McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Towards an upper bound theorem for the Minkowski sum of convex polytopes

Menelaos I. Karavelas

joint & on-going work with Eleni Tzanaki and Christos Konaxis

University of Crete & FO.R.T.H.

GT Combi du LIX May 27th, 2013

UBT for Minkowski sums of convex polytopes LIX, May 27th, 2013

• We are given r convex d-polytopes P_1, P_2, \ldots, P_r in \mathbb{E}^d let $P = P_1 \oplus P_2 \oplus \cdots \oplus P_r$ be the Minkowski sum of these polytopes.

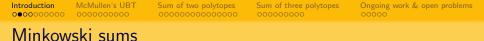
Question

What is the (exact) maximum number of k-faces $f_k(P)$ of P, where $0 \le k \le d-1$?

• In other words we seek to find a function $\Phi_k(d, r)$ such that, for all possible P_1, P_2, \ldots, P_r , we have

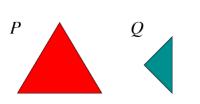
$f_k(P) \le \Phi_k(d, r)$

and $\Phi_k(d, r)$ is as small as possible (ideally: *tight*).



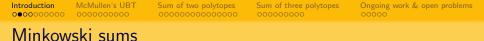
• Given two sets P and Q, their Minkowski sum is defined as

 $P \oplus Q = \{ p + q \mid p \in P, q \in Q \}.$



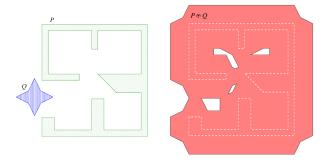


[Image from www.cgal.org]



• Given two sets P and Q, their Minkowski sum is defined as

 $P \oplus Q = \{ p + q \mid p \in P, q \in Q \}.$



[Image from www.cgal.org]

Why do we care? (a.k.a. Motivation)

① The size/cardinality/complexity of a (mathematical) structure is the first thing you want to know.

 Introduction
 McMullen's UBT
 Sum of two polytopes
 Sum of three polytopes
 Ongoing work & open problems
 Ongoing work & open problems

Why do we care? (a.k.a. Motivation)

- ① The size/cardinality/complexity of a (mathematical) structure is the first thing you want to know.
- $\ensuremath{\textcircled{}}$ Important in many many applications. To name a few:
 - Combinatorial Geometry, Computational Geometry, Computer Algebra
 - Graphics, Robotics, Motion Planning, Assembly Planning, Computer-Aided Design
 - Game Theory, Biology, Operations Research

	McMullen's UBT	Sum of two polytopes		Ongoing work & open problems	
Some facts					

- If P_1 and P_2 are convex, then $P_1 \oplus P_2$ is also convex, i.e., $P_1 \oplus P_2 = \operatorname{conv}(\{p+q \mid p \in P_1, q \in P_2\}).$
 - In particular, if P_1 and P_2 are convex polytopes, so is $P_1 \oplus P_2$.
- **②** For the convex polytope case, $f_k(P_1 \oplus P_2)$ is maximized if P_1 and P_2 are in *general position* (cf. [Fukuda & Weibel 2007]).



- For 2-polytopes (polygons) the following worst-case bounds are well known (at least since the 1990's):
 - If P_1, P_2, \ldots, P_r are convex, then:

$$f_k(P_1 \oplus P_2 \oplus \cdots \oplus P_r) \le \sum_{i=1}^r n_i, \qquad k = 0, 1.$$

• If P_1 is convex and P_2 is non-convex, then: $f_k(P_1 \oplus P_2) = \Theta(n_1 n_2), \qquad k = 0, 1.$

• If both P_1 and P_2 are non-convex, then:

 $f_k(P_1 \oplus P_2) = \Theta(n_1^2 n_2^2), \qquad k = 0, 1.$

where n_i is the number of vertices (or edges) of P_i .

 Introduction
 McMullen's UBT
 Sum of two polytopes
 Sum of three polytopes
 Ongoing work & open problems

 Asymptotic bounds in E³

- For 3-polytopes the following worst-case asymptotic bounds are known (see, e.g., [Fogel, Halperin & Weibel 2009]):
 - If both P_1 and P_2 are convex, the complexity of $P_1 \oplus P_2$ is in $\Theta(n_1n_2)$.
 - If both P_1 and P_2 are non-convex, the complexity of $P_1 \oplus P_2$ is in $\Theta(n_1^3 n_2^3)$.
- For two 3-polytopes where one is convex and one is non-convex, see, e.g., [Sharir 2004].

Introduction Ongoing work & open problems 0000000000

Asymptotic bounds in \mathbb{E}^d

- Utilizing the *Cayley trick* it is easy to deduce that the complexity of $P_1 \oplus P_2$ is in $O((n_1 + n_2)^{\lfloor \frac{d+1}{2} \rfloor})$.
 - For $d \ge 2$ even this is tight.
 - It is also tight for $n_1 = n_2 = \Theta(n)$.

For r polytopes, with n vertices each, the Cayley trick gives: $O(n^{\lfloor \frac{d+r-1}{2} \rfloor}).$

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems Ocoocococo Asymptotic bounds in \mathbb{E}^d

- Utilizing the *Cayley trick* it is easy to deduce that the complexity of $P_1 \oplus P_2$ is in $O((n_1 + n_2)^{\lfloor \frac{d+1}{2} \rfloor})$.
 - For $d \ge 2$ even this is tight.
 - It is also tight for $n_1 = n_2 = \Theta(n)$.

For r polytopes, with n vertices each, the Cayley trick gives: $O(n^{\lfloor \frac{d+r-1}{2} \rfloor}).$

• For $d \ge 3$ odd, the worst-case complexity of $P_1 \oplus P_2$ is in $\Theta(n_1 n_2^{\lfloor \frac{d}{2} \rfloor} + n_2 n_1^{\lfloor \frac{d}{2} \rfloor})$ (cf. [K & Tzanaki 2011a]).

Introduction Sum of two polytopes Sum of three polytopes Ongoing work & open problems 0000000000

- Asymptotic bounds in \mathbb{E}^d
 - Utilizing the *Cayley trick* it is easy to deduce that the complexity of $P_1 \oplus P_2$ is in $O((n_1 + n_2)^{\lfloor \frac{d+1}{2} \rfloor})$.
 - For $d \ge 2$ even this is tight.
 - It is also tight for $n_1 = n_2 = \Theta(n)$.

For r polytopes, with n vertices each, the Cayley trick gives: $O(n^{\lfloor \frac{d+r-1}{2} \rfloor})$

- For $d \geq 3$ odd, the worst-case complexity of $P_1 \oplus P_2$ is in $\Theta(n_1 n_2^{\lfloor \frac{d}{2} \rfloor} + n_2 n_1^{\lfloor \frac{d}{2} \rfloor})$ (cf. [K & Tzanaki 2011a]).
- For $r \ge d \ge 2$, [Weibel 2012] has shown that the the number of vertices of $P_1 \oplus \cdots \oplus P_r$ is at most $\binom{r}{d-1}n^{d-1}$, where n is the number of vertices of each polytope.
- For $2 \le r \le d-1$, we have shown that the worst-case complexity of $P_1 \oplus \cdots \oplus P_r$ is in $\Theta(n^{\lfloor \frac{d+r-1}{2} \rfloor})$, where, again, n is the number of vertices of each polytope (cf. [K & Tzanaki 2011b].

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

Summary of known exact tight worst-case bounds

Exact tight worst-case bounds for the number of faces of the Minkowski sum of r d-polytopes are known in the following cases:

d	r	k	in terms of:	
≥ 2	≥ 2	$0,\ldots,d-1$ (all faces)	# of non-parallel edges	
2	2	0,1 (all faces)	# of vertices or $#$ of facets	
3	2	0, 1, 2 (all faces)	# of vertices or $#$ of facets	
3	≥ 2	2 (facets)	# of facets	
≥ 2	≥ 2	0 (vertices)	# of vertices	
≥ 4	$2, \ldots, \lfloor \frac{d}{2} \rfloor$	$0,\ldots,\lfloor \frac{d}{2} floor - r$	# of vertices	
≥ 3	$2, \ldots, d-1$	$0, \ldots, \lfloor \frac{d+r-1}{2} floor - r$	# of vertices	
≥ 2	2, 3	$0,\ldots,d-1$ (all faces)	# of vertices	
≥ 2	≥ 4	$0,\ldots,d-1$ (all faces)	# of vertices	

This talk: d ≥ 2, r = 2, 3 and 0 ≤ k ≤ d − 1 (in terms of the number of vertices of the d-polytopes).

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems Our results for two polytopes (in more detail) Our detail) Our detail Our detail

Result

Let P_1 , P_2 be d-polytopes, $d \ge 2$, with $n_j \ge d+1$ vertices, j = 1, 2. Then:

$$f_{k-1}(P_1 \oplus P_2) \le f_k(C_{d+1}(n_1+n_2)) - \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} \binom{d+1-i}{k+1-i} \sum_{j=1}^2 \binom{n_j - d - 2 + i}{i},$$

where $1 \le k \le d$, and $C_d(n)$ stands for the cyclic d-polytope with n vertices. These bounds are tight.

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

Our results for two polytopes (in more detail)

Result

Let P_1 , P_2 be d-polytopes, $d \ge 2$, with $n_j \ge d+1$ vertices, j = 1, 2. Then:

$$f_{k-1}(P_1 \oplus P_2) \le f_k(C_{d+1}(n_1+n_2)) - \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} \binom{d+1-i}{k+1-i} \sum_{j=1}^2 \binom{n_j - d - 2 + i}{i},$$

where $1 \le k \le d$, and $C_d(n)$ stands for the cyclic *d*-polytope with *n* vertices. These bounds are tight.

