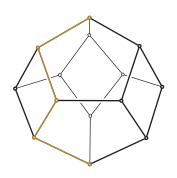
Maximal flip distances on fancy surfaces

Hugo Parlier* Lionel Pournin°

*University of Fribourg

°EFREI and LIAFA

April 15, 2013



Summary

0. Preliminary definitions

Surfaces, triangulations, and flips.

1. The case of the disc

The diameters of associahedra.

2. Surfaces with 2 or 3 boundaries

Two examples with large flip distances.

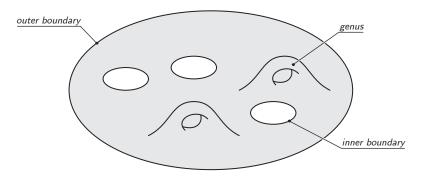
3. Maximal Flip distances on more general surfaces

- A general upper bound,
- Proving lower bounds,

4. Conclusion

Fancy surfaces

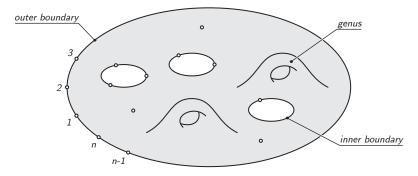
Consider an orientable surface of genus g with r>0 boundaries. One of these boundaries will be called the *outer* boundary:



(this is an orientable surface with 4 boundaries and genus 2)

Fancy surfaces

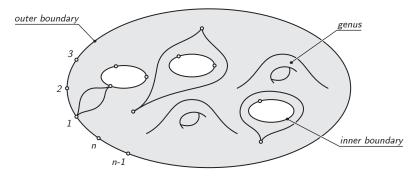
Consider n vertices in the outer boundary, labeled 1 to n clockwise, and other vertices in the surface so that every boundary contains at least one vertex. The set of these vertices will be denoted by \mathcal{A} .



(this is an orientable surface with 4 boundaries and genus 2)

Fancy surfaces

Two edges are *isotopic* if they can be continuously deformed into one another. They are non-isotopic if some obstacle lies "between" them (a boundary, a genus, or a vertex). Some edges have only one vertex.



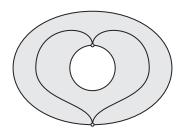
(this is an orientable surface with 4 boundaries and genus 2)

Triangulations

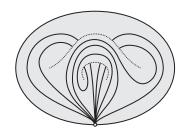
Definition

A triangulation of $\mathcal A$ is a maximal set of pairwise non-crossing and pairwise non-isotopic edges with vertices in $\mathcal A$.

The edges of a triangulation are considered up to isotopy: they can be deformed under the condition that they remain pairwise non-crossing.



A triangulation of a cylinder with one vertex on each boundary.



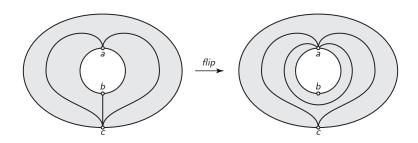
A triangulation of a torus with a boundary containing one vertex.

Flips

Any interior edge ε of a triangulation T of $\mathcal A$ is the diagonal of some quadrilateral q whose boundary edges belong to T.

Definition

Flipping ε in T consists in replacing ε by the other diagonal of q within T.

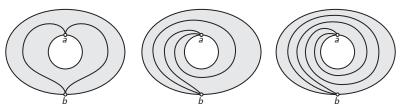


The problem

Any triangulation of $\mathcal A$ can be transformed into any other triangulation of $\mathcal A$ by performing a sequence of flips. The *distance* of two triangulations is the minimal number of flips needed to transform one into the other.

What is the maximal distance between any two triangulations of \mathcal{A} ?

In fact, ${\cal A}$ may have an infinite number of triangulations...



It is natural to consider the triangulations of A up to homeomorphism!

