Happy Endings of noncrossing convex bodies.

joint work with:

Andreas Holmsen and Michael Dobbins

P. ERDÖS G. SZEKERES A combinatorial problem in geometry *Compositio Mathematica*, tome 2 (1935), p. 463-470.

From 5 points of the plane of which no three lie on the same straight line it is always possible to select 4 points determining a convex quadrilateral.

Definition. Given a convex hull operator, a set X is convexly independent if for any proper subset $Y \subset X$, conv $Y \neq \text{conv } X$.

Theorem. For any number n, there is a number f(n), such that, among any f(n) points in the plane such that each triple is convexly independent, there is a convexly independent subset with at least n vertices.

Conjecture (Erdős-Szekeres). $f(n) = 2^{n-2} + 1$.

Theorem. an abstrac independen	For any number n, then t order type such that is subset with at least n el	re is a number $g(n)$ t each triple is con lements.	, such that, among any $g(n)$ points in vexly independent, there is a convexly
	Conjecture (Goo	dman-Pollack). $f(n) =$	=g(n).
Theorem. disjoint of convexly in	For any number n, the onvex sets in the plan dependent subset with at	re is a number $h_0(n)$ e, such that each the eleast n sets.	a), such that, among any $h_0(n)$ pairwise riple is convexly independent, there is a
	Conjecture /Pig		
	Conjecture (BIS	ztriczky-Fejes Totn).	$f(n) = h_0(n).$
Theorem non cros a convext	1. For any number n, the sing convex sets in the y independent subset with	ere is a number $h_1(n)$ plane, such that each at least n sets.	$f(n) = h_0(n).$ n , such that, among any $h_1(n)$ pairwise h triple is convexly independent, there is
Theorem non cros $a \ convext$ 2^{n-1}	1. For any number n, the sing convex sets in the y independent subset with $r^2 + 1 \le f(n) \le g(n) \le r^2$	the error is a number $h_1(n)$ of $n \ge 1$ and $h_2(n)$ of $n \ge 1$.	 f(n) = h₀(n). n), such that, among any h₁(n) pairwise ch triple is convexly independent, there is ≥ 7) Erdős-Szekeres, Goodman-Pollack, Valtr-T
Theorem non cross a convexiting 2^{n-1}	1. For any number n, the sing convex sets in the g independent subset with $f^2 + 1 \le f(n) \le g(n) \le f(n) \le h_0(n) \le h$	arriczky-rejes 10th). ere is a number $h_1(n; plane, such that each at least n sets. \binom{2n-5}{n-1} + 1 (\text{for } n \ge \binom{2n-4}{n-2}$	 f(n) = h₀(n). a), such that, among any h₁(n) pairwise ch triple is convexly independent, there is ≥ 7) Erdős-Szekeres, Goodman-Pollack, Valtr-T Bisztrizky-Fejes Toth, Pach-T
Theorem non cro. a convext	For any number n, the sing convex sets in the y independent subset with $r^2 + 1 \le f(n) \le g(n) \le f(n) \le h_0(n) \le h_0(n)$	$\begin{aligned} & \text{arrezky-reges roun).} \\ & \text{ere is a number } h_1(n \\ p \text{ lane, such that each } a \text{ t least } n \text{ sets.} \\ & \binom{2n-5}{n-1} + 1 (\text{for } n \geq \binom{2n-4}{n-2}^2 \\ & h_1(n) \leq 2^{O(n^2 \log n)} \end{aligned}$	 f(n) = h₀(n). n), such that, among any h₁(n) pairwise ch triple is convexly independent, there is ≥ 7) Erdös-Szekeres, Goodman-Pollack, Valtr-T Bisztrizky-Fejes Toth, Pach-T Pach-Toth, Hubard-Montejano-Mora-Suk, Fox-Pach-Sudakov
Theorem non cro. a convext 2^{n}	1. For any number n, the sing convex sets in the y independent subset with $f^2 + 1 \le f(n) \le g(n) \le f(n) \le h_0(n) \le h_0(n) \le h_0(n) \le f(n) = g(n)$	the expression of the express	 f(n) = h₀(n). n), such that, among any h₁(n) pairwise ch triple is convexly independent, there is ≥ 7) Erdös-Szekeres, Goodman-Pollack, Valtr-T Bisztrizky-Fejes Toth, Pach-T Pach-Toth, Hubard-Montejano-Mora-Suk, Fox-Pach-Sudakov

 $2^{n-2} + 1 \le f(n) \le g(n) \le {\binom{2n-5}{n-1}} + 1 \quad \text{(for } n \ge 7)$ $f(n) \le h_0(n) \le {\binom{2n-4}{n-2}}^2$ $h_0(n) \le h_1(n) \le 2^{O(n^2 \log n)}$

$2^{n-2} + 1 = f(n) = g(n)$	(for $n \le 6$)
$2^{n-2} + 1 = h_0(n)$	(for $n \le 5$)

Theorem 1. The Erdős-Szekeres problems for generalized configurations and for arrangements of non-crossing bodies are equivalent. In other words, $g(n) = h_1(n)$.

 $2^{n-2} + 1 \le f(n) \le h_0(n) \le h_1(n) = g(n) \le \binom{2n-5}{n-2} + 1 \quad \text{(for } n \ge 7)$ $2^{n-2} + 1 = f(n) = h_0(n) = h_1(n) = g(n) \quad \text{(for } n \le 6)$

Theorem 1.4. For all integers n > k > 1, there exists a minimal positive integer $h_k(n)$ such that the following holds: Any arrangement of at least $h_k(n)$ bodies, where the boundaries intersect at most 2k times and every m_k -tuple is convexly independent, contains an n-tuple which is convexly independent, where $m_2 = 4$, and $m_k = 5$ for all $k \ge 3$.

FIGURE 18. Top: $\mathcal{F} \in \mathcal{V}_8$; Bottom: $\rho_8(\mathcal{F}) \in \mathcal{W}_3$