Theorem (Upper Bound Theorem [McMullen 1970])

Let P be a d-polytope, $d \ge 2$, with $n \ge d+1$ vertices. Then:

$$f_{k-1}(P) \le f_{k-1}(C_d(n)) = \sum_{i=0}^{\frac{d}{2}} {}^* \left(\binom{d-i}{k-i} + \binom{i}{k-d+i} \right) \binom{n-d-1+i}{i}$$

where $1 \le k \le d$, and $C_d(n)$ stands for the cyclic *d*-polytope with *n* vertices.

Our results for three polytopes (again in detail)

Result

Let P_1 , P_2 , P_3 be d-polytopes, $d \ge 2$, with $n_j \ge d + 1$ vertices, j = 1, 2, 3. Then:

 $f_{k-1}(P_1 \oplus P_2 \oplus P_3) \le f_{k+1}(C_{d+2}(n_{[3]}))$

$$-\sum_{i=0}^{\lfloor\frac{d+2}{2}\rfloor} \binom{d+2-i}{k+2-i} \sum_{\emptyset \subset S \subset [3]} (-1)^{|S|} \binom{n_S-d-3+i}{i}$$
$$-\delta \binom{\lfloor\frac{d}{2}\rfloor+1}{k-\lfloor\frac{d}{2}\rfloor} \sum_{i=1}^{3} \binom{n_i-\lfloor\frac{d}{2}\rfloor-2}{\lfloor\frac{d}{2}\rfloor+1}$$

where $[3] = \{1, 2, 3\}$, $\delta = d - 2\lfloor \frac{d}{2} \rfloor$, $1 \le k \le d$, and $n_S = \sum_{i \in S} n_i$, $\emptyset \subset S \subseteq [3]$. These bounds are tight.

• Given a *d*-polytope *P*, its *f*-vector f(P) is the (d+1)-dimensional vector

 $f(P) = (f_{-1}(P), f_0(P), \dots, f_{d-1}(P))$

- $f_k(P)$ is the number of k-faces of P; $f_{-1}(P) = 1$ (empty set).
- The *h*-vector *h*(*P*) of a simplicial *d*-polytope *P* is the (d + 1)-dimensional vector

 $\boldsymbol{h}(P) = (h_0(P), h_1(P), \dots, h_d(P))$

where

 $h_k(P) := \sum_{i=0}^k (-1)^{k-i} {d-i \choose d-k} f_{i-1}(P), \quad 0 \le k \le d.$

• The g-vector of P is the $\left(\left\lfloor \frac{d}{2} \right\rfloor + 1\right)$ -dimensional vector

 $\boldsymbol{g}(P) = (g_0(P), g_1(P), \dots, g_{\lfloor \frac{d}{2} \rfloor}(P))$

where $g_0(P) = 1$, and $g_k(P) = h_k(P) - h_{k-1}(P)$, $1 \le k \le \lfloor \frac{d}{2} \rfloor$.

• For every simplicial *d*-polytope *P*, the, so called, *Dehn-Sommerville* equations hold:

 $h_{d-k}(P) = h_k(P), \qquad 0 \le k \le d$

- For all $k \ge 0$ we have: $f_{k-1}(P) \le {n \choose k}$, where n is the number of vertices of P.
- For all $k \ge 0$ we have: $h_k(P) \le \binom{n-d-1+k}{k}$.
- For all $k \ge 0$ we have: $g_k(P) \le \binom{n-d-2+k}{k}$.
- g_{d+1-k}(P) = −g_k(P), 0 ≤ k ≤ d + 1 (we can extend the definition of g(P) using the Dehn-Sommerville equations for P).
- The maximal values for the *f*-, *h*-, and *g*-vector of a polytope *P* are all attained "simultaneously", and, in particular, when *P* is a neighborly polytope.

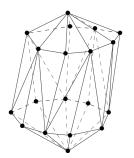
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

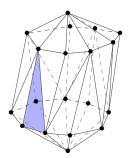
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

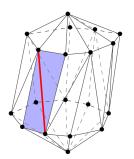
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

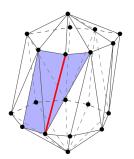
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

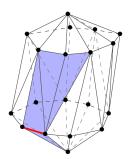
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

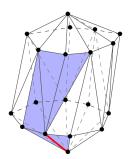
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

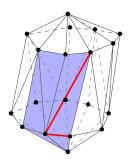
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

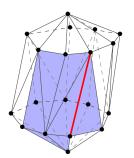
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

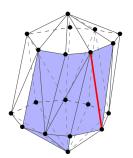
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

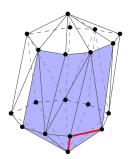
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

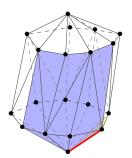
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

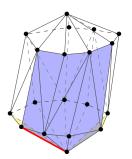
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

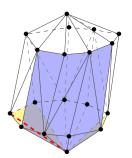
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

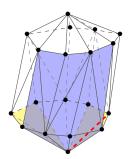
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

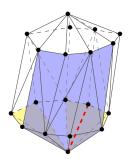
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

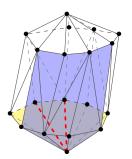
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

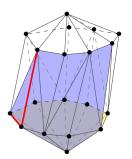
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

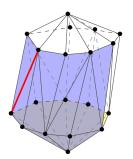
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

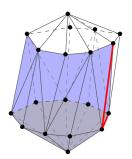
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

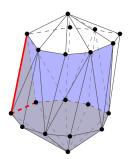
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

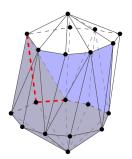
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

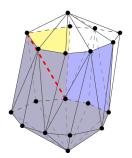
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

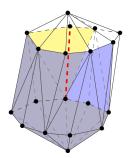
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

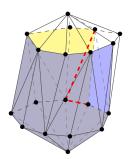
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

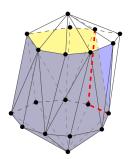
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

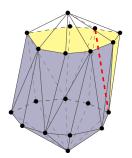
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

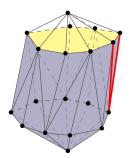
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

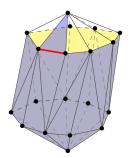
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

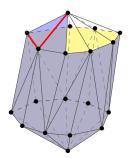
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

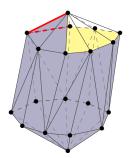
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

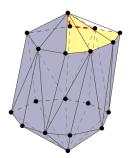
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

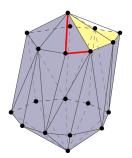
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

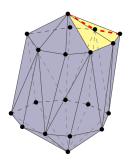
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

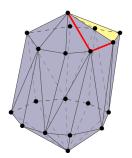
Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems



Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

Shellings

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Definition

- Every polytopal complex that has a shelling is called *shellable*.
- The boundary complex of a polytope of always shellable (cf. [Bruggesser & Mani 1971]).
- Given a shellable complex C, the star/link of a vertex v ∈ vert(C) is also shellable.

Shellings, restrictions and *h*-vectors

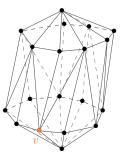
Consider a pure shellable simplicial polytopal complex C and let $S(C) = \{F_1, \ldots, F_s\}$ be a shelling order of its facets.

• The restriction $R(F_j)$ of a facet F_j is the set of all vertices $v \in F_j$ such that $F_j \setminus \{v\}$ is contained in one of the earlier facets.

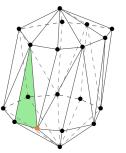
Also $R(F_1) = \emptyset$ and $R(F_i) \neq R(F_j)$ for all $i \neq j$.

- The vertex set $R(F_j)$ forms a face G of F_j . G is called the *minimal new* face at the *j*-th shelling step.
- For a polytope *P*, $h_k(P)$ counts the number of facets of *P* whose restriction has size *k* (and this is independent of the chosen shelling).

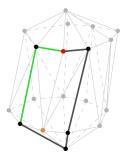
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

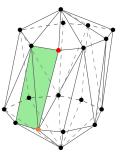


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1) $\begin{aligned} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{aligned}$



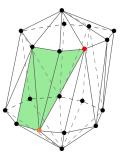
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1) $\begin{aligned} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{aligned}$



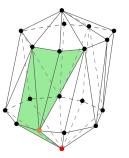


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

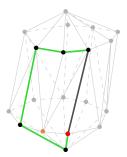


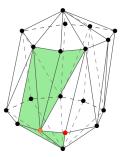


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

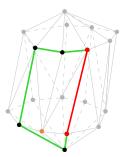


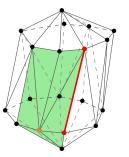
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



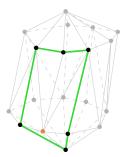


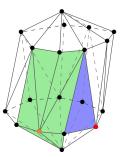
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



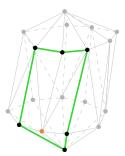


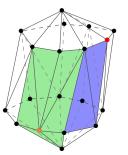
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$



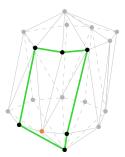


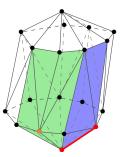
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



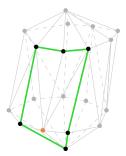


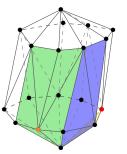
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



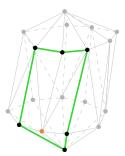


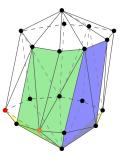
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1) $\begin{aligned} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{aligned}$



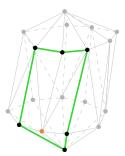


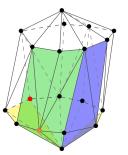
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)





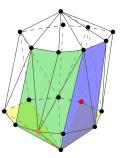
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)





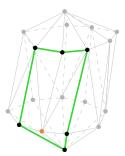
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1) $h_0(\mathcal{Q}/v) \le h_0(\mathcal{Q})$ $h_1(\mathcal{Q}/v) \le h_1(\mathcal{Q})$ $h_2(\mathcal{Q}/v) \le h_2(\mathcal{Q})$ $h_3(\mathcal{Q}/v) \le h_3(\mathcal{Q})$