The problem

Let *G* be the graph whose:

- i. vertices are the different triangulations of ${\mathcal A}$ up to homeomorphism,
- ii. edges connect two triangulations of ${\cal A}$ if they can be obtained from one another by a flip.

As mentioned above, graph G is connected.

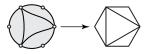
What is the diameter of G?

One needs:

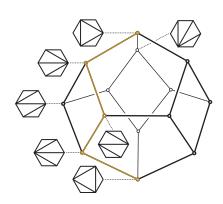
- An upper bound on the distance of two triangulations of \mathcal{A} ,
- Two triangulations U and V of $\mathcal A$ (whose flip distance is maximal),
- A proof that *U* and *V* indeed have the desired flip distance!

The diameters of associahedra

Assume that \mathcal{A} is a set of n vertices in the boundary of a disc. Then, all the edges of a triangulation of \mathcal{A} can be drawn as straight segments.



Moreover, distinct triangulations are never homeomorphic!



Theorem (Lee, 1989)

If the surface is a disc, and A is a set of n vertices in the boundary of this disc, then G is the graph of the (n-3)-dimensional associahedron.

Results

While working on the dynamic optimality conjecture, Daniel Sleator, Robert Tarjan, and William Thurston prove that:

Theorem (Sleator, Tarjan, Thurston, 1988)

When A is the vertex set of a convex polygon, the diameter of G,

- i. is not larger than 2n 10 when n is greater than 12,
- ii. is equal to 2n 10 when n is large enough.

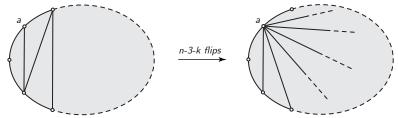
Two problems that remained open for a long time:

- Is there a combinatorial proof (of ii.)?
- Are there triangulations at distance 2n 10 for any n > 12?

Answers: yes and yes (arXiv:1207.6296, 2012)

Proof of the upper bound (Sleator et al. 1988)

In order to obtain the upper bound of 2n-10, flip a triangulation T (left) to a canonical triangulation (right) as follows:



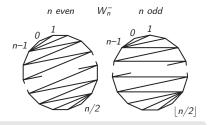
Here, k is the number of interior edges of T incident to vertex a. Call I the number of interior edges incident to a in another trianulation U. One can transform T into U with 2n-6-(k+I) flips.

When n > 12, a counting argument provide a vertex a so that $k + l \ge 4$.

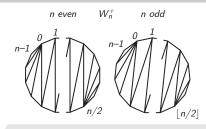
Hence
$$\delta(\lbrace T, U \rbrace) \leq 2n - 10$$
 when $n > 12$.

4 D > 4 D > 4 E > 4 E > E 990

Two triangulations at distance 2n - 10 when n > 12 (arXiv:1207.6296, 2012)



- At vertex n − 1: a comb with 3 teeth,
- At vertex ⌊n/2⌋ − 1: a comb with 3 teeth if n is even and 4 teeth if n is odd.



- A comb with 4 teeth at vertex 0,
- At vertex \[\left(n/2 \right) \]: a comb
 with 4 teeth if n is even and
 3 teeth if n is odd.

In each triangulation, the two combs are connected by a zigzag.

Call $A_n = \{W_n^-, W_n^+\}$ (can be defined whenever $n \ge 3$).

Proof of the lower bound (main ideas)

It will be shown that when n > 12,

$$\delta(A_n) \geq \min(\delta(A_{n-1}) + 2, \delta(A_{n-2}) + 4, \delta(A_{n-5}) + 10, \delta(A_{n-6}) + 12).$$

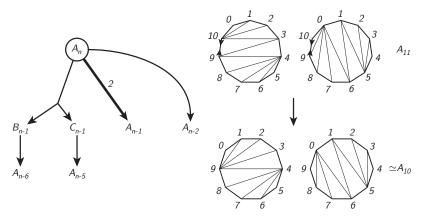
Consider a path C of length k between two triangulations T_1 and T_2 :

Contracting a boundary edge ε of the polygon in every triangulation along this path results in a path of length $l \le k$ between two triangulations of a polygon with n-1 vertices:

The difference k-l is equal to the number of flips incident to ε .

