v \in V(G)} |\varphi^{-1}(v)| : \varphi \text{ cover of } G \text{ of size 1} \}

folded
Basic Properties

We consider template classes that are closed under disjoint union.

Lemma:

1) \(c_T^g (G) \geq c_T^\ell (G) \geq c_T^f (G) \) for every \(G \)

 define \(c_T^i (G) := \sup \{ c_T^i (G) : G \in \mathcal{G} \} \) (\(\mathcal{G} \) graph class)

2) \(c_T^i (\mathcal{G}) \leq c_T^i (\mathcal{G}') \) \(\mathcal{G} \subseteq \mathcal{G}' \)

3) \(c_T^i (\mathcal{G}) \geq c_T' (\mathcal{G}) \) \(\mathcal{T} \subseteq \mathcal{T}' \)
Global Covering Number
- star arboricity
- caterpillar arboricity
- clique covering number
- track number
- linear arboricity
- arboricity
- outer-thickness
- edge-chromatic number
- thickness
- bipartite dimension

Local Covering Number
- bipartite degree

Folded Covering Number
- bar visibility number
- interval number
- splitting number

Unifying Concept
Global, Local, and Folded Covers
 - Templates = Interval Graphs

Formal Definitions

Local and Folded Linear Arboricity
 - Templates = Collections of Paths

Interrelations
 - Templates = Forests, Pseudo-Forests, Star Forests

What is known and what is open
Global and Local Linear Arboricity

host graph

$G = \text{Petersen Graph}$

template class

$\mathcal{T} = \{\text{linear forests}\}$
Global and Local Linear Arboricity

template class

$T = \{\text{linear forests}\}$

host graph

$G = \text{Petersen Graph}$
Global and Local Linear Arboricity

linear arboricity

\[c^T_g(G) = \text{la}(G) = 2 \]

host graph

\[G = \text{Petersen Graph} \]

template class

\[\mathcal{T} = \{\text{linear forests}\} \]
Global and Local Linear Arboricity

linear arboricity
\(c_g^T (G) = \text{la}(G) = 2 \)

\(\text{host graph} \quad G = \text{Petersen Graph} \)

\(\mathcal{T} = \{ \text{linear forests} \} \)

Akiyama et. al. ’80

Linear Arboricity Conjecture

\(\text{la}(G) \leq \left\lceil \frac{\Delta + 1}{2} \right\rceil \)
Global and Local Linear Arboricity

local linear arboricity

\[c_\ell^\mathcal{T}(G) = l\alpha_\ell(G) = 2 \]

host graph

\[G = \text{Petersen Graph} \]

template class

\[\mathcal{T} = \{ \text{linear forests} \} \]
Global and Local Linear Arboricity

Local linear arboricity
\[c^T_\ell(G) = \text{la}_\ell(G) = 2 \]

Petersen Graph

Local Linear Arboricity Conjecture
\[\text{la}_\ell(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil \]
Folded Linear Arboricity

folded linear arboricity

$$c^T_f(G) = \text{la}_f(G) = 2$$

host graph

\(G = \text{Petersen Graph}\)

template class

\(\mathcal{T} = \{\text{linear forests}\}\)
Folded Linear Arboricity

folded linear arboricity
\[c_f(T)(G) = \text{la}_f(G) = 2 \]

host graph
\[G = \text{Petersen Graph} \]

\[\mathcal{T} = \{ \text{linear forests} \} \]

Folded Linear Arboricity Theorem [KU]
\[\text{la}_f(G) \leq \left\lceil \frac{\Delta + 1}{2} \right\rceil \]
Folded Linear Arboricity Theorem [KU]

\[l_{af}(G') \leq \left\lceil \frac{\Delta + 1}{2} \right\rceil \]
Folded Linear Arboricity Theorem [KU]

\[\text{la}_f(G') \leq \left\lceil \frac{\Delta + 1}{2} \right\rceil \]

Proof: (easy)

\(\Delta \text{ even:} \)
- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited \(\leq \frac{\Delta}{2} \) times
- start-vertex once more
- \(1 + \frac{\Delta}{2} = \left\lceil \frac{\Delta + 1}{2} \right\rceil \)
Folded Linear Arboricity Theorem [KU]

\[\lambda_f(G) \leq \left\lceil \frac{\Delta + 1}{2} \right \rceil \]