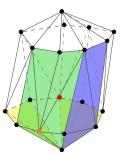
 $\begin{array}{c}
1 \\
4 \\
1 \\
2 \\
0 \\
0
\end{array}$



f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

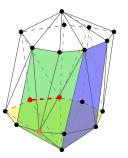
 $\begin{array}{c}
1 \leq 1 \\
4 \leq 11 \\
1 \leq 2 \\
0 \leq 0
\end{array}$



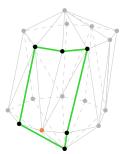


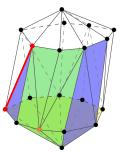
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)





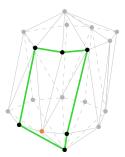
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

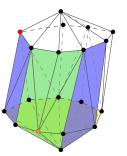




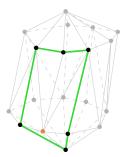
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

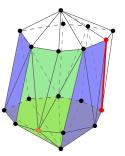
 $\begin{array}{c}
1 \leq 1 \\
4 \leq 12 \\
1 \leq 4 \\
0 \leq 0
\end{array}$



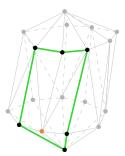


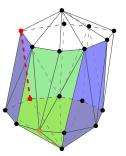
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



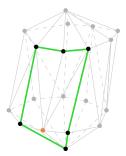


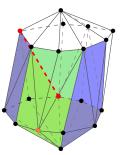
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)





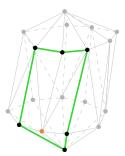
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

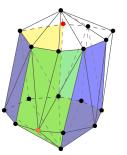




f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

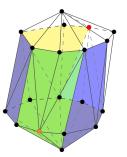
 $\begin{array}{c}
1 \leq 1 \\
4 \leq 13 \\
1 \leq 7 \\
0 \leq 0
\end{array}$



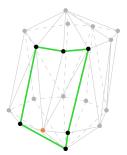


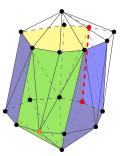
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$





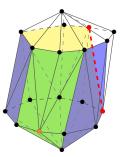
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)





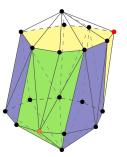
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



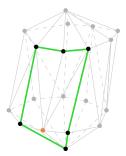


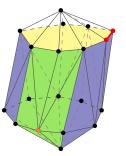
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

 $\begin{array}{c}
1 \\
4 \\
5 \\
1 \\
9 \\
0 \\
6 \\
0
\end{array}$



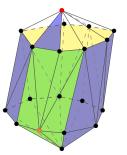
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



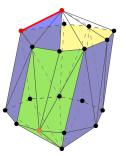


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

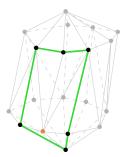


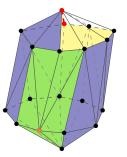


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

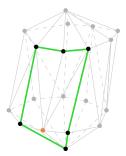


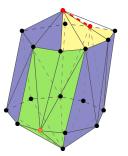
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$



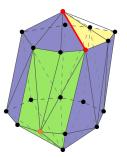


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)

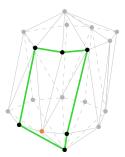


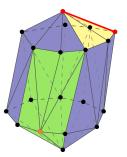


f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)



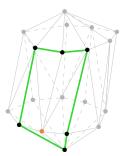
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

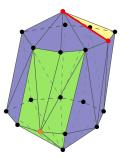




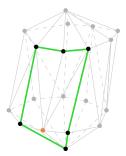
f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$

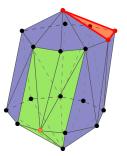
 $\begin{array}{c}
1 \leq 1 \\
4 \leq 16 \\
1 \leq 16 \\
0 \leq 0
\end{array}$





f(Q) = (1, 19, 51, 34) h(Q) = (1, 16, 16, 1) f(Q/v) = (1, 6, 6)h(Q/v) = (1, 4, 1)
$$\begin{split} h_0(\mathcal{Q}/v) &\leq h_0(\mathcal{Q}) \\ h_1(\mathcal{Q}/v) &\leq h_1(\mathcal{Q}) \\ h_2(\mathcal{Q}/v) &\leq h_2(\mathcal{Q}) \\ h_3(\mathcal{Q}/v) &\leq h_3(\mathcal{Q}) \end{split}$$





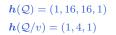
McMullen's UBT

Sum of two polytopes

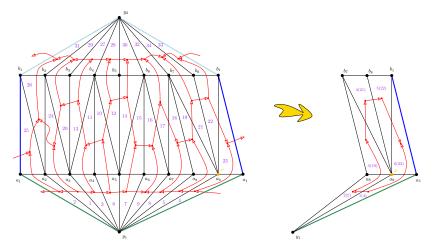
Sum of three polytopes

Ongoing work & open problems

The dual graph $G^{\Delta}(\partial Q)$



 $h_k(\cdot)$ counts the number of vertices in the dual graph with in-degree k.



ntroduction McMullen's UBT Sum of two polytop

Sum of three polytopes

Ongoing work & open problems

Using the Dehn-Sommerville equations

For a simplicial *d*-polytope we have:

$$f_{k-1}(P) = \sum_{i=0}^{d} {\binom{d-i}{k-i}} h_i(P) = \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {\binom{d-i}{k-i}} h_i(P) + \sum_{i=\lfloor \frac{d}{2} \rfloor+1}^{d} {\binom{d-i}{k-i}} h_i(P)$$
$$= \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {\binom{d-i}{k-i}} h_i(P) + \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor-1} {\binom{i}{k-d+i}} h_{d-i}(P)$$
$$= \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {\binom{d-i}{k-i}} h_i(P) + \sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} {\binom{i}{k-d+i}} h_i(P)$$
$$= \sum_{i=0}^{\frac{d}{2}} {\binom{d-i}{k-i}} h_i(P) + {\binom{i}{k-d+i}} h_i(P)$$

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

The recurrence relation for the *h*-vector

For any *n*-vertex simplicial shellable (d-1)-complex we have:

$$(k+1)h_{k+1}(\mathcal{C}) + (d-k)h_k(\mathcal{C}) = \sum_{v \in \operatorname{vert}(\mathcal{C})} h_k(\mathcal{C}/v)$$

But on the other hand:

 $h_k(\mathcal{C}/v) \leq h_k(\mathcal{C}),$

which gives:

$$(k+1)h_{k+1}(\mathcal{C}) + (d-k)h_k(\mathcal{C}) \le \sum_{v \in \operatorname{vert}(\mathcal{C})} h_k(\mathcal{C}) = n \cdot h_k(\mathcal{C})$$

or, equivalently,

$$h_{k+1}(\mathcal{C}) \leq \frac{n-d+k}{k+1} h_k(\mathcal{C}).$$

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems Occorrect Polytopes Concorrect Polytopes Occorrect Polytopes Occo

Using the fact that $h_0(P) = 1$, we can solve the recurrence relation and get:

$$h_k(P) \le \binom{n-d-1+k}{k}, \qquad k \ge 0.$$

Substituting this bound in relations above, we get:

$$f_{k-1}(P) = \sum_{i=0}^{\frac{d}{2}} \left(\begin{pmatrix} d-i\\k-i \end{pmatrix} + \begin{pmatrix} i\\k-d+i \end{pmatrix} \right) h_i(P)$$
$$\leq \sum_{i=0}^{\frac{d}{2}} \left(\begin{pmatrix} d-i\\k-i \end{pmatrix} + \begin{pmatrix} i\\k-d+i \end{pmatrix} \right) \cdot \begin{pmatrix} n-d-1+k\\k \end{pmatrix}$$

The above bound is *tight* for *n*-vertex $\lfloor \frac{d}{2} \rfloor$ -neighborly *d*-polytopes (e.g., the cyclic *d*-polytopes $C_d(n)$).

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

McMullen's methodology in a glance

- ① Consider the *h*-vector h(P) of *P*.
- ⁽²⁾ Use the Dehn-Sommerville-like equations for P.
- ³ Prove a recurrence relation for the elements of h(P).
- ④ Prove bounds for the elements of h(P) (using ③).
- (5) Compute bounds for the elements of the *f*-vector f(P) of *P* using (2) and the bounds on the elements of h(P).

For the upper bound we proceed in way analogous to that of [McMullen 1970] for proving the UBT for polytopes:

- → We use the *Cayley embedding* to define a set of faces \mathcal{F} such that $f_k(\mathcal{F}) = f_{k-1}(P_1 \oplus P_2), 1 \le k \le d.$
- ① We define the *h*-vector $h(\mathcal{F})$ of \mathcal{F} .
- ⁽²⁾ We establish Dehn-Sommerville-like equations for $h(\mathcal{F})$.
- ⁽³⁾ We prove a recurrence relation for the elements of $h(\mathcal{F})$.
- 4 We prove bounds for the elements of $h(\mathcal{F})$ (using 3).
- (5) We compute bounds for the elements of the *f*-vector *f*(*F*) of *F* using (2) and the bounds on the elements of *h*(*F*)

 \rightsquigarrow bounds on the elements of $f(P_1 \oplus P_2)$.

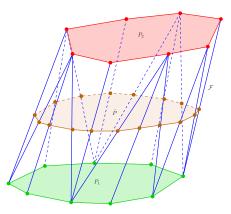
McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The Cayley embedding & the Cayley trick



• Cayley embedding:

Given two *d*-polytopes P_1 and P_2 , embed P_1 (resp., P_2) in the hyperplane of \mathbb{E}^{d+1} with equation $\{x_{d+1} = 0\}$ (resp., $\{x_{d+1} = 1\}$).

