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Fully commutative elements

(W, S) Coxeter group W given by Coxeter matrix (mg)s.tes-

s =1
Relations: ¢ sts... = tst--- —_ » DBraid relations
N N . .
Mgt Moy msr = 2: Commutation relation

Length ¢(w)= minimal [ such that
W= 8182 ...8; with s; € §

Such a minimal word is a reduced decomposition of w.

Matsumoto property : Given two reduced decompositions of
w, there is a sequence of braid relations which can be applied
to transform one into the other.
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Fully commutative elements

An element w is fully commutative if given two reduced
decompositions of w, there is a sequence of commutation
relations which can be applied to transform one into the other.

In general, the set of reduced decompositions splits into several
commutation classes: w is fully commutative if there is only
one such class.

ReducedWords(w)
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Consider S = {s1,...,5,_1}, with relations s? = 1 and

§5;8i4+15; = Si+15i5i+1
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ype A,_1 — The symmetric group 5,

Consider S = {s1,...,5,_1}, with relations s? = 1 and

§5;8i4+15; = Si+15i5i+1

. . S Sy
SiS; = 8;8;, |7 —1 >1 182 n—1

v :s; — (4,44 1) is an isomorphism with S,,.

Theorem [Billey,Jockush,Stanley '93]

w is fully commutative < ¥(w) is 321-avoiding.

One can use this to show that FC elements in type A,,_1 are

1 2
counted by Catalan numbers, i.e. [SX¢| = ( n)
n+1\n




Previous work

e The seminal papers are [Stembridge '96,'98]:

1. First properties;

2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of thesel cases.



Previous work

e The seminal papers are [Stembridge '96,'98]:

1. First properties;

2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of thesel cases.

e [Fan '95] studies FC elements in the special case where
mg < 3 (the simply laced case).

e [Graham '95] shows that FC elements in any Coxeter group
W naturally index a basis of the (generalized) Temperley-Lieb
algebra of WW.

e Subsequent works [Greene,Shi,Cellini,Papi] relate FC
elements (and some related elements) to Kazhdan-Lusztig
polynomials.
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Today, | will show explain

any

Outline

how to enumerate FC elements for

finite or affine Coxeter

group W'.

k/' There exists a complete classification.

— we proceed case by case.

Let WFC(q) = Z q£(w) (where w runs through FC elements of W)

w

We can compute W% (q) for any such W.

Today | will focus on types A and A, corresponding to the
finite and affine symmetric groups. The idea is to encode the
FC elements in these cases by certain lattice paths.



1. FC ELEMENTS AND HEAPS



Characterization of FC elements

In general, how can one recognize a FC element ? The
following is one step in this direction.

Theorem|Stembridge] A reduced word represents a FC
element if and only no element of its commutation class
contains a factor sts--- for a mg > 3.

N——

mst

(Proof: when two words are related by a braid relation with
ms: > 3, they do not belong to the same commutation class.)

How to tell if a commutation class verifies the property above 7
= Use theory of heaps, which are posets which encode
commutation classes.
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Example of heaps in A4(= S5)

$1P83845152S53

Vertex stays above if corresponding
generators do not commute.




Example of heaps in A4(= S5)

.
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L
51 50 59 54




Example of heaps in A4(= S5)

818360698253
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Example of heaps in A4(= S5)

Heap of a word = poset H labeled by generators s; of W.

Linear extensions of H < Words of the commutation class.

515354515253 5153592545153 5283515452853




Example of heaps in A4(= S5)

Heap of a word = poset H labeled by generators s; of W.

Linear extensions of H < Words of the commutation class.

515354515283 518352545153 595351545253

O0—0—0—o0 0—0—O0—o0 0—0—0—0
S1 S92 §3 S4 S1 S2 83 S4 S1 S92 §3 54

NOT REDUCED NOT FC FC




Characterization of heaps

Proposition|[Stembridge '95] Heaps H of FC reduced words

are characterized by:

(@) No covering relation ¢ < j in H such that s; = s;.
(b) No convex chain i1 < --- < %,,_, in H such that
Siy, = 8j, = --=S8and s;, = 8;, = --- =1 where

3 S Mgt < OO.



Characterization of heaps

Proposition|[Stembridge '95] Heaps H of FC reduced words
are characterized by:
(@) No covering relation ¢ < j in H such that s; = s;.