Proof: (easy)

\(\Delta\) even:
- add vertices and edges to obtain Eulerian
- take Euler tour
- all visited \(\leq \frac{\Delta}{2}\) times
- start-vertex once more
- \(1 + \frac{\Delta}{2} = \left\lceil \frac{\Delta + 1}{2} \right \rceil\)

\(\Delta\) odd:
- add vertices and edges to obtain Eulerian
- take Euler tour
- all visited \(\leq \frac{\Delta + 1}{2}\) times
- start-vertex once more
- start on added vertex
- \(\left\lceil \frac{\Delta + 1}{2} \right \rceil\)
Global, Local, and Folded Covers
 ◦ Templates = Interval Graphs

Formal Definitions

Local and Folded Linear Arboricity
 ◦ Templates = Collections of Paths

Interrelations
 ◦ Templates = Forests, Pseudo-Forests, Star Forests

What is known and what is open
\[\mathcal{F} = \{ \text{forests} \} \]

\[\mathcal{P} = \{ \text{pseudo-forests} \} \]

\[\mathcal{S} = \{ \text{star forests} \} \]
\[F = \{ \text{forests} \} \]
\[P = \{ \text{pseudo-forests} \} \]
\[S = \{ \text{star forests} \} \]

Arboricity

\[c_g^F (G) = a(G) \]

[Nash-Williams ’64]

\[a(G) = \max_{S \subseteq V(G)} \left\lfloor \frac{|E[S]|}{|S| - 1} \right\rfloor \]
\[F = \{ \text{forests} \} \]

\[P = \{ \text{pseudo-forests} \} \]

\[S = \{ \text{star forests} \} \]

Arboricity

\[c^F_g (G') = a(G') \]

Pseudo-Arboricity

\[c^P_g (G') = p(G') \]

[Nash-Williams '64]

\[
a(G) = \max_{S \subseteq V(G)} \left\lfloor \frac{|E[S]|}{|S| - 1} \right\rfloor
\]

[Picard et al. '82]

\[
p(G) = \max_{S \subseteq V(G)} \left\lfloor \frac{|E[S]|}{|S|} \right\rfloor
\]
\[\mathcal{F} = \{ \text{forests} \} \]
\[\mathcal{P} = \{ \text{pseudo-forests} \} \]
\[\mathcal{S} = \{ \text{star forests} \} \]

Arboricity
\[c_{\mathcal{F}}^g (G') = a(G') \]

Pseudo-Arboricity
\[c_{\mathcal{P}}^g (G') = p(G) \]

[Nash-Williams ’64]
\[a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \]

[Picard et al. ’82]
\[p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \]

\[p(G) \leq a(G) \leq p(G') + 1 \]
\[F = \{ \text{forests} \} \]

\[P = \{ \text{pseudo-forests} \} \]

\[S = \{ \text{star forests} \} \]

Arboricity

\[c_g^F(G) = a(G) \]

Pseudo-Arboricity

\[c_g^P(G) = p(G) \]

Star Arboricity

\[c_g^S(G) = sa(G) \]

[Nash-Williams '64]
[Picard et al. '82]

\[
 a(G) = \max_{S \subseteq V(G)} \left[\frac{|E[S]|}{|S| - 1} \right] \quad p(G) = \max_{S \subseteq V(G)} \left[\frac{|E[S]|}{|S|} \right]
\]

\[
p(G) \leq a(G) \leq p(G) + 1
\]
\[c_{g}^{\mathcal{F}}(G) = a(G) \]

Arboricity

\[c_{g}^{\mathcal{P}}(G) = p(G) \]

Pseudo-Arboricity

\[c_{g}^{\mathcal{S}}(G) = sa(G) \]

Star Arboricity

\[a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \]

[Nash-Williams ’64]

\[p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \]

[Picard et al. ’82]

Local Star Arboricity

\[p(G) \leq a(G) \leq sa_{\ell}(G) \leq p(G) + 1 \]
\[\mathcal{F} = \{ \text{forests} \} \]
\[\mathcal{P} = \{ \text{pseudo-forests} \} \]
\[\mathcal{S} = \{ \text{star forests} \} \]

