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Agenda

What is... a permutahedron/associahedron

How to... realise associahedra

What is... a Minkowski decomposition  

How to... decompose associahedra



convex hull of points

   { (σ(1),...,σ(n)) | σ ∈ Σn }    

Permutahedra
-- definition --

(2,3,1)

(1,2,3) (2,1,3)

(3,1,2)

(3,2,1)

(1,3,2)

affine hyperplane
x1 + x2 + x3 = 6

idea: apply action of Σn on Rn to generic point

     



H-representation 

Σi∈[n] xi = ½n(n+1)         

Σi∈K xi ≥ ½|K|(|K|+1)
for ∅ ≠ K ⊂ [n]

half space
x3 ≥ 1  

half space
x1 +x2 ≥ 3convex hull of points
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half space
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Permutahedra
-- definition --

(2,3,1)

(1,2,3) (2,1,3)
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(1,3,2)

affine hyperplane
x1 + x2 + x3 = 6

idea: apply action of Σn on Rn to generic point

     



H-representation                                 
Σi∈[n] xi = z[n]                                       
Σi∈I xi ≥ zI   for ∅ ≠ I ⊂ [n]

idea: change permutahedron’s right-hand sides

     

zI-coordinates                                     
vector of all zI-values                      
(redundancies possible; choose all zI-values tight)

generalised Permutahedra
-- definition, zI-coordinates --

P({zI})                                           
generalised permutahedron with given zI-coordinates

(want all “redundant” zI-values tight)    



P and Q polytopes 

Minkowski sum P+Q is the polytope                       

What is... Minkowski sum
-- definition --

{ p+q | p∈ P and q∈Q }



P and Q polytopes 

Minkowski sum P+Q is the polytope                       

What is... Minkowski sum
-- definition --

{ p+q | p∈ P and q∈Q }
Example (edges of standard simplex):

(0,0,1)

(0,1,0) (1,0,0)(0,1,0)

+             =
(1,1,0)(0,2,0)

(0,1,1) (1,0,1)



P and Q polytopes 

Minkowski sum P+Q is the polytope                       

What is... Minkowski sum
-- definition --

{ p+q | p∈ P and q∈Q }
Example (edges of standard simplex):

(0,0,1)

(0,1,0) (1,0,0)(0,1,0)

+             =
(1,1,0)(0,2,0)

(0,1,1) (1,0,1)

(1,0,0)

(0,0,1)

+             =
(1,1,0)(0,2,0)

(0,1,1) (1,0,1)

(2,1,0)(1,2,0)

(1,0,2)(0,1,2)

(2,0,1)(0,2,1)



Every Minkowski sum of dilated faces of a 
standard simplex yields a generalised 
permutahedron

Generalised Permutahedra
-- yI-coordinates --

Are zI- and yI-coord’s related? If yes, how?

Theorem [Postnikov, 2009]

vector of dilation factors yI for ∅ ⊂ I ⊆ [n]      
(yI ≥ 0; yI = 0 ⇔ face not used)

yI-coordinates (à la Postnikov)

Observation: zI- and yI-vectors have same size



{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

Relate yI- & zI-coordinates
-- yI- & zI-coordinates as functions --

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

y{1}

y{2,3}y{1,2}

y{2} y{3}

y{1,2,3}

y{1,3}

[Postnikov, 2009]:
zI = ∑J⊆I yJ

zI-coordinates as 
function on Boolean lattice 

(geometric constraints on zI)

z{1}

z{2,3}z{1,2}

z{2} z{3}

z{1,2,3}

z{1,3}

yI-coordinates as 
function on Boolean lattice

(yI ≥ 0)

!! yJ ≥ 0 !!
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zI-coordinates as 
function on Boolean lattice 

(geometric constraints on zI)

z{1}

z{2,3}z{1,2}

z{2} z{3}

z{1,2,3}

z{1,3}

yI-coordinates as 
function on Boolean lattice

(yI ≥ 0)

yJ = ∑I⊆J (-1)|J-I|zI

Möbius inversion

!! yJ ≥ 0 !!



{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

Relate yI- & zI-coordinates
-- yI- & zI-coordinates as functions --

+  +  +  +  + 

1

11

1 1

0

1

1

33

1 1

6

3

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

zI-coordinates as 
function on Boolean lattice 

(geometric constraints on zI)

yI-coordinates as 
function on Boolean lattice

(yI ≥ 0)

[Postnikov, 2009]:
zI = ∑J⊆I yJ

yJ = ∑I⊆J (-1)|J-I|zI

Möbius inversion

!! yJ ≥ 0 !!



combinatorics of CW-complex (Stasheff)

vertices = triangulations of (n+2)-gon

k-face = triangulation minus k diagonals

can be realised as (n-1)-dim polytope 

polytopal realisations were given by Milnor 
(unpublished), Lee, Haiman, Sternberg&Shnider 
and Stasheff&Shnider, Loday...                      
a                                        a                                                               

-- combinatorial description --
What is... an associahedron

n = 3



affine hyperplane
x1 + x2 + x3 = 6
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0
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0

