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Convex sets with straight lines are equivalent to points with wobbly lines.
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FIGURE 1. Two realizations of the “bad pentagon”. Left: realization in a topological plane;
Right: realization by convex sets in the Euclidean plane




Axiomatics.
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Chirotopes, abstract order types, signotopes, oriented matroids (uniform of rank 3), CC-systems.

Every five tuple of pseudo lines is stretchable.




P. ERDOS

G. SZEKERES
A combinatorial problem in geometry

Compositio Mathematica, tome 2 (1935), p. 463-470.




From 5 points of the plane of which no three lie on the same
straight line it is always possible to select 4 points determining
a convex quadrilateral.




Theorem. Among any f points in general position in the plane there is a convex polygon with
at least log f vertices.




Definition. Given a convex hull operator, a set X is convexly independent if for any proper
subset Y C X, convY # conv X.

Theorem. For any number n, there is a number f(n), such that, among any f(n) points in the

plane such that each triple is convexly independent, there is a convexly independent subset with
at least n vertices.

Conjecture (Erdés-Szekeres). f(n) = 2772 + 1.




Theorem. For any number n, there is a number g(n), such that, among any g(n) points in

an abstract order type such that each triple is convexly independent, there is a convexly
independent subset with at least n elements.

Conjecture (Goodman-Pollack). f(n) = g(n).

Theorem. For any number n, there is a number ho(n), such that, among any ho(n) pairwise
disjoint convex sets in the plane, such that each triple is convexly independent, there is a
convezly independent subset with at least n sets.

Conjecture (Bisztriczky-Fejes Toth). f(n) = ho(n).

Theorem. For any number n, there is a number hi(n), such that, among any hi(n) pairwise

non crossing convex sets in the plane, such that each triple is convezly independent, there is
a convezly independent subset with at least n sets.

241 < f(n) < g(n) < (GP) 41 (forn>7)

n—1 Erdés-Szekeres, Goodman-Pollack, Valtr-Toth
on—a\2 R !
f(n) <hg(n) < (2:724) Bisztrizky-Fejes Toth, Pach-Toth

h (n) < h (n) < ZO(nzlogn) Pach-Toth, Hubard-Montejano-Mora-Suk, Fox-Pach-Sudakov-Suk
0 = >

272 4 1 = f(n) = g(n) (for n < 6)
X Peters-Szekeres, Bisztrizky-Fejes Toth
22+ 1= hy(n) (for n <'5)




Theorem 1. The Erdds-Szekeres problems for generalized configurations and for arrangements
of non-crossing bodies are equivalent. In other words, g(n) = hi(n).
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FIGURE 1. Two realizations of the “bad pentagon”. Left: realization in a topological plane;
Right: realization by convex sets in the Euclidean plane




2241 < f(n) < gin) < () +1 (forn>7)

n—1

f(n) <hg(n) < (2,?:24)2
ho(n) < hi(n) < 20(*logn)
22 41 = f(n) = g(n) (for n < 6)
272 4 1 = hy(n) (for n < 5)

Theorem 1. The Erdds-Szekeres problems for generalized configurations and for arrangements

of non-crossing bodies are equivalent. In other words, g(n) = hi(n).

272 41 < f(n) < ho(n) < hi(n) = g(n) < (2) +1

272 4 1 = f(n) = ho(n) = hi(n) = g(n)




The dual of a convex set is the graph of its support function

K*={(z,y) € S" xR : y = hg(z)}.
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Proposition 1.1. Every orientable arrangement of bodies gives rise to an abstract order type,
and every abstract order type has a realization by an orientable arrangement of bodies.

U W N =
U W N =




Theorem 1. The Erdds-Szekeres problems for generalized configurations and for arrangements
of non-crossing bodies are equivalent. In other words, g(n) = hi(n).




Lemma 4. If A is not orientable, then C(A) contains a triangular cell bounded by the support
curves of a non-orientable triple.
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FIGURE 4. The triple 7* = {a, b, c} bounds two zones (shaded) and the top curve is b (red).
Neither of the zones of 7" are empty, but the left one is free.

If A contains non-orientable triples, then C(A) contains an empty zone.

Claim 5. If C(A) contains an free zone, then C(A) contains an empty zone.

Any non orientable arrangement has a free zone.




Claim 5. If C(A) contains an free zone, then C(A) contains an empty zone.
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FIGURE 4. The triple 7° = {a, b, ¢} bounds two zones (shaded) and the top curve is b (red).
Neither of the zones of 7™ are empty, but the left one is free.

Each w; intersects Zj in a single connected arc. We may assume w; enters Zj by crossing
curve ¢ and exits Zj by crossing curve a.

The triangular region in Zy bounded by a, w;, ¢ is a zone.

Distinct curves w; and w; cross at most once inside Zy.




Observation 6. Let Z be a zone bounded by a, b, ¢ where b is the top curve. Suppose w enters
Z by crossing ¢ and exits Z by crossing b, then proceeds to cross a. Then one of the triples
a,w,bor w,b,c bound a zone. (See Figure 5.)
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FIGURE 5. Top: The zone Z is bounded by a, b, ¢ (shaded). After w leaves Z and crosses a it
enters a digon bounded by curves a and b, so it must cross one of them again before crossing c.
Bottom left: If the next crossing of w is with a, then a,w,b bound a zone (shaded). Bottom
right: If the next crossing of w is with b then w, b, ¢ bound a zone (shaded).
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FIGURE 6. Starting at top left corner of Zy (light shade) move along the boundary until we
meet the first crossing. This is the top corner of a zone bounded by a,w, c. Proceed along wr,
until we meet the next crossing. By Observation 6 one of the two dark shaded regions must be

a zone.




Any non orientable arrangement has a free zone.
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FIGURE 7. Consider w after it leaves Z. Case (1), left: If w crosses b before ¢, then w,b, ¢
bound an empty zone contained in Z. If w crosses ¢ before b, then w,a,c is not in convex
position. Case (2), right: If w crosses a before c, then w, a,c bound a free zone below Z. If w
crosses ¢ before a, then b intersects w again after its two crossings with a, which implies that
w, a,b is not in convex position.

Our technique also yields improved bounds of the fractioned happy ending theorem and a proof
of the Partitioned happy ending theorem for convex sets.




Theorem 1. The Erdds-Szekeres problems for generalized configurations and for arrangements
of non-crossing bodies are equivalent. In other words, g(n) = hi(n).




Theorem 1.4. For all integersn > k > 1, there exists a minimal positive integer hy(n) such that
the following holds: Any arrangement of at least hi(n) bodies, where the boundaries intersect at
most 2k times and every my-tuple is convexly independent, contains an n-tuple which is convexly
independent, where mo =4, and my =5 for all k > 3.

FIGURE 18. Top: F € Vs ; Bottom: ps(F) € W




