Minkowski decompositions of associahedra into faces of a standard simplex

> Carsten Lange UPMC

Séminaire Equipe Modéles Combinatoires – LIX École Polytechnique 14 Janvier 2013

Agenda

What is... a permutahedron/associahedron
How to... realise associahedra
What is... a Minkowski decomposition
How to... decompose associahedra

Permutahedra

-- definition --

idea: apply action of Σ_n on \mathbb{R}^n to generic point

convex hull of points

Permutahedra

-- definition --

idea: apply action of Σ_n on \mathbb{R}^n to generic point

half space affine hyperplane convex hull of points $x_1 + x_2 \geq 3$ $x_1 + x_2 + x_3 = 6$ (1,2,3) (2,1,3) { $(\sigma(1),...,\sigma(n)) \mid \sigma \in \Sigma_n$ } • H-representation (1,3,2) (3,1,2) $\sum_{i \in [n]} x_i = \frac{1}{2}n(n+1)$ • (2,3,1) (3,2,1) half space $\sum_{i \in K} x_i \ge \frac{1}{2} |K| (|K|+1)$ $x_3 \geq 1$ for $\emptyset \neq K \subset [n]$

Permutahedra

-- definition --

idea: apply action of Σ_n on \mathbb{R}^n to generic point

half space affine hyperplane convex hull of points $x_1 + x_2 \geq 3$ $x_1 + x_2 + x_3 = 6$ (1,2,3) (2,1,3) { $(\sigma(1),...,\sigma(n)) \mid \sigma \in \Sigma_n$ } H-representation (3,1,2) $\sum_{i \in [n]} x_i = \frac{1}{2}n(n+1)$ (3,2,1) space $\sum_{i \in K} x_i \geq \frac{1}{2} |K| (|K|+1)$ $x_3 \geq 1$ for $\emptyset \neq K \subset [n]$

generalised Permutahedra -- definition, zi-coordinates --

- idea: change permutahedron's right-hand sides • H-representation $\sum_{i \in [n]} x_i = Z_{[n]}$ $\sum_{i \in I} x_i \ge Z_I$ for $\emptyset \neq I \subset [n]$ (want all "redundant" z_I -values tight)
- z₁-coordinates
 vector of all z₁-values
 (redundancies possible; choose all z₁-values tight)
- Ø P({z_I})

generalised permutahedron with given z_I -coordinates

What is... Minkowski sum -- definition --

P and Q polytopes

Minkowski sum P+Q is the polytope $p+q \mid p \in P$ and $q \in Q$

What is... Minkowski sum -- definition --

P and Q polytopes
Minkowski sum P+Q is the polytope $\{ p+q \mid p \in P \text{ and } q \in Q \}$ Example (edges of standard simplex): (0,0,1) (0,0,1) (0,0,1)

(1,0,0)

(0,1,0)

(0,1,0)

(0,2,0)

(1,1,0)

Generalised Permutahedra

-- y_I-coordinates --

Theorem [Postnikov, 2009] Every Minkowski sum of dilated faces of a standard simplex yields a generalised permutahedron

y_-coordinates (à la Postnikov)
vector of dilation factors y_I for Ø ⊂ I ⊆ [n]
(y_I ≥ 0; y_I = 0 ⇔ face not used)

Observation: z_{I} and y_{I} -vectors have same size

Are z_I and y_I -coord's related? If yes, how?

Relate yI- & ZI-Coordinates -- yI- & ZI-Coordinates as functions --

 $\begin{cases} 1,2,3 \\ Z_{\{1,2,3\}} \\ \{1,2,3\} \\ \{1,2\} \\ Z_{\{1,2\}} \\ \{1,3\} \\ Z_{\{2,3\}} \\ \{2,3\} \\ Z_{\{2,3\}} \\ Z_{\{3,3\}} \\ Z_{\{3$

z_I-coordinates as function on Boolean lattice (geometric constraints on z_I) yı-coordinates as function on Boolean lattice (yı ≥ 0)

Relate yI- & ZI-coordinates -- yI- & ZI-coordinates as functions --

 $\begin{cases} 1,2,3 \\ Z_{\{1,2,3\}} \\ \{1,2,3\} \\ Z_{\{1,2\}} \\ Z_{\{1,2\}} \\ Z_{\{1,3\}} \\ Z_{\{2,3\}} \\ Z_{\{3,3\}} \\ Z_{\{2,3\}} \\ Z_{\{3,3\}} \\ Z_{\{3$

z_I-coordinates as function on Boolean lattice (geometric constraints on z_I) yı-coordinates as function on Boolean lattice (yı ≥ 0)

z_I-coordinates as function on Boolean lattice (geometric constraints on z_I)

yı-coordinates as function on Boolean lattice (yı ≥ 0)

What is... an associahedron -- combinatorial description --

n = 3

- combinatorics of CW-complex (Stasheff)
 vertices = triangulations of (n+2)-gon
 k-face = triangulation minus k diagonals
 can be realised as (n-1)-dim polytope
- polytopal realisations were given by Milnor (unpublished), Lee, Haiman, Sternberg&Shnider and Stasheff&Shnider, Loday...

> equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

n=3 labelled pentagon 2-dim associahedron realised in R³

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 X_1

 X_2

X3

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 X_1

 X_2

X3

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 X_1

 X_2

X3

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 $X_1 = 1 \cdot 1 = 1$

 X_2

X3

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 $X_1 = 1 \cdot 1 = 1$

 X_2

X3

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 $x_1 = 1 \cdot 1 = 1$

 X_2

X3

• (3,1,2

(1, 4, 1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

affine hyperplane $x_1 + x_2 + x_3 = 6$

 $x_1 = 1 \cdot 1 = 1$

 X_2

X3

 $x_1 = 1 \cdot 1 = 1$ $x_2 = 2 \cdot 2 = 4$ x_3 (1,4,1)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

 $0 \xrightarrow{4} 3$ $1 \qquad 2$

 $x_1 = 1 \cdot 1 = 1$ $x_2 = 2 \cdot 2 = 4$ x_3

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

> n=3 labelled pentagon 2-dim associahedron realised in R³

 $x_1 = 1 \cdot 1 = 1$ $x_2 = 2 \cdot 2 = 4$ x_3

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

n=3

labelled pentagon 2-dim associahedron realised in R³

 $x_1 = 1 \cdot 1 = 1$ $x_2 = 2 \cdot 2 = 4$ x_3

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

n=3 labelled pentagon 2-dim associahedron realised in R³

 $x_1 = 1 \cdot 1 = 1$ $x_2 = 2 \cdot 2 = 4$ $x_3 = 1 \cdot 1 = 1$

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

labelled pentagon 2-dim associahedron realised in R³

 $x_1 = 1 \cdot 1 = 1$ $x_2 = 2 \cdot 2 = 4$ $x_3 = 1 \cdot 1 = 1$

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

n=3

labelled pentagon 2-dim associahedron realised in R³

> equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

n=3 labelled pentagon 2-dim associahedron realised in R³ Realise Associahedra
 -- example (Shnider, Sternberg&Stasheff, Loday) - Loday: Computes coord's (planar binary trees)

equivalently: label (n+2)-gon cyclicly decreasing with {0,...,n+1}

half space $x_1 + x_2 \ge 3$

Realise Associahedra -- example: Loday's associahedra II --Iabel (n+2)-gon cyclicly decreasing with {0,...,n+1}

E.g.: $A = \{1, 2\}$ $\sum_{i \in A} x_i \ge z_A := |A|(|A|+1)/2 \xrightarrow{0} \sqrt{3}$

{1,2,3}

{1} {2} {3}

A is "bad subset" \Leftrightarrow not RHS of oriented diagonal $\{1,2\}$ $\{1,3\}$ $\{2,3\}$ E.g.: $A = \{1,3\}$ $\sum_{i \in A} x_i \ge z_A := -\infty$

 $z_{\{1,3\}} = 2$ is tight value

 $Z_{\{1,3\}} = 2$ is tight value

known: $y_I = 1 \Leftrightarrow I \text{ good subset}$ $y_I = 0 \Leftrightarrow I \text{ bad subset}$

•

•

•

•

Associahedra -- Loday's realisation in dimension 3 --

How to ... realise associahedra
-- Loday's realization generalized -(Hohlweg&L., 2007)
2ⁿ⁻² allowed labellings of (n+2)-gon with {0,1,...,n+1}
A is "good subset" :⇔ RHS of diagonal
Then

$$\begin{split} & \sum X_i = z_{[n]} = n(n+1)/2 \\ & \sum_{i \in A} x_i \ge z_A = |A|(|A|+1)/2 \quad (A \text{ good subset}) \\ & \text{yields H-description of associahedron.} \end{split}$$

Furthermore:

V-description generalising Loday's algorithm possible

How to ... realise associahedra

-- allowed labellings of (n+2)-gon -partition {1,...,n} into two sets: "Up" and "Down" with 1,n ∈ Down
"c-labelling" of (n+2)-gon label one vertex "O" label one vertex "O" label paths starting at 0 by Up and Down label label remaining vertex "n+1"

How to ... realise associahedra

-- allowed labellings of (n+2)-gon -partition {1,...,n} into two sets: "Up" and "Down" with 1,n ∈ Down
"c-labelling" of (n+2)-gon label one vertex "O" label paths starting at 0 by Up and Down label label remaining vertex "n+1"
Example: n=4, 2⁴⁻² = 4 different labellings of hexagon