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q C

Proof of the lower bound (main ideas)

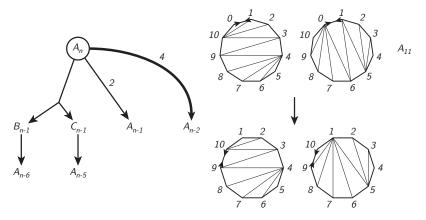


If there exists a minimal path from W_n^- to W_n^+ with at least two flips incident to edge $\{n-2,n-1\}$, then:

$$\delta(A_n) \geq \delta(A_{n-1}) + 2.$$

Lionel Pournin (EFREI)

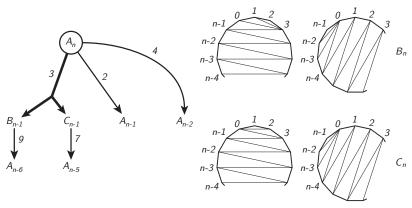
Proof of the lower bound (main ideas)



If there exists a minimal path from W_n^- to W_n^+ with at least three flips incident to edge $\{0,1\}$, then:

$$\delta(A_n) \geq \delta(A_{n-2}) + 4.$$

Proof of the lower bound (main ideas)



The third arc originating at A_n is explored if **every** minimal path,

- i. contains at most one flip incident to $\{n-2, n-1\}$,
- ii. contains at most two flips incident to $\{0,1\}$.

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 へ で 。

Proof of the lower bound (main ideas)

Theorem

When n is greater than 12, the following inequality holds:

$$\delta(A_n) \ge \min(\delta(A_{n-1}) + 2, \delta(A_{n-2}) + 4, \delta(A_{n-5}) + 10, \delta(A_{n-6}) + 12).$$

The distance between W_n^- and W_n^+ is at least equal to 2n-10 when n ranges from 7 to 12. By induction:

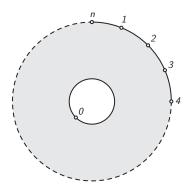
Corollary

Triangulations W_n^- and W_n^+ have flip distance 2n-10 when n>12.

In orther words, G has diameter 2n - 10 when n > 12.

An upper bound for the cylinder

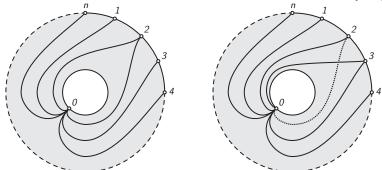
Consider a cylinder with n vertices in the outer boundary labeled 1 to n clockwise and one vertex labeled 0 in the inner boundary.



Call A the set of these n+1 vertices.

An upper bound for the cylinder

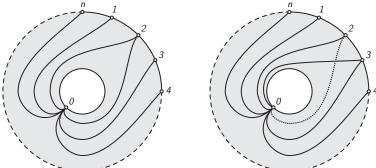
Using the same trick as in the case of the polygon, a triangulation T of \mathcal{A} can be transformed into a triangulation T' whose interior edges all contain 0. This triangulation contains a unique triangle with vertex set $\{0,x\}$.



To do so, at most n-1 flips are required.

An upper bound for the cylinder

Doing the same from another triangulation U will also result, after at most n-1 flips in a triangulation U' whose interior edges all contain 0. This triangulation contains a unique triangle with vertex set $\{0,y\}$.



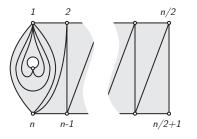
x and y are separated by at most n/2-1 vertices along the outer boundary. Bringing them together thus requires at most n/2 flips.

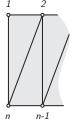
A lower bound for the cylinder

Lemma

The distance of two triangulations of A is not greater than 5n/2 - 2.