Arboricity
\[c_{g}^{\mathcal{F}}(G) = a(G) \]

[Nash-Williams '64]
\[a(G) = \max_{S \subseteq \mathcal{V}(G)} \left[\frac{|E[S]|}{|S| - 1} \right] \]

Pseudo-Arboricity
\[c_{g}^{\mathcal{P}}(G) = p(G) \]

[Picard et al. '82]
\[p(G) = \max_{S \subseteq \mathcal{V}(G)} \left[\frac{|E[S]|}{|S|} \right] \]

Star Arboricity
\[c_{g}^{\mathcal{S}}(G) = sa(G) \]

Local Star Arboricity
\[c_{\ell}^{\mathcal{S}}(G) = sa_{\ell}(G) \]

\[p(G) \leq a(G) \leq sa_{\ell}(G) \leq p(G) + 1 \]
Thm. We have \(p(G) \leq a(G) \leq sa_\ell(G) \leq p(G) + 1. \)

(where any of these inequalities can be strict)

Moreover, \(p(G) = sa_\ell(G) \) iff \(G \) has an orientation with:

- \(\text{outdeg}(v) \leq p(G) \) for every \(v \in V(G) \)
- \(\text{outdeg}(v) = p(G) \) only if \(\text{deg}(v) = p(G) \)
Thm.: We have \[p(G) \leq a(G) \leq sa_{\ell}(G) \leq p(G) + 1. \]

(where any of these inequalities can be strict)

Moreover, \(p(G) = sa_{\ell}(G) \) iff \(G \) has an orientation with:

- \(\text{outdeg}(v) \leq p(G) \) for every \(v \in V(G) \)
- \(\text{outdeg}(v) = p(G) \) only if \(\text{deg}(v) = p(G) \)

Proofsketch:

[Diagram of graphs showing different orientations and degrees]
Thm.: We have\[p(G) \leq a(G) \leq sa_\ell(G) \leq p(G) + 1. \]
(where any of these inequalities can be strict)

Moreover, \(p(G) = sa_\ell(G) \) iff \(G \) has an orientation with:
- \(\text{outdeg}(v) \leq p(G) \) for every \(v \in V(G) \)
- \(\text{outdeg}(v) = p(G) \) only if \(\deg(v) = p(G) \)

Proofsketch:

orient edges towards center

\[p(G) \leq sa_\ell(G) \]

outdeg\((v) \leq sa_\ell(G)\)
Thm.: We have
\[p(G) \leq a(G) \leq sa_\ell(G) \leq p(G) + 1. \]
(where any of these inequalities can be strict)

Moreover,
\[p(G) = sa_\ell(G) \]
iff \(G \) has an orientation with:
- \(\text{outdeg}(v) \leq p(G) \) for every \(v \in V(G) \)
- \(\text{outdeg}(v) = p(G) \) only if \(\text{deg}(v) = p(G) \)

Proofsketch:

- Orient edges towards the center.
- Orient the stars of incoming edges.

\[p(G) \leq sa_\ell(G) \leq p(G) + 1 \]
Thm.: We have $p(G) \leq a(G) \leq sa_\ell(G) \leq p(G) + 1$.

(where any of these inequalites can be strict)

Moreover, $p(G) = sa_\ell(G)$ iff G has an orientation with:

- outdeg(v) $\leq p(G)$ for every $v \in V(G)$
- outdeg(v) $= p(G)$ only if $\deg(v) = p(G)$

Remains to show $a(G) \leq sa_\ell(G)$:

- W.l.o.g. $p(G) = sa_\ell(G)$
- Orientation with max outdeg $p(G)$
 attained only at degree-$p(G)$ vertices
- Remove degree-$p(G)$ vertices
- $p(G') \leq p(G) - 1$, thus $a(G') \leq p(G')$
- Reinsert degree-$p(G)$ vertices
- $a(G) \leq p(G) = sa_\ell(G)$
Thm.: We have $p(G) \leq a(G) \leq sa_\ell(G) \leq p(G) + 1$.