• Cayley trick: The intersection of the Cayley polytope $P = \operatorname{conv}(\{P_1, P_2\})$ with the hyperplane $\{x_{d+1} = \lambda\}, \lambda \in (0, 1)$, is the weighted Minkowski sum $(1 - \lambda)P_1 \oplus \lambda P_2$.

Remark

For any two values of $\lambda \in (0,1)$, the weighted Minkowski sums are combinatorially equivalent to each other and to $P_1 \oplus P_2$.

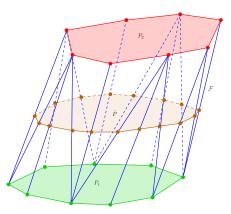
McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The Cayley embedding & the Cayley trick



• Cayley embedding:

Given two *d*-polytopes P_1 and P_2 , embed P_1 (resp., P_2) in the hyperplane of \mathbb{E}^{d+1} with equation $\{x_{d+1} = 0\}$ (resp., $\{x_{d+1} = 1\}$).

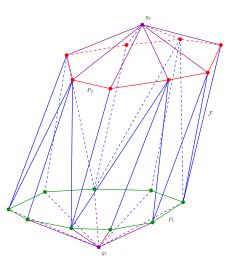
• Cayley trick: The intersection of the Cayley polytope $P = \operatorname{conv}(\{P_1, P_2\})$ with the hyperplane $\{x_{d+1} = \lambda\}, \lambda \in (0, 1)$, is the weighted Minkowski sum $(1 - \lambda)P_1 \oplus \lambda P_2$.

Remark

 $\begin{array}{l} \mbox{Call \mathcal{F} the set of faces of P intersected} \\ \mbox{by } \{x_{d+1} = \lambda\}. \mbox{ Then for all} \\ 1 \leq k \leq d; \\ \mbox{ } f_k(\mathcal{F}) = f_{k-1}(P_1 \oplus P_2). \end{array}$

Introduction McMullen's UBT Sum of two polytopes October Octob

Double stellar subdivision of the Cayley embedding



- W.l.o.g., we can assume that P is almost simplicial (except possibly its facets P₁ and P₂).
- Add two points y_1 and y_2 so that they are beyond the facets P_1 and P_2 of P, and beneath any other facet of P.
- Let $Q = \operatorname{conv}(V_1 \cup V_2 \cup \{y_1, y_2\})$. Observe that Q is simplicial.

Remark

The faces of ∂Q that are not faces of \mathcal{F} are exactly the faces of the star \mathcal{S}_j of y_j in ∂Q , j = 1, 2.

Remark

The link $\partial Q/y_j$ of y_j in ∂Q is the boundary complex ∂P_j , j = 1, 2.

Dehn-Sommerville equations for \mathcal{F}

• We can show that, for all $0 \le k \le d + 1$:

$$h_k(\partial Q) = h_k(\mathcal{F}) + h_k(\partial P_1) + h_k(\partial P_2).$$

• Using the Dehn-Sommerville equations for Q, we get:

 $h_{d+1-k}(\mathcal{F}) + h_{d+1-k}(\partial P_1) + h_{d+1-k}(\partial P_2) = h_k(\mathcal{F}) + h_k(\partial P_1) + h_k(\partial P_2).$

• After using the Dehn-Sommerville equations for ∂P_j :

 $h_{d+1-k}(\mathcal{F}) + h_{k-1}(\partial P_1) + h_{k-1}(\partial P_2) = h_k(\mathcal{F}) + h_k(\partial P_1) + h_k(\partial P_2).$

• Since $g_k(\partial P_j) = h_k(\partial P_j) - h_{k-1}(\partial P_j)$, we arrive at the relation:

 $h_{d+1-k}(\mathcal{F}) = h_k(\mathcal{F}) + g_k(\partial P_1) + g_k(\partial P_2) = h_k(\mathcal{K}).$

where \mathcal{K} is the *closure* of \mathcal{F} under inclusion.

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The recurrence relation for the elements of $h(\mathcal{F})$

Lemma

For all
$$0 \le k \le d$$
,
 $h_{k+1}(\mathcal{F}) \le \frac{n_1 + n_2 - d - 1 + k}{k+1} h_k(\mathcal{F}) + \frac{n_1}{k+1} g_k(\partial P_2) + \frac{n_2}{k+1} g_k(\partial P_1).$

Sketch of proof.

Since Q is a (d + 1)-polytope, and P_1 , P_2 are d-polytopes, we have: (cf. [McMullen 1970]):

$$(k+1)h_{k+1}(\partial Q) + (d+1-k)h_k(\partial Q) = \sum_{v \in V} h_k(\partial Q/v), \qquad 0 \le k \le d.$$
$$(k+1)h_{k+1}(\partial P_j) + (d-k)h_k(\partial P_j) = \sum_{v \in V_i} h_k(\partial P_j/v), \quad 0 \le k \le d-1.$$

From these relations and after some algebra, we arrive at:

$$(k+1)h_{k+1}(\mathcal{F}) + (d+1-k)h_k(\mathcal{F}) = \sum_{i=1}^2 \left(\sum_{v \in V_i} [h_k(\mathcal{K}/v) - g_k(\partial P_i/v)] \right)$$

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The recurrence relation for the elements of $h(\mathcal{F})$

Claim

The following relations hold, for $0 \le k \le d$:

$$h_k(\mathcal{K}/v) - g_k(\partial P_i/v) \le h_k(\mathcal{K}) - g_k(\partial P_i), \qquad v \in V_i.$$

Sketch of proof.

If the claim is true, we get:

$$\begin{split} &\sum_{v \in V_1} \left[h_k(\mathcal{K}/v) - g_k(\partial P_1/v) \right] \le \sum_{v \in V_1} \left[h_k(\mathcal{K}) - g_k(\partial P_1) \right] = n_1 [h_k(\mathcal{F}) + g_k(\partial P_2)], \\ &\sum_{v \in V_2} \left[h_k(\mathcal{K}/v) - g_k(\partial P_2/v) \right] \le \sum_{v \in V_2} \left[h_k(\mathcal{K}) - g_k(\partial P_2) \right] = n_2 [h_k(\mathcal{F}) + g_k(\partial P_1)]. \end{split}$$

We thus conclude that, for $0 \le k \le d$:

 $(k+1)h_{k+1}(\mathcal{F}) + (d+1-k)h_k(\mathcal{F}) \le (n_1+n_2)h_k(\mathcal{F}) + n_1g_k(\partial P_2) + n_2g_k(\partial P_1)$

Solving for $h_{k+1}(\mathcal{F})$ gives the relation in the statement of the lemma.

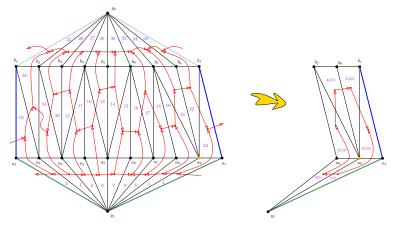
 Introduction
 McMullen's UBT
 Sum of two polytopes
 Sum of three polytopes
 Ongoing work & open problems

 0000000000
 00000000000
 0000000000
 000000000
 000000000

Proof of the Claim by ... example

- Let $\mathcal{X}_1 = \mathcal{K} \setminus \partial P_1 = \mathcal{K}_1 \setminus \mathcal{S}_1$, where $\mathcal{K}_1 = \mathcal{K} \cup \mathcal{S}_1$ and $\mathcal{S}_i = \operatorname{star}(y_i, \partial Q)$, i = 1, 2.
- $\rightsquigarrow h_k(\mathcal{X}_1) = h_k(\mathcal{K}_1) h_k(\mathcal{S}_1) = h_k(\mathcal{K}) g_k(\partial P_1)$

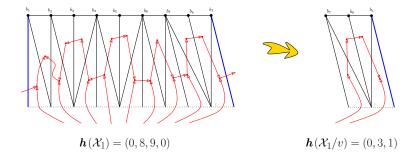
 $h_k(\mathcal{X}_1/v) = h_k(\mathcal{K}_1/v) - h_k(\mathcal{S}_1/v) = h_k(\mathcal{K}/v) - g_k(\partial P_1/v), \text{ for all } v \in \operatorname{vert}(\partial P_1)$



Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

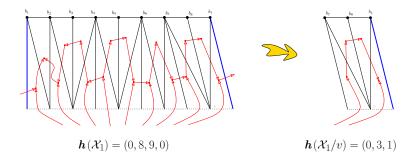
Proof of the Claim by ... example

- Let $\mathcal{X}_1 = \mathcal{K} \setminus \partial P_1 = \mathcal{K}_1 \setminus \mathcal{S}_1$, where $\mathcal{K}_1 = \mathcal{K} \cup \mathcal{S}_1$ and $\mathcal{S}_i = \operatorname{star}(y_i, \partial Q)$, i = 1, 2.
- In a shelling of ∂Q that shells S_1 first and S_2 last, $h_k(\mathcal{X}_1)$ counts the # of vertices of in-degree k in $G^{\Delta}(\partial Q)$, that are dual to facets in \mathcal{K} .
- Analogously: In the induced shelling of $\partial Q/v$, $h_k(\mathcal{X}_1/v)$ counts the # of vertices of in-degree k in $G^{\Delta}(\partial Q/v)$, that are dual to facets in \mathcal{K}/v .



Proof of the Claim by ... example

- Let $\mathcal{X}_1 = \mathcal{K} \setminus \partial P_1 = \mathcal{K}_1 \setminus \mathcal{S}_1$, where $\mathcal{K}_1 = \mathcal{K} \cup \mathcal{S}_1$ and $\mathcal{S}_i = \operatorname{star}(y_i, \partial Q)$, i = 1, 2.
- Since $G^{\Delta}(\partial Q/v)$ is (isomorphic to) a subgraph of $G^{\Delta}(\partial Q)$, we deduce that $h_k(\mathcal{K}/v) - g_k(\partial P_1/v) = h_k(\mathcal{X}_1/v) \le h_k(\mathcal{X}_1) = h_k(\mathcal{K}) - g_k(\partial P_1).$



McMullen's UBT 0000000000 Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Upper bounds for the elements of $h(\mathcal{F})$

Lemma

For all
$$0 \le k \le d+1$$
,
 $h_k(\mathcal{F}) \le \binom{n_1 + n_2 - d - 2 + k}{k} - \binom{n_1 - d - 2 + k}{k} - \binom{n_2 - d - 2 + k}{k}.$

Sketch of proof.