It turns out that coefficient 5/2 is tight in this case!

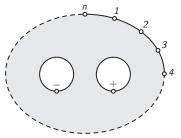




This pair of triangulations, depicted here when n is even, has flip distance 5n/2 + O(1). The proof uses the same techniques as in the case of the disc.

A lower bound for a surface with 3 boundaries

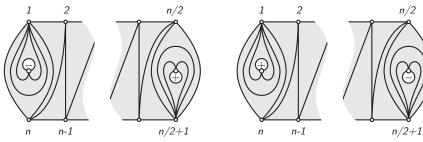
Consider a surface with three boundaries. Label n vertices by 1 to n clockwise in the outer boundary. Further consider two vertices - and + in each of the inner boundaries.



Call \mathcal{A} the set of these n+2 vertices. There are pairs of triangulations of \mathcal{A} at distance 3n+O(n)!

A lower bound for a surface with 3 boundaries

Consider a surface with three boundaries. Label n vertices by 1 to n clockwise in the outer boundary. Further consider two vertices - and + in each of the inner boundaries.



These two triangulations, also represented when n is even, have flip distance 3n + O(1). The proof uses the same techniques as in the case of the disc.

A general upper bound

Let $\mathcal A$ be a set of points placed in a surface with r>0 boundaries and genus g. Assume that:

- i. the total number of boundary points is b
- ii. the total number of interior points is i,

According to Euler's formula, the number e of **interior** edges in any triangulation of $\mathcal A$ is:

$$e = 3i + b + 3r + 7g - 6$$
.

How does the diameter of G behave when n (the number of points in the outer boundary) grows large at fixed i, b-n, r, and g? In this case:

$$e=n+O(1).$$

A general upper bound

Each interior edge of a triangulation incident to a vertex $a \in \mathcal{A}$ in the outer boundary can be removed by a flip. Removing every such edge results in an ear with apex a.

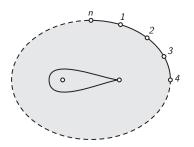
The number of incidences between the interior edges of two triangulations and vertices in the outer boundary is 4e = 4n + O(1). If n is large enough, one can introduce the same ear into these triangulations using at most 4 flips. This ear can be cut off from both triangulations, and:

Lemma

The diameter of G is at most 4n + O(1).

Proving lower bounds (on an example)

Consider a disc with n vertices in the boundary and two interior vertices. Enclose one of the two interior vertices by an edge ε that has the other vertex as its two ends (and join the two interior vertices with an edge).

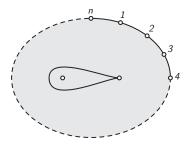


Triangulate the cylinder bounded by ε and by the outer boundary using two triangulations at distance 5n/2 + O(1). Denote by T and by U the two resulting triangulations of \mathcal{A} .

Proving lower bounds (on an example)

Lemma

Edge ε is never removed along any minimal path between T and U.



As a consequence, graph G has diameter at least 5n/2 + O(1) in this case.

4. Conclusions

Assuming that n grows large, while the topology (r boundaries, genus g) and the number i of interior vertices remain fixed,

i	g	r	Lower bound	Upper bound
1	0	1	2n + O(1)	2n + O(1)
2	0	1	5n/2 + O(1)	5n/2 + O(1)
3	0	1	5n/2+O(1)	4n + O(1)
\geq 4	0	1	3n+O(1)	4n + O(1)
0	1	1	5n/2+O(1)	4n + O(1)
1	1	1	5n/2+O(1)	4n + O(1)
≥ 2	≥ 1	1	3n+O(1)	4n + O(1)
≥ 0	≥ 2	1	3n+O(1)	4n + O(1)
≥ 0	≥ 0	2	5n/2+O(1)	4n + O(1)
≥ 0	≥ 0	≥ 3	3n+O(1)	4n + O(1)