(where any of these inequalities can be strict)

Moreover, $p(G) = sa_\ell(G)$ iff G has an orientation with:

- $\text{outdeg}(v) \leq p(G)$ for every $v \in V(G)$
- $\text{outdeg}(v) = p(G)$ only if $\text{deg}(v) = p(G)$

Remains to show $a(G) \leq sa_\ell(G)$:

- W.l.o.g. $p(G) = sa_\ell(G)$
- Orientation with max outdeg $p(G)$ attained only at degree-$p(G)$ vertices
- Remove degree-$p(G)$ vertices
- $p(G') \leq p(G) - 1$, thus $a(G') \leq p(G')$
- Reinsert degree-$p(G)$ vertices
- $a(G) \leq p(G) = sa_\ell(G)$

every edge into a different forest
Theorem
We have $p(G) \leq a(G) \leq sa_\ell(G) \leq p(G) + 1$.

Corollary
Local star arboricity can be computed in polynomial time.

[Hakimi, Mitchem, Schmeichel ’96]
Deciding $sa(G) \leq 2$ is NP-complete.

[Alon, McDiarmid, Reed ’92]
$sa(G) \leq 2a(G)$ and this is best possible.
Global, Local, and Folded Covers
 Templates = Interval Graphs

Formal Definitions

Local and Folded Linear Arboricity
 Templates = Collections of Paths

Interrelations
 Templates = Forests, Pseudo-Forests, Star Forests

What is known and what is open
What else is known

<table>
<thead>
<tr>
<th></th>
<th>Star Forests</th>
<th>Caterpillar Forests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$g \ell = f$</td>
<td>$g \ell f$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>3 3</td>
<td>3 3 3</td>
</tr>
<tr>
<td>bip. planar</td>
<td>4 3</td>
<td>4 3 3</td>
</tr>
<tr>
<td>planar</td>
<td>5 4</td>
<td>4 4 4</td>
</tr>
<tr>
<td>$\text{tw} \leq k$</td>
<td>$k + 1$ $k + 1$</td>
<td>$k + 1$ $k + 1$ $k + 1$</td>
</tr>
<tr>
<td>$\text{dg} \leq k$</td>
<td>$2k$ $k + 1$</td>
<td>$2k$ $k + 1$ $k + 1$</td>
</tr>
</tbody>
</table>
What else is known

<table>
<thead>
<tr>
<th></th>
<th>Star Forests</th>
<th>Caterpillar Forests</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g \ell = f$</td>
<td></td>
<td>$g \ell f$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bip. planar</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>planar</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>$tw \leq k$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
</tr>
<tr>
<td>$dg \leq k$</td>
<td>$2k$</td>
<td>$2k$</td>
</tr>
</tbody>
</table>

KU '12
What else is known

<table>
<thead>
<tr>
<th></th>
<th>Star Forests</th>
<th>Caterpillar Forests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>$\ell = f$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bip. planar</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>planar</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>tw $\leq k$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
</tr>
<tr>
<td>dg $\leq k$</td>
<td>$2k$</td>
<td>$k + 1$</td>
</tr>
</tbody>
</table>

- Kostochka, West '99
- Algor, Alon '89
- Alon et. al. '92
- Gonçalves '07
- Scheinermann, West '83
- Ding et. al. '98
- KU '12
- Hakimi et. al. '96
What is open

Local

Linear Arboricity Conjecture

$$\text{lala}(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil$$

Local track number of planars

$$3 \leq t_\ell \leq 4$$

How much can $c_\ell^T(G)$ and $c_f^T(G)$ differ?

Are there T and k, where $c_g^T(G) \leq k$ is poly, but $c_\ell^T(G) \leq k$ or $c_f^T(G) \leq k$ NP-hard?
What is open

Local Linear Arboricity Conjecture

\[l\alpha_l(G) \leq \left\lceil \frac{\Delta + 1}{2} \right\rceil \]

Local track number of planars

\[3 \leq t_l \leq 4 \]

How much can \(c_T^\ell(G) \) and \(c_f^\ell(G) \) differ?

Are there \(T \) and \(k \), where \(c_g^T(G) \leq k \) is poly, but \(c_T^\ell(G) \leq k \) or \(c_f^T(G) \leq k \) NP-hard?

...three ways to pack a graph