4
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21

0

4
3

21

0
4

3

21

0

(1,2,3) (2,1,3)

(3,1,2)

(3,2,1)(1,4,1)

Computes coord’s (planar binary trees)

Realise Associahedra 
-- example (Shnider,Sternberg&Stasheff, Loday) --

Loday:

label (n+2)-gon cyclicly 
decreasing with {0,...,n+1}

4
3

21

0

equivalently:

n=3
labelled pentagon
2-dim associahedron
realised in R3
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half space x3 ≥ 1  
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≅
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A is “good subset” ⇔ strict RHS of oriented diagonal
E.g.: A = {1,2}

4

3

21

0
∑i∈A xi ≥ zA := |A|(|A|+1)/2 

Realise Associahedra
-- example: Loday’s associahedra II --

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

1

33

1 1

6

E.g.: A = {1,3}

A is “bad subset”                                          
⇔ not RHS of oriented diagonal

∑i∈A xi ≥ zA := -∞ -∞

label (n+2)-gon cyclicly decreasing with {0,...,n+1}



Decompose Associahedra
-- example: Loday’s associahedra I --
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{1,2}    {1,3}    {2,3}
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{1,2}    {1,3}    {2,3}

{1,2,3}
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33
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[Postnikov, 2009]:
zI = ∑J⊆I yJ

yJ = ∑I⊆J (-1)|J-I|zI

Möbius inversion

!! yJ ≥ 0 !!

z{1,3} = 2 is tight value
 



Decompose Associahedra
-- example: Loday’s associahedra I --

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}
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33

1 1

6
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1

11

1 1

1

0

[Postnikov, 2009]:
zI = ∑J⊆I yJ

yJ = ∑I⊆J (-1)|J-I|zI

Möbius inversion

!! yJ ≥ 0 !!

z{1,3} = 2 is tight value known: 
yI = 1 ⇔ I good subset
yI = 0 ⇔ I bad subset

 



affine hyperplane
x+y+z=1

(1,0,0)(0,1,0)

Decompose Associahedra
-- example: Loday’s associahedra II --



affine hyperplane
x+y+z=2

(0,2,0) (1,1,0)

(1,0,1)(0,1,1)

Decompose Associahedra
-- example: Loday’s associahedra II --

+



affine hyperplane
x+y+z=3

Decompose Associahedra
-- example: Loday’s associahedra II --

(0,3,0) (2,1,0)

(2,0,1)

(1,0,2)(0,1,2)

+ +



affine hyperplane
x+y+z=3

Decompose Associahedra
-- example: Loday’s associahedra II --

(0,3,0) (2,1,0)

(2,0,1)

(1,0,2)(0,1,2)

+ +



+          +  +  + 

affine hyperplane
x+y+z=6

Decompose Associahedra
-- example: Loday’s associahedra II --

+ +

(1,4,1) (3,2,1)

(3,1,2)

(2,1,3)(1,2,3)



Δ1 + Δ2 + Δ3 + Δ4 + Δ1,2 + Δ2,3 + Δ3,4 
+ Δ1,2,3 + Δ2,3,4 + Δ1,2,3,4

Associahedra
-- Loday’s realisation in dimension 3 --



[Hohlweg&L., 2007]                                    

-- Loday’s realization generalized --

∑i∈A xi ≥ zA = |A|(|A|+1)/2
∑xi = z[n] = n(n+1)/2

How to ... realise associahedra 

yields H-description of associahedron.

V-description generalising Loday’s algorithm possible
Furthermore:

2n-2 allowed labellings of (n+2)-gon with {0,1,...,n+1}   
A is “good subset” :⇔ RHS of diagonal
Then

(A good subset)



-- allowed labellings of (n+2)-gon --

label paths starting at 0 by Up and Down  
label one vertex “0”

How to ... realise associahedra 

partition {1,...,n} into two sets:                        
“Up” and “Down” with 1,n ∈ Down                
“c-labelling” of (n+2)-gon                 

label label remaining vertex “n+1”  
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Example: n=4, 24-2 = 4 different labellings of hexagon

partition {1,...,n} into two sets:                        
“Up” and “Down” with 1,n ∈ Down                
“c-labelling” of (n+2)-gon                 

label label remaining vertex “n+1”  



Associahedra
-- Hohlweg&L. (Down = {1,3,4}) --



Coordinates revisited
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Coordinates revisited

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

1

22

0 1

-1

1

zI = ∑J⊆I yJ

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

1

33

0 1

6

3
yJ = ∑I⊆J (-1)|J-I|zI

-- Use        instead of        --
4

3

21

0
2

4

31

0

bad subset:      I={2} 
tight value:      z{2} = 0

!! y{1,2,3} = -1 !!



Coordinates revisited

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

1

22

0 1

-1

1

zI = ∑J⊆I yJ

{1}    {2}    {3}  

{1,2}    {1,3}    {2,3}

{1,2,3}

1

33

0 1

6

3
yJ = ∑I⊆J (-1)|J-I|zI

-- Use        instead of        --
4

3

21

0
2

4

31

0

bad subset:      I={2} 
tight value:      z{2} = 0

!! y{1,2,3} = -1 !!