The upper bound follows by induction on k, from the recurrence relation for $h(\mathcal{F})$, and the upper bounds for $g(\partial P_1)$ and $g(\partial P_2)$.

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Bounds for the elements of $f(\mathcal{F})$

$$f_{k-1}(\mathcal{F}) = \sum_{i=0}^{d+1} {\binom{d+1-i}{k-i}} h_i(\mathcal{F}) = \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{d+1-i}{k-i}} h_i(\mathcal{F}) + \sum_{i=\lfloor \frac{d+1}{2} \rfloor + 1}^{d+1-i} {\binom{d+1-i}{k-i}} h_i(\mathcal{F})$$

$$= \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{d+1-i}{k-i}} h_i(\mathcal{F}) + \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {\binom{i}{k-d-1+i}} h_{d+1-i}(\mathcal{F})$$

$$= \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{d+1-i}{k-i}} h_i(\mathcal{F}) + \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {\binom{i}{k-d-1+i}} (h_i(\mathcal{F}) + g_i(\partial P_1) + g_i(\partial P_2))$$

$$= \sum_{i=0}^{\frac{d+1}{2}} {\binom{d+1-i}{k-i}} + {\binom{i}{k-d-1+i}} h_i(\mathcal{F}) + \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {\binom{i}{k-d-1+i}} (g_i(\partial P_1) + g_i(\partial P_2))$$

$$\leq \dots = \dots = \dots$$

$$= f_{k-1}(C_{d+1}(n_1+n_2)) - \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{d+1-i}{k-i}} \sum_{j=1}^{2} {\binom{n_j-d-2+i}{i}}$$

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes

Ongoing work & open problems

Summary & analogy with McMullen's UBT proof

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Summary & analogy with McMullen's UBT proof

→ f_k(F) = f_{k-1}(P₁ ⊕ P₂), 1 ≤ k ≤ d
 0 h_k(F) = ∑_{i=1}^k (-1)^{k-i} (^{d+1-i}_{d+1-k}) f_{i-1}(F), 0 ≤ k ≤ d + 1
 0 h_{d+1-k}(F) = h_k(F) + g_k(∂P₁) + g_k(∂P₂) = h_k(K), 0 ≤ k ≤ d + 1

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Summary & analogy with McMullen's UBT proof

3 $h_{k+1}(P) \le \frac{n-d+k}{k+1}h_k(P), \quad 0 \le k \le d-1$

→ f_k(F) = f_{k-1}(P₁ ⊕ P₂), 1 ≤ k ≤ d
0 h_k(F) = ∑_{i=1}^k (-1)^{k-i} (^{d+1-i}/_{d+1-k}) f_{i-1}(F), 0 ≤ k ≤ d + 1
2 h_{d+1-k}(F) = h_k(F) + g_k(∂P₁) + g_k(∂P₂) = h_k(K), 0 ≤ k ≤ d + 1
3 h_{k+1}(F) ≤ n<sub>1+n₂-d-1+k/_{k+1} h_k(F) + n₁/_{k+1} g_k(∂P₂) + n₂/_{k+1} g_k(∂P₁), 0 ≤ k ≤ d
</sub>

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Summary & analogy with McMullen's UBT proof

$$\begin{aligned} & 0 \quad h_k(P) = \sum_{i=1}^k (-1)^{k-i} \binom{d-i}{d-k} f_{i-1}(P), & 0 \le k \le d \\ & 0 \quad h_{d-k}(P) = h_k(P), & 0 \le k \le d \\ & 0 \quad h_{k+1}(P) \le \frac{n-d+k}{k+1} h_k(P), & 0 \le k \le d-1 \\ & 0 \quad h_k(P) \le \binom{n-d-1+k}{k}, & 0 \le k \le d \end{aligned}$$

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Summary & analogy with McMullen's UBT proof

$$\begin{array}{l} \stackrel{\bullet}{\rightarrow} \ f_k(\mathcal{F}) = f_{k-1}(P_1 \oplus P_2), \quad 1 \le k \le d \\ \\ \stackrel{\bullet}{\otimes} \ h_k(\mathcal{F}) = \sum_{i=1}^k (-1)^{k-i} {d+1-i \choose d+1-k} f_{i-1}(\mathcal{F}), \quad 0 \le k \le d+1 \\ \\ \stackrel{\bullet}{\otimes} \ h_{d+1-k}(\mathcal{F}) = h_k(\mathcal{F}) + g_k(\partial P_1) + g_k(\partial P_2) = h_k(\mathcal{K}), \quad 0 \le k \le d+1 \\ \\ \stackrel{\bullet}{\otimes} \ h_{k+1}(\mathcal{F}) \le \frac{n_1+n_2-d-1+k}{k+1} h_k(\mathcal{F}) + \frac{n_1}{k+1} g_k(\partial P_2) + \frac{n_2}{k+1} g_k(\partial P_1), \quad 0 \le k \le d \\ \\ \stackrel{\bullet}{\otimes} \ h_k(\mathcal{F}) \le {n_1+n_2-d-2+k \choose k} - {n_1-d-2+k \choose k} - {n_2-d-2+k \choose k}, \quad 0 \le k \le d+1 \\ \\ \stackrel{\bullet}{\otimes} \ f_{k-1}(\mathcal{F}) = \sum_{i=0}^{\frac{d+1}{2}} \left({d+1-i \choose k-i} + {i \choose k-d-1+i} \right) h_i(\mathcal{F}) + \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {k-i \choose k-d-1+i} \sum_{j=1}^2 g_i(\partial P_j), \\ \quad 0 \le k \le d+1 \\ \\ \stackrel{\leftarrow}{\sim} \ f_{k-1}(P_1 \oplus P_2) = \sum_{i=0}^{\frac{d+1}{2}} \left({d+1-i \choose k-i-i} + {i \choose k-d+i} \right) h_i(\mathcal{F}) + \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} {k-i \choose k-d+i} \sum_{j=1}^2 g_i(\partial P_j), \\ \quad 1 \le k \le d \\ \end{array}$$

ntroduction Mcl

IcMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The upper bound theorem

Lemma For all $0 \le k \le d+1$: $f_{k-1}(\mathcal{F}) \le f_{k-1}(C_{d+1}(n_1+n_2)) - \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{d+1-i}{k-i} \binom{n_1-d-2+i}{i} + \binom{n_2-d-2+i}{i}},$ where $C_d(n)$ stands for the cyclic *d*-polytope with *n* vertices.

Using the fact that, for all $0 \le k \le d$, $f_{k-1}(P_1 \oplus P_2) = f_k(\mathcal{F})$, we have:

Theorem (UBT4MS)

Let P_1 and P_2 be two *d*-polytopes in \mathbb{E}^d , $d \ge 2$, with $n_1 \ge d+1$ and $n_2 \ge d+1$ vertices, respectively. Let also P be the Cayley polytope of P_1 and P_2 . Then, for $1 \le k \le d$, we have:

$$f_{k-1}(P_1 \oplus P_2) \le f_k(C_{d+1}(n_1+n_2)) - \sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} {d+1-i \choose k+1-i} \left({n_1-d-2+i \choose i} + {n_2-d-2+i \choose i} \right),$$

where $C_d(n)$ stands for the cyclic *d*-polytope with *n* vertices.

McMullen's UBT 0000000000		Ongoing work & open problems

The lower bounds

To prove that the upper bounds are tight, we need to construct two d-polytopes P_1 and P_2 that satisfy two conditions:

- ① Both P_1 and P_2 are $\lfloor \frac{d}{2} \rfloor$ -neighborly $\iff g_k(P_j) = \binom{n_j - d - 2 + k}{k}$, for all $0 \le k \le \lfloor \frac{d}{2} \rfloor$, j = 1, 2.
- $\textcircled{2} \quad \text{For all } 0 \leq k \leq \lfloor \frac{d+1}{2} \rfloor,$

$$h_k(\mathcal{F}) = \binom{n_1 + n_2 - d - 2 + k}{k} - \binom{n_1 - d - 2 + k}{k} - \binom{n_2 - d - 2 + k}{k}.$$

McMullen's UBT 0000000000		Ongoing work & open problems

The lower bounds

To prove that the upper bounds are tight, we need to construct two d-polytopes P_1 and P_2 that satisfy two conditions:

- ① Both P_1 and P_2 are $\lfloor \frac{d}{2} \rfloor$ -neighborly $\iff g_k(P_j) = \binom{n_j - d - 2 + k}{k}$, for all $0 \le k \le \lfloor \frac{d}{2} \rfloor$, j = 1, 2.
- (2) For all $0 \le k \le \lfloor \frac{d+1}{2} \rfloor$,

$$h_k(\mathcal{F}) = \binom{n_1 + n_2 - d - 2 + k}{k} - \binom{n_1 - d - 2 + k}{k} - \binom{n_2 - d - 2 + k}{k}.$$

The second condition is equilavent to the condition:

 $\ \ \, \text{ Por all } 0 \leq k \leq \lfloor \frac{d+1}{2} \rfloor \text{,} \\$

$$f_{k-1}(\mathcal{F}) = \binom{n_1 + n_2}{k} - \binom{n_1}{k} - \binom{n_2}{k}.$$

• Attaining a tight bound for d = 2 is trivial.