Associahedra -- Hohlweg&L. (Down = {1,3,4}) --

Coordinates revisited -- Use $^{\circ} \bigcirc^{4}$ instead of $^{\circ} \bigcirc^{3}$ --{1,2,3} {1,2,3} $z_{I} = \sum_{J \subseteq I} y_{J}$ $\{1,2\}$ $\{1,3\}$ $\{2,3\}$ $\{1,2\}$ {1,3} {2,3} $y_{J} = \sum_{I \subseteq J} (-1)^{|J-I|} z_{I}$ {1} {2} {3} {1} {2} {3} I={2} bad subset: tight value: $Z_{2} = 0$

Coordinates revisited -- Use $^{\circ}\bigcirc^{4}$ instead of $^{\circ}\bigcirc^{3}$ --{1,2,3} {1,2,3} $z_{I} = \sum_{J \subseteq I} y_{J}$ {2,3} $\{1,2\}$ $\{1,3\}$ $\{2,3\}$ $\{1,2\}$ $\{1,2\}$ $\{1,3\}$ $y_{J} = \sum_{I \subseteq J} (-1)^{|J-I|} z_{I}$ {1} {2} {3} {1} {2} {3} I={2} bad subset: $!! y_{\{1,2,3\}} = -1 !!$ tight value: $Z_{2} = 0$

Coordinates revisited -- Use $^{\circ}\bigcirc^{2}$ instead of $^{\circ}\bigcirc^{3}$ --{1,2,3} {1,2,3} $z_{I} = \sum_{J \subseteq I} y_{J}$ $\{1,2\}$ $\{1,3\}$ $\{2,3\}$ $\{1,2\}$ $\{1,3\}$ $\{2,3\}$ $y_{J} = \sum_{I \subseteq J} (-1)^{|J-I|} z_{I}$ {1} {2} {3} {1} {2} {3} bad subset: I={2} $!! y_{\{1,2,3\}} = -1 !!$ tight value: $z_{\{2\}} = 0$

What is the meaning of a negative y_I value??

Minkowski decomposition -- definition --

P and Q polytopes

R is Minkowski difference P-Q of P and Q There is a polytope R such that R+Q = P (pitfall: not always defined!!)

Minkowski decomposition -- definition --

P and Q polytopes

R is Minkowski difference P-Q of P and Q
There is a polytope R such that R+Q = P (pitfall: not always defined!!)
*Minkowski decomposition of P"
Write P as Minkowski sums and differences of polytopes Qi

Idea:

Use Minkowski decompositions of generalised permutahedra for positive & negative y_I-values

affine hyperplane x+y+z=4

0

 \mathbf{O}

 \bigcirc

 \mathbf{O}

2 +2/

{1,2,3} {1,3} {2,3} {1,2} {2} {3} {1}

0

4

 \mathbf{O}

affine hyperplane x+y+z=6

0

 \mathbf{O}

•

 \bullet

2 + 2 / Ŧ

•

 $\begin{cases} 1, 2, 3 \\ -1 \end{cases} \\ \begin{cases} 1, 2 \\ 2 \end{cases} \begin{cases} 1, 3 \\ 1 \end{cases} \begin{cases} 2, 3 \\ 2 \end{cases} \\ \begin{cases} 1 \\ 1 \end{cases} \begin{cases} 2 \\ 0 \end{cases} \begin{cases} 3 \\ 1 \end{cases} \end{cases}$

0

4

$P(\{z_I\})$ & decompositions

Theorem [Ardila,Benedetti&Doker, 2010] Every generalised permutahedron P({z_I}) has a unique Minikowski decomposition $P({z_I}) = \Sigma_{J \subseteq [n]} y_J \Delta_J$ where $y_J = \Sigma_{I \subseteq J} (-1)^{|J-I|} z_I$

$P(\{z_I\})$ & decompositions

Theorem [Ardila,Benedetti&Doker, 2010] Every generalised permutahedron P({z_I}) has a unique Minikowski decomposition $P({z_I}) = \Sigma_{J \subseteq [n]} y_J \Delta_J$ where $y_J = \Sigma_{I \subseteq J} (-1)^{|J-I|} z_I$

Proof:

Set $z_{\bar{I}} := \sum_{J \subseteq I; y_{J} < 0} (-y_{J})$ and $z_{\bar{I}}^{\dagger} := \sum_{J \subseteq I; y_{J} \geq 0} y_{J}$. By inclusion-exclusion $z_{I} + z_{\bar{I}} = z_{\bar{I}}^{\dagger}$ which yields $P(\{z_{I}\}) + P(\{z_{\bar{I}}\}) = P(\{z_{\bar{I}}\})$ since $P(\{a_{I}+b_{I}\}) = P(\{a_{I}\}) + P(\{b_{I}\})$.