What is the meaning of a negative yI value??



P and Q polytopes 

R is Minkowski difference P-Q of P and Q                     

Minkowski decomposition
-- definition --

There is a polytope R such that R+Q = P    
(pitfall: not always defined!!)



P and Q polytopes 

R is Minkowski difference P-Q of P and Q                     

Minkowski decomposition
-- definition --

“Minkowski decomposition of P”                   

There is a polytope R such that R+Q = P    
(pitfall: not always defined!!)

Idea:
Use Minkowski decompositions of generalised 
permutahedra for positive & negative yI-values

Write P as Minkowski sums and differences 
of polytopes Qi
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Theorem [Ardila,Benedetti&Doker, 2010]                    

P({zI}) = ∑J⊆[n] yJΔJ 

Every generalised permutahedron P({zI}) has a 
unique Minikowski decomposition 

where yJ = ∑I⊆J (-1)|J-I| zI

P({zI}) & decompositions



Theorem [Ardila,Benedetti&Doker, 2010]                    

P({zI}) = ∑J⊆[n] yJΔJ 

Every generalised permutahedron P({zI}) has a 
unique Minikowski decomposition 

where yJ = ∑I⊆J (-1)|J-I| zI

P({zI}) & decompositions

Proof:                    

P({zI}) + P({zI}) = P({zI}) 

Set zI := ∑J⊆I;yJ<0 (-yJ) and zI := ∑J⊆I;yJ≥0 yJ. - +

By inclusion-exclusion zI + zI = zI  which yields - +

- +

since  P({aI+bI}) = P({aI}) + P({bI}).



Theorem [Ardila,Benedetti&Doker, 2010]                    

P({zI}) = ∑J⊆[n] yJΔJ 

Every generalised permutahedron P({zI}) has a 
unique Minikowski decomposition 

where yJ = ∑I⊆J (-1)|J-I| zI

P({zI}) & decompositions

Corollary:                    
yI-values for associahedra of Hohlweg&Lange  
computable by Möbius inversion from complete
set of tight zI-values



zI-values for redundant inequalities computable from “good 
subsets S” using “Up and Down interval decomposition” of I

yI = (-1)|I-I1| (zI1 - zI2 - zI3 + zI4)
I of “type (k,l), k>1”:   yI = 0
I of “type (1,l)”: 

“type” of interval decomposition simplifies yI-computation:

Loday-type formula for yI-values:

-- Statement of results --
yI-coord’s for associahedra 

yI = (-1)|I-D1| Kγ⋅KΓ

I of type (k,l), k>1:   yI = 0

I≠{u} of type (1,l): 
I={u} of type (1,l): yI = (-1)|I-D1| (Kγ⋅KΓ - (n+1))

Kγ and KΓ : “signed lengths” on boundary of (n+2)-gon 



open down interval (di,dj)                                      
all numbers k ∈ Down s.t. di < k < dj 

closed up interval [ui,uj]                                     
all numbers k ∈ Up s.t. ui ≤ k ≤ uj

Up and Down interval decomposition of I ⊆ [n]           
family of maximal closed up intervals of I “nested”      
in maximal open (down) intervals of I   

-- Up and Down interval decomposition --
Up&Down intervals

type of decomposition:              
(#down intervals, #up intervals)

Definition [L., 2011]



-- examples --
Up&Down intervals 
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no up-intervals only up-interval {2} 
down-intervals: 
∅, {1}, {2}, {3}, {4} 
{1,2}, {2,3}, {3,4}
{1,2,3}, {2,3,4} 

down-intervals: 
∅, {1}, {3}, {4}, {1,3},  
{3,4}, {1,3,4} 

{1,2,3,4} 
decomposition type of 
{2},{2,3}, {1,4}, {2,4}???? 



-- revisit defintion of generalised permutahedra --
Cyclohedra

Cyclohedra (“type B generalised 
associahedra”) can be realised 
using certain associahedra

Minkowski decomposition into 
dilated faces of standard simplex 
à la Ardila/Benedetti/Doker?



-- revisit defintion of generalised permutahedra --
Cyclohedra

Cyclohedra (“type B generalised 
associahedra”) can be realised 
using certain associahedra

Minkowski decomposition into 
dilated faces of standard simplex 
à la Ardila/Benedetti/Doker?

Postnikov and Postnikov, Reiner & Williams:                                 
“generalised permutahedra P({zI})” are in the 
deformation cone of classical permutahedron!

No! Compute yI-coordinates and compare 
resulting polytope with cyclohedron



Open Problems

Feasible zI- and yI-coordinates?

Lattice points of associahedra?

Relation to brick polytopes?

Minkowski decompositions for other types?

Implications for cluster algebras?

Formulae in terms of Coxeter group of type A?
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Δ1 + Δ3 + Δ4 + 3Δ1,2 + Δ1,3   
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- (Δ2 + Δ1,2,3 + Δ1,2,3,4)