- Attaining a tight bound for d = 2 is trivial.
- For d ≥ 4, [Fukuda & Weibel 2007] have established the following trivial upper bound for two summands:

$$f_{k-2}(P_1 \oplus P_2) \le \sum_{j=1}^{k-1} {\binom{n_1}{j}\binom{n_2}{k-j}} = {\binom{n_1+n_2}{k}} - {\binom{n_1}{k}} - {\binom{n_2}{k}},$$

for all $2 \le k \le d+1$. According to [Fukuda & Weibel 2007], this bound is tight for $d \ge 4$ and for all k with $2 \le k \le \lfloor \frac{d}{2} \rfloor$, and is attained when P_1 and P_2 are *cyclic d*-polytopes with disjoint vertex sets.

- Attaining a tight bound for d = 2 is trivial.
 - For d ≥ 4, [Fukuda & Weibel 2007] have established the following trivial upper bound for two summands:

$$f_{k-2}(P_1 \oplus P_2) \le \sum_{j=1}^{k-1} {\binom{n_1}{j}\binom{n_2}{k-j}} = {\binom{n_1+n_2}{k}} - {\binom{n_1}{k}} - {\binom{n_2}{k}},$$

for all $2 \le k \le d + 1$. According to [Fukuda & Weibel 2007], this bound is tight for $d \ge 4$ and for all k with $2 \le k \le \lfloor \frac{d}{2} \rfloor$, and is attained when P_1 and P_2 are *cyclic d*-polytopes with disjoint vertex sets.

✓ Hence, condition ① is satisfied (cyclic polytopes are neighborly).

- Attaining a tight bound for d = 2 is trivial.
 - For d ≥ 4, [Fukuda & Weibel 2007] have established the following trivial upper bound for two summands:

$$f_{k-2}(P_1 \oplus P_2) \leq \sum_{j=1}^{k-1} {\binom{n_1}{j}\binom{n_2}{k-j}} = {\binom{n_1+n_2}{k}} - {\binom{n_1}{k}} - {\binom{n_2}{k}},$$

for all $2 \le k \le d+1$. According to [Fukuda & Weibel 2007], this bound is tight for $d \ge 4$ and for all k with $2 \le k \le \lfloor \frac{d}{2} \rfloor$, and is attained when P_1 and P_2 are *cyclic d*-polytopes with disjoint vertex sets.

- ✓ Hence, condition ① is satisfied (cyclic polytopes are neighborly).
- ✓ For condition ② we observe that we get:

 $f_{k-1}(\mathcal{F}) = f_{k-2}(P_1 \oplus P_2) = \binom{n_1+n_2}{k} - \binom{n_1}{k} - \binom{n_2}{k},$

for all $2 \le k \le \lfloor \frac{d}{2} \rfloor = \lfloor \frac{d+1}{2} \rfloor$, while for k = 0 and k = 1 it is easy to see that equality is also satisfied.

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

Lower bounds for $d \geq 3$ odd – First step

• Define the following two moment-like curves in \mathbb{E}^d .

$$\begin{split} & \boldsymbol{\gamma}_1(t;\zeta) = (t,\zeta t^d,t^2,t^3,\ldots,t^{d-1}), \\ & \boldsymbol{\gamma}_2(t;\zeta) = (\zeta t^d,t,t^2,t^3,\ldots,t^{d-1}), \end{split} \qquad t > 0, \qquad \zeta \ge 0. \end{split}$$

Specifically, denote $\gamma_j(\cdot; 0)$ by $\gamma_j(\cdot)$.

- Embed $\gamma_1(t;\zeta)$ in $\{x_{d+1}=0\}$ and $\gamma_2(t;\zeta)$ in $\{x_{d+1}=1\}$.
- Choose n_1 points on $\gamma_1(t)$ of the form $t_i = \alpha_i \tau$.
- Choose n_2 points on $\gamma_2(t)$ of the form $t_i = \beta_i$.
- Let U_1 and U_2 be the two point sets, and let $Q_j = \operatorname{conv}(U_j)$, $Q = \operatorname{conv}(\{U_1, U_2\}).$
- There exists a sufficiently small positive value τ^* for τ , such that for all $0 \le k \le \lfloor \frac{d+1}{2} \rfloor$:

$$f_{k-1}(\mathcal{F}_{Q^{\star}}) = \binom{n_1+n_2}{k} - \binom{n_1}{k} - \binom{n_2}{k}.$$

ntroduction McMullen's UBT **Sum of two polytopes** Sum of three polytopes Ongoing work & open problems

Lower bounds for $d \geq 3$ odd – First step

• Define the following two moment-like curves in \mathbb{E}^d .

$$\begin{split} & \gamma_1(t;\zeta) = (t,\zeta t^d,t^2,t^3,\ldots,t^{d-1}), \\ & \gamma_2(t;\zeta) = (\zeta t^d,t,t^2,t^3,\ldots,t^{d-1}), \end{split} \qquad t > 0, \qquad \zeta \ge 0. \end{split}$$

Specifically, denote $\gamma_j(\cdot; 0)$ by $\gamma_j(\cdot)$.

- Embed $\gamma_1(t;\zeta)$ in $\{x_{d+1}=0\}$ and $\gamma_2(t;\zeta)$ in $\{x_{d+1}=1\}$.
- Choose n_1 points on $\gamma_1(t)$ of the form $t_i = \alpha_i \tau$.
- Choose n_2 points on $\gamma_2(t)$ of the form $t_i = \beta_i$.
- Let U_1 and U_2 be the two point sets, and let $Q_j = \operatorname{conv}(U_j)$, $Q = \operatorname{conv}(\{U_1, U_2\})$.
- There exists a sufficiently small positive value τ^* for τ , such that for all $0 \le k \le \lfloor \frac{d+1}{2} \rfloor$:

$$f_{k-1}(\mathcal{F}_{Q^*}) = \binom{n_1+n_2}{k} - \binom{n_1}{k} - \binom{n_2}{k}.$$

- $\checkmark Q^*$ satisfies condition 2.
- **×** The Q_j^{\star} 's are (d-1)-dimensional.

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

Lower bounds for $d \ge 3$ odd – Second step

- Fix a small enough value τ^* for τ ; let U_j^* be the corresponding vertex sets.
- Choose some positive ζ , call V_j the *d*-dimensional vertex sets we get from U_j^{\star} , and let $P_j = \operatorname{conv}(V_j)$, $P = \operatorname{conv}(\{V_1, V_2\})$.
- For any $\zeta > 0$, P_1 and P_2 are $\lfloor \frac{d}{2} \rfloor$ -neighborly.
- For $\zeta > 0$ small enough, P satisfies

 $f_{k-1}(\mathcal{F}_P) = \binom{n_1+n_2}{k} - \binom{n_1}{k} - \binom{n_2}{k}, \qquad 0 \le k \le \lfloor \frac{d+1}{2} \rfloor.$

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

Lower bounds for $d \ge 3$ odd – Second step

- Fix a small enough value τ^* for τ ; let U_i^* be the corresponding vertex sets.
- Choose some positive ζ , call V_j the *d*-dimensional vertex sets we get from U_j^* , and let $P_j = \operatorname{conv}(V_j)$, $P = \operatorname{conv}(\{V_1, V_2\})$.
- For any $\zeta > 0$, P_1 and P_2 are $\lfloor \frac{d}{2} \rfloor$ -neighborly.
- For $\zeta > 0$ small enough, *P* satisfies

$$f_{k-1}(\mathcal{F}_P) = \binom{n_1+n_2}{k} - \binom{n_1}{k} - \binom{n_2}{k}, \qquad 0 \le k \le \lfloor \frac{d+1}{2} \rfloor.$$

✓ By choosing a small enough positive ζ , conditions ① and ② are satisfied for P_1 and P_2 .

troduction McMullen's UBT

Sum of two polytopes

Sum of three polytopes ••••••• Ongoing work & open problems

Upper bounds for three polytopes

- Same methodology as for two polytopes:
 - Consider the Cayley polytope of the polytopes
 - Make it simplicial (by adding vertices)
 - Derive Dehn-Sommerville-like equations
 - Prove bounds on certain *h*-vectors
 - Calculate bounds for the $f(P_1\oplus P_2\oplus P_3)$ from these h-vectors

ntroduction McMullen's UBT

Sum of two polytopes

Sum of three polytopes ••••••• Ongoing work & open problems

Upper bounds for three polytopes

- Same methodology as for two polytopes:
 - Consider the Cayley polytope of the polytopes
 - Make it simplicial (by adding vertices)
 - Derive Dehn-Sommerville-like equations
 - Prove bounds on certain *h*-vectors
 - Calculate bounds for the $f(P_1\oplus P_2\oplus P_3)$ from these h-vectors
- Analysis is much harder

troduction McMullen's UBT

Sum of two polytopes

Sum of three polytopes ••••••• Ongoing work & open problems

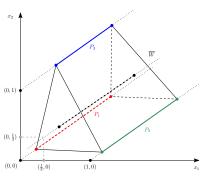
Upper bounds for three polytopes

- Same methodology as for two polytopes:
 - Consider the Cayley polytope of the polytopes
 - Make it simplicial (by adding vertices)
 - Derive Dehn-Sommerville-like equations
 - Prove bounds on certain *h*-vectors
 - Calculate bounds for the $f(P_1 \oplus P_2 \oplus P_3)$ from these *h*-vectors
- Analysis is much harder
- Idea seems to generalize for more summands (later on in the talk)

oduction McMullen's UBT Sum of two polytopes Sum of three polytopes

Ongoing work & open problems

The Cayley trick (for three polytopes)



• Cayley embedding:

Given three *d*-polytopes P_1, P_2, P_3 , and the (standard) affine basis e_0, e_1, e_2 of \mathbb{E}^2 we embed each P_i in \mathbb{E}^{d+2} using the inclusion $\mu_i(\boldsymbol{x}) = (\boldsymbol{e_{i-1}}, \boldsymbol{x}).$

• Cayley trick:

The intersection of $C_{[3]} = conv(\{P_1, P_2, P_3\})$ with the *d*-flat of \mathbb{E}^{d+2}

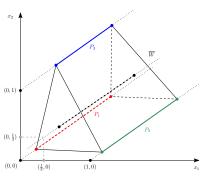
$$\overline{W} = \{ rac{1}{3} oldsymbol{e}_0 + rac{1}{3} oldsymbol{e}_1 + rac{1}{3} oldsymbol{e}_2 \} imes \mathbb{E}^d,$$

is the Minkowski sum $P_1 \oplus P_2 \oplus P_3$.

aduction McMullen's UBT Sum of two polytopes Sum of three polytopes

Ongoing work & open problems

The Cayley trick (for three polytopes)



• Cayley embedding:

Given three *d*-polytopes P_1, P_2, P_3 , and the (standard) affine basis e_0, e_1, e_2 of \mathbb{E}^2 we embed each P_i in \mathbb{E}^{d+2} using the inclusion $\mu_i(\boldsymbol{x}) = (\boldsymbol{e_{i-1}}, \boldsymbol{x}).$

• Cayley trick:

The intersection of $C_{[3]} = conv(\{P_1, P_2, P_3\})$ with the *d*-flat of \mathbb{E}^{d+2}

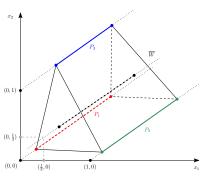
$$\overline{W} = \{ \frac{1}{3} \boldsymbol{e}_0 + \frac{1}{3} \boldsymbol{e}_1 + \frac{1}{3} \boldsymbol{e}_2 \} imes \mathbb{E}^d,$$

is the Minkowski sum $P_1 \oplus P_2 \oplus P_3$.

• Minkowski Sum: $\mathcal{F}_{[3]}$ is the set of faces in $\mathcal{C}_{[3]}$ having at least one vertex from each P_i , $1 \le i \le 3$

Ongoing work & open problems

The Cayley trick (for three polytopes)



• Cayley embedding:

Given three *d*-polytopes P_1, P_2, P_3 , and the (standard) affine basis e_0, e_1, e_2 of \mathbb{E}^2 we embed each P_i in \mathbb{E}^{d+2} using the inclusion $\mu_i(\boldsymbol{x}) = (\boldsymbol{e_{i-1}}, \boldsymbol{x}).$

• Cayley trick:

The intersection of $C_{[3]} = conv(\{P_1, P_2, P_3\})$ with the *d*-flat of \mathbb{E}^{d+2}

$$\overline{W} = \{ \frac{1}{3} \boldsymbol{e}_0 + \frac{1}{3} \boldsymbol{e}_1 + \frac{1}{3} \boldsymbol{e}_2 \} \times \mathbb{E}^d,$$

is the Minkowski sum $P_1 \oplus P_2 \oplus P_3$.

• Minkowski Sum: $\mathcal{F}_{[3]}$ is the set of faces in $\mathcal{C}_{[3]}$ having at least one vertex from each P_i , $1 \le i \le 3$

•
$$f_k(P_1 \oplus P_2 \oplus P_3) = f_{k+2}(\mathcal{F}_{[3]})$$

for all $0 \le k \le d$

Dehn-Sommerville-like equations

- Call \mathcal{K}_R the closure of \mathcal{F}_R under sub-face inclusion, $\emptyset \subset R \subseteq [3]$.
- \mathcal{K}_R is a pure simplicial complex (d + |R| 2)-complex
- We have:

$$f_k(\mathcal{K}_R) = \sum_{\emptyset \subset S \subseteq R} f_k(\mathcal{F}_S), \qquad f_k(\mathcal{F}_R) = \sum_{\emptyset \subset S \subseteq R} (-1)^{|R| - |S|} f_k(\mathcal{K}_S)$$

We can prove the following analogue of the Dehn-Sommerville equations:

Lemma

For any $\emptyset \subset R \subseteq [3]$ and for all $0 \le k \le d + |R| - 1$, we have:

$$h_{d+|R|-1-k}(\mathcal{F}_R) = h_k(\mathcal{K}_R).$$

Define the *m*-order *g*-vector $g^{(m)}(\mathcal{Y})$ of \mathcal{Y} as follows:

$$g_k^{(m)}(\mathcal{Y}) = \begin{cases} h_k(\mathcal{Y}), & m = 0, \\ g_k^{(m-1)}(\mathcal{Y}) - g_{k-1}^{(m-1)}(\mathcal{Y}), & m > 0. \end{cases}$$

Lemma

For all $k \ge 0$, we have:

$$(k+1)h_{k+1}(\mathcal{F}_{[3]}) + (d+2-k)h_k(\mathcal{F}_{[3]}) = \sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \sum_{v \in V_S} g_k^{(3-|S|)}(\mathcal{K}_S/v)$$

where $V_S = \bigcup_{i \in S} V_i$, and \mathcal{K}_S / v denotes the empty set if $v \notin V_S$.

The Link/Non-link inequality

Lemma

For all $k \ge 0$, and for all $v \in V_R$, we have:

$$\sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \sum_{v \in V_S} g_k^{(3-|S|)}(\mathcal{K}_S/v) \\ \leq \sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \sum_{v \in V_S} g_k^{(3-|S|)}(\mathcal{K}_S),$$

where \mathcal{K}_S/v denotes the empty set if $v \notin V_S$.

Introduction McMullen's UBT Sum of two polytopes Sum of three polytopes Ongoing work & open problems

The Link/Non-link inequality

Lemma

For all $k \ge 0$, and for all $v \in V_R$, we have:

$$\sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \sum_{v \in V_S} g_k^{(3-|S|)}(\mathcal{K}_S/v) \\ \leq \sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \sum_{v \in V_S} g_k^{(3-|S|)}(\mathcal{K}_S),$$

where \mathcal{K}_S/v denotes the empty set if $v \notin V_S$.

• Similar in spirit (though more involved) argument as in the case of two polytopes

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The recurrence relation for $h(\mathcal{F}_{[3]})$

Lemma

For all $0 \le k \le d+1$, we have:

$$h_{k+1}(\mathcal{F}_{[3]}) \leq \frac{n_{[3]} - d - 2 + k}{k+1} h_k(\mathcal{F}_{[3]}) + \sum_{i=1}^3 \frac{n_i}{k+1} g_k(\mathcal{F}_{[3] \setminus \{i\}}).$$

McMullen's UBT

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

The recurrence relation for $h(\mathcal{F}_{[3]})$

Lemma

For all $0 \le k \le d+1$, we have:

$$h_{k+1}(\mathcal{F}_{[3]}) \leq \frac{n_{[3]} - d - 2 + k}{k+1} h_k(\mathcal{F}_{[3]}) + \sum_{i=1}^3 \frac{n_i}{k+1} g_k(\mathcal{F}_{[3] \setminus \{i\}}).$$

• Using induction we can fairly easily prove the following bounds:

$$h_k(\mathcal{F}_{[3]}) \le \sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \binom{n_S - d - 3 + k}{k}, \quad n_S = \sum_{i \in S} n_i.$$

McMullen's UBT

um of two polytopes

Sum of three polytopes

Ongoing work & open problems

The recurrence relation for $h(\mathcal{F}_{[3]})$

Lemma

For all $0 \le k \le d+1$, we have:

$$h_{k+1}(\mathcal{F}_{[3]}) \leq \frac{n_{[3]} - d - 2 + k}{k+1} h_k(\mathcal{F}_{[3]}) + \sum_{i=1}^3 \frac{n_i}{k+1} g_k(\mathcal{F}_{[3] \setminus \{i\}}).$$

• Using induction we can fairly easily prove the following bounds:

$$h_k(\mathcal{F}_{[3]}) \le \sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \binom{n_S - d - 3 + k}{k}, \quad n_S = \sum_{i \in S} n_i.$$

• More involved can also be proved for $h_k(\mathcal{K}_{[3]})$

McMullen's UBT

f

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Putting everything together

$$\begin{split} \tilde{f}_{k-1}(\mathcal{F}_{[3]}) &= \sum_{i=0}^{d+2} {\binom{d+2-i}{k-i}} h_i(\mathcal{F}_{[3]}) \\ &= \sum_{i=0}^{\lfloor \frac{d+2}{2} \rfloor} {\binom{d+2-i}{k-i}} h_i(\mathcal{F}_{[3]}) + \sum_{i=\lfloor \frac{d+2}{2} \rfloor+1}^{d+2} {\binom{d+2-i}{k-i}} h_i(\mathcal{F}_{[3]}) \\ &= \sum_{i=0}^{\lfloor \frac{d+2}{2} \rfloor} {\binom{d+2-i}{k-i}} h_i(\mathcal{F}_{[3]}) + \sum_{j=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{j}{k-d-2+j}} h_{d+2-j}(\mathcal{F}_{[3]}) \\ &= \sum_{i=0}^{\lfloor \frac{d+2}{2} \rfloor} {\binom{d+2-i}{k-i}} h_i(\mathcal{F}_{[3]}) + \sum_{j=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{j}{k-d-2+j}} h_j(\mathcal{K}_{[3]}) \\ &\leq \sum_{i=0}^{\lfloor \frac{d+2}{2} \rfloor} {\binom{d+2-i}{k-i}} \prod + \sum_{j=0}^{\lfloor \frac{d+1}{2} \rfloor} {\binom{j}{k-d-2+j}} \prod \\ &= \cdots \\ &= < \text{final result} > \end{split}$$

The tightness construction

• Define the following two moment-like curves in \mathbb{E}^d .

$$\begin{split} & \boldsymbol{\gamma}_1(t;\zeta) = (\ t, \boldsymbol{\zeta} t^2, \boldsymbol{\zeta} t^3, t^4, \dots, t^{d-1}), \\ & \boldsymbol{\gamma}_2(t;\zeta) = (\boldsymbol{\zeta} t, \ t^2, \boldsymbol{\zeta} t^3, t^4, \dots, t^{d-1}), \qquad t > 0, \qquad \boldsymbol{\zeta} \ge 0. \\ & \boldsymbol{\gamma}_3(t;\zeta) = (\boldsymbol{\zeta} t, \boldsymbol{\zeta} t^2, \ t^3, t^4, \dots, t^{d-1}), \end{split}$$

Specifically, denote $\gamma_j(\cdot; 0)$ by $\gamma_j(\cdot)$.