$P(\{z_I\})$ & decompositions

Theorem [Ardila,Benedetti&Doker, 2010] Every generalised permutahedron P({z_I}) has a unique Minikowski decomposition $P({z_I}) = \Sigma_{J \subseteq [n]} y_J \Delta_J$ where $y_J = \Sigma_{I \subseteq J} (-1)^{|J-I|} z_I$

Corollary:

 y_I -values for associahedra of Hohlweg&Lange computable by Möbius inversion from complete set of tight z_I -values

yI-coord's for associahedra -- Statement of results --

ZI-values for redundant inequalities computable from "good subsets S" using "Up and Down interval decomposition" of I \odot "type" of interval decomposition simplifies y_I-computation: I of "type (1,l)": $y_{I} = (-1)^{|I-I_{1}|} (z_{I_{1}} - z_{I_{2}} - z_{I_{3}} + z_{I_{4}})$ I of "type (k,l), k > 1'': $y_I = 0$ \bigcirc Loday-type formula for y_I -values: $I \neq \{u\}$ of type (1,1): $y_I = (-1)^{|I-D_1|} K_V \cdot K_{\Gamma}$ I={u} of type (1,1): $y_{I} = (-1)^{|I-D_{1}|} (K_{Y} \cdot K_{\Gamma} - (n+1))$ I of type (k,l), k>1: $y_I = 0$ K_{γ} and K_{Γ} : "signed lengths" on boundary of (n+2)-gon

Up&Down intervals

-- Up and Down interval decomposition -Definition [L., 2011]
open down interval (d_i,d_j)

all numbers $k \in Down \text{ s.t. } d_i < k < d_j$

or closed up interval $[u_i, u_j]$ all numbers k ∈ Up s.t. $u_i ≤ k ≤ u_j$

 ✓ Up and Down interval decomposition of I ⊆ [n] family of maximal closed up intervals of I "nested" in maximal open (down) intervals of I

type of decomposition: (#down intervals, #up intervals)

Up&Down intervals

-- examples --

"Up" Ø "Down" {1,2,3,4} 0 1 3 {2} {1,3,4}

no up-intervals down-intervals: Ø, {1}, {2}, {3}, {4} {1,2}, {2,3}, {3,4} {1,2,3}, {2,3,4} {1,2,3,4}

only up-interval {2} down-intervals: Ø, {1}, {3}, {4}, {1,3}, {3,4}, {1,3,4} decomposition type of {2},{2,3}, {1,4}, {2,4}????

Cyclohedra

-- revisit defintion of generalised permutahedra --

- Cyclohedra ("type B generalised associahedra") can be realised using certain associahedra
- Minkowski decomposition into dilated faces of standard simplex à la Ardila/Benedetti/Doker?

Cyclohedra

-- revisit defintion of generalised permutahedra --

- Cyclohedra ("type B generalised associahedra") can be realised using certain associahedra
- Minkowski decomposition into dilated faces of standard simplex à la Ardila/Benedetti/Doker?

No! Compute y_I-coordinates and compare resulting polytope with cyclohedron
Postnikov and Postnikov, Reiner & Williams: "generalised permutahedra P({z_I})" are in the deformation cone of classical permutahedron!

Open Problems

 \oslash Feasible z_{I} - and y_{I} - coordinates? Lattice points of associahedra? Relation to brick polytopes? Minkowski decompositions for other types? Implications for cluster algebras? Formulae in terms of Coxeter group of type A?

- [Ardila,Benedetti&Doker]: Matroid polytopes and their volume, FPSAC/Discrete&Compututational Geometry, 2009/10
- [Hohlweg&L., 2007]: Realizations of the associahedron and cyclohedron, Discrete&Computational Geometry, 2007

[L., 2011]

Minkowski decompositions of associahedra and the computation of Möbius inversion, arXiv (abstracts: FPSAC 2011 & CCCG 2011)

- [Loday, 2004]
 Realization of the Stasheff polytope, Archiv der Mathematik, 2004
- [Postnikov]
 Permutahedra, associahedra, and beyond,
 International Mathematical Research Notices, 2009
- [Postnikov, Reiner, Williams]
 Faces of generalised permutahedra,
 Documenta Mathematica, 2008

 $\Delta_{1} + \Delta_{2} + \Delta_{3} + \Delta_{4} + \Delta_{1,2} + \Delta_{2,3} + \Delta_{3,4} + \Delta_{1,2,3} + \Delta_{2,3,4} + \Delta_{1,2,3,4}$

 $\Delta_{1} + \Delta_{3} + \Delta_{4} + 3\Delta_{1,2} + \Delta_{1,3}$ $+ 2\Delta_{2,3} + \Delta_{3,4} + \Delta_{1,3,4} + 2\Delta_{2,3,4}$ $- (\Delta_{2} + \Delta_{1,2,3} + \Delta_{1,2,3,4})$