- Embed $\gamma_i(t;\zeta)$ in \mathbb{E}^{d+2} using the lifting map $\mu_i(\cdot)$.
- Choose n_i points on $\gamma_i(t)$ of the form $t_{i,j} = x_{i,j}\tau^{\nu_i}$, $1 \le j \le n_i$, where $\nu_1 > \nu_2 > \nu_3 \ge 0$ (τ is a non-negative parameter).
- Set $\zeta = \tau^M$, for M sufficiently large.
- Let U_i be the three point sets, $U_R = \bigcup_{i \in R} U_i$, and let $C_R = \operatorname{conv}(U_R)$, $\emptyset \subset R \subseteq [3]$.
- C_R , $\emptyset \subset R \subseteq [3]$, is obviously the Cayley polytope of the polytopes P_i with $i \in R$.
- \mathcal{F}_R is (as before) the set of faces of \mathcal{C}_R that contain vertices from the P_i 's, $i \in R$ and those only.

The tightness construction (contd.)

• There exists a sufficiently small positive value $\hat{\tau}_R$, such that for all $\tau \in (0, \hat{\tau}_R)$ and $2 \le k \le \lfloor \frac{d+1}{2} \rfloor$:

$$f_{k-1}(\mathcal{F}_R) = \sum_{\emptyset \subset S \subseteq R} (-1)^{2-|S|} {\binom{n_S}{k}}.$$
 (1)

where |R| = 2.

• There exists a sufficiently small positive value $\hat{\tau}_{[3]}$, such that for all $\tau \in (0, \hat{\tau}_{[3]})$ and $3 \le k \le \lfloor \frac{d+2}{2} \rfloor$:

$$f_{k-1}(\mathcal{F}_{[3]}) = \sum_{\emptyset \subset S \subseteq [3]} (-1)^{3-|S|} \binom{n_S}{k}.$$
 (2)

- Choose positive τ^* to be smaller than: (1) all $\hat{\tau}_R$, |R| = 2, and (2) $\hat{\tau}_{[3]}$. Then conditions (1) and (2) are satisfied for $\tau \leftarrow \tau^*$.
- These two conditions are necessary and sufficient for the *h*-vectors of $\mathcal{F}_{[3]}$ and $\mathcal{K}_{[3]}$ to take their element-wise maximal values.

tion McMullen's UBT Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems

Bounds for four or more *d*-polytopes

- Consider r ≥ 4 d-polytopes P₁,..., P_r. Let C be their Cayley polytope in ℝ^{d+r-1}.
- Call \mathcal{F}_R , where $\emptyset \subset R \subseteq [r]$ the set of faces of \mathcal{C} that have at least one vertex from each P_i , $i \in R$.
- Call \mathcal{K}_R the *closure* of \mathcal{F}_R (under inclusion).

troduction McMullen's UBT Sum of two polytopes Sum of thr

Sum of three polytopes

Ongoing work & open problems

Bounds for four or more *d*-polytopes

- Consider r ≥ 4 d-polytopes P₁,..., P_r. Let C be their Cayley polytope in ℝ^{d+r-1}.
- Call *F_R*, where Ø ⊂ *R* ⊆ [*r*] the set of faces of *C* that have at least one vertex from each *P_i*, *i* ∈ *R*.
- Call \mathcal{K}_R the *closure* of \mathcal{F}_R (under inclusion).
- By the Cayley trick

 $f_{k-1}(\mathcal{F}_{[r]}) = f_{k-r}(P_1 \oplus P_2 \oplus \cdots \oplus P_r), \qquad r \le k \le d+r-1.$

• Our goal is to compute tight bounds for $f_{k-1}(\mathcal{F}_{[r]})$, $r \leq k \leq d+r-1$.

Sum of two polytopes

Sum of three polytopes

Ongoing work & open problems 00000

Bounds for four or more *d*-polytopes

- Consider $r \geq 4$ *d*-polytopes P_1, \ldots, P_r . Let \mathcal{C} be their Cayley polytope in \mathbb{R}^{d+r-1} .
- Call \mathcal{F}_R , where $\emptyset \subset R \subseteq [r]$ the set of faces of \mathcal{C} that have at least one vertex from each P_i , $i \in R$.
- Call \mathcal{K}_R the *closure* of \mathcal{F}_R (under inclusion).
- By the Cayley trick

 $f_{k-1}(\mathcal{F}_{[r]}) = f_{k-r}(P_1 \oplus P_2 \oplus \cdots \oplus P_r), \qquad r < k < d+r-1.$

- Our goal is to compute tight bounds for $f_{k-1}(\mathcal{F}_{[r]})$, $r \leq k \leq d+r-1$.
- Exploit the fact that:

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} h_{d+r-1-k}(\mathcal{F}_{[r]})$$

	McMullen's UBT	Sum of two polytopes	Sum of three polytopes	Ongoing work & open problems		
Some facto						

- Some facts
 - R below denotes any non-empty subset of [r].
 - The Dehn-Sommerville equations for \mathcal{F}_R are:

 $h_{d+|R|-1-k}(\mathcal{F}_R) = h_k(\mathcal{K}_R), \qquad 0 \le k \le d+|R|-1.$

• The following relation holds:

$$(k+1)h_{k+1}(\mathcal{F}_R) + (d+|R|-1-k)h_k(\mathcal{F}_R) = \sum_{\emptyset \subset S \subseteq R} (-1)^{|R|-|S|} \sum_{v \in V_S} g_k^{(|R|-|S|)}(\mathcal{K}_S/v)$$

• The recurrence relation for $h(\mathcal{F}_R)$ is^{*} :

$$h_{k+1}(\mathcal{F}_R) \le \frac{n_R - d - |R| + 1 + k}{k+1} h_k(\mathcal{F}_R) + \sum_{i=1}^{|R|} \frac{n_i}{k+1} g_k(\mathcal{F}_{R \setminus \{i\}}), \quad (3)$$

where $n_R = \sum_{i \in R} n_i$.

• Using (3), we quite easily get:

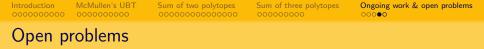
$$h_k(\mathcal{F}_R) \le \sum_{\emptyset \subset S \subseteq R} (-1)^{|R| - |S|} {\binom{n_S - d - |R| + k}{k}}, \qquad 0 \le k \le d + |R| - 1.$$

UBT for Minkowski sums of convex polytopes LIX, May 27th, 2013

	McMullen's UBT	Sum of two polytopes	Ongoing work & open problems ○○●○○
	_		

Some non-facts

- Not at all straightforward to derive *good* bounds for $h_k(\mathcal{K}_R)$.
- Tightness construction for three polytopes seems to generalize to r polytopes, for $2 \le r < d$.
- For r ≥ d, we need to further generalize the construction in conjunction with some results by [Weibel 2012].



? What is the maximum number of k-faces of the Minkowski sum of two polytopes P_1 and P_2 if they are of *different dimensions*?

? What is the maximum number of k-faces of the Minkowski sum of two polytopes P_1 and P_2 if they are of *different dimensions*?

What about the case where P_1 and P_2 are *simple*?

- **?** What is the maximum number of k-faces of the Minkowski sum of two polytopes P_1 and P_2 if they are of *different dimensions*?
 - What about the case where P_1 and P_2 are simple?
- Assuming that the two polytopes P_1 and P_2 are somehow different, can we come up with non-trivial lower bounds on the *f*-vector of $P_1 \oplus P_2$?

- **?** What is the maximum number of k-faces of the Minkowski sum of two polytopes P_1 and P_2 if they are of *different dimensions*?
 - What about the case where P_1 and P_2 are simple?
- **?** Assuming that the two polytopes P_1 and P_2 are somehow different, can we come up with non-trivial lower bounds on the *f*-vector of $P_1 \oplus P_2$?
- What is the maximum number of faces of the Minkowski sum of r d-polytopes, where r ≥ 4 and d ≥ 4?
 - In particular for $4 \le r \le d-1$ and $\lfloor \frac{d+r-1}{2} \rfloor r < k \le d-1$?

- **?** What is the maximum number of k-faces of the Minkowski sum of two polytopes P_1 and P_2 if they are of *different dimensions*?
 - What about the case where P_1 and P_2 are simple?
- **?** Assuming that the two polytopes P_1 and P_2 are somehow different, can we come up with non-trivial lower bounds on the *f*-vector of $P_1 \oplus P_2$?
- What is the maximum number of faces of the Minkowski sum of r d-polytopes, where r ≥ 4 and d ≥ 4?
 - In particular for $4 \le r \le d-1$ and $\lfloor \frac{d+r-1}{2} \rfloor r < k \le d-1$?
- What is the maximum number of faces of the Minkowski sum of two *d*-polytopes as a function of the number of facets of the polytopes?

- The Cayley polytope includes a lot of information that we need/can take advantage of it.
- It seems that we can generalize McMullen's proof for the UBT to get analogous bounds for the Minkowski sum of convex polytopes (already completely done for two polytopes).
- Neighborly polytopes *in general relative position* seem to give Minkowski sums with high complexity.

- The Cayley polytope includes a lot of information that we need/can take advantage of it.
- It seems that we can generalize McMullen's proof for the UBT to get analogous bounds for the Minkowski sum of convex polytopes (already completely done for two polytopes).
- Neighborly polytopes *in general relative position* seem to give Minkowski sums with high complexity.

THANK YOU FOR YOUR ATTENTION