(b) No convex chain iy < -+ < 4,,_, in H such that
.- =sand s;, = s;, = --- =1t where

(the only elements z satisfying iy < x < 4,,_, are
the elements i, of the chain.)



Characterization of heaps

Proposition|Stembridge '95] Heaps H of FC reduced words

are characterized by:

(@) No covering relation ¢ < j in H such that s; = s;.
(b) No convex chain i1 < --- < %,,_, in H such that
Siy, = 8j, = --=S8and s;, = 8;, = --- =1 where

3 S Mgt < OO.

FC element w <—» Heap H satisfying (a) and (b)

Length /(w)  <«— Number of elements |H|

In type A and A, we will see that the FC heaps above are
particularly nice.



1. Typre A
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ype A

FC heaps avoid I
precisely

Sq Si Si+1 Si+2 Si Si+1 Si+2

S1 S9 Sn—2 Sn—1

Proposition Heaps of type A are characterized by:
(i) At most one occurrence of sq (resp. s,_1).
(ii) Elements with labels s;, s;1+1 form an alternating chain.
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ype A: Bijection
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ype A: Bijection

ISn—I2 én—l
V A . . .
this one is a convention
L R
Path '/ R
l L
0 n

Extra information needed !

To finish, add initial and final steps to the path.



ype A: Bijection

Theorem [BJN '12, known before?]
This is a bijection between FC heaps of type A,,_1 and

Motzkin paths of length n with horizontal steps at height
h > 0 (resp. h =0) labeled L or R (resp. labeled L).

Size of the heap < Area of the path
(Sum of the heights of all vertices)



ype A: Bijection

Theorem [BJN '12, known before?]
This is a bijection between FC heaps of type A,,_1 and

Motzkin paths of length n with horizontal steps at height
h > 0 (resp. h =0) labeled L or R (resp. labeled L).

Size of the heap < Area of the path
(Sum of the heights of all vertices)

SN

Remark

transforms these paths into Dyck paths = Catalan numbers!
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We have to count our labeled Motzkin paths with respect to
their area.



he generating polynomial

We have to count our labeled Motzkin paths with respect to
their area.

— Use recursive decompositions

( * indicates that horizontal steps at height h = 0 must have label L)



he generating polynomial

We have to count our labeled Motzkin paths with respect to
their area.

— Use recursive decompositions

Write the functional equations, and eliminate to get

Theorem Define A"“(z) =37 - A7 (g)z™. Then
AYC(z) = z + 2AFC (2) + qz AT C (2)(ATC (gz) + 1).



2. TYPE A



Affine permutations

One can represent this group as the set of permutations o of Z
satisfying o(i + n) = o(i) +n, and >, o(i) = >, i.

17, —12)-14,-1,17, -8 |- 10,3, 21, —4]-6,7,25,0|-2,11,20,4, ...
o(1)o(2)o(3)o(4)



Affine permutations

One can represent this group as the set of permutations o of Z
satisfying o(i + n) = o(i) +n, and >, o(i) = >, i.

17, —12)-14,-1,17, -8 |- 10@)21, €6, 7, 25,0 -2,11,20,4, ..
o(1)o(2)o(3)o(4)

Theorem [Green '01] Fully commutative elements of type

A,,_1 correspond to 321-avoiding permutations.

For instance the permutation above is not FC.

Hanusa and Jones used this representation to enumerate FC
elements in type A.



Generating functions

They computed the generating functions f,(q) = AFC, (¢);
here are the first ones

fs(Q)=1+3q+6q2+6q3+6q4+...
fi(g) = 1+ 4g + 10¢* + 16q> + 18q* + 169> + 18q° + - - -

f5(q) = 1+ 5q + 15¢% + 30> + 45¢*
+50q° + 50q° + 50q” + 50q° + 50q? + - - -

folq) = 14 6q + 21¢% 4 50¢° + 90¢* + 126¢° + 1464°
+150q” + 156¢® + 152q° + 156q'° + 150q** + 1582
+150q'% + 156q'* + 152q'® + 156q"'° 4+ 150q"7 + 158q"*

Periodicity n in the coefficients 7



Periodicity

Theorem [Hanusa-Jones '09] The coefficients of AFC, (¢) are
ultimately periodic of period n.



Periodicity

Theorem [Hanusa-Jones '09] The coefficients of AFC, (¢) are
ultimately periodic of period n.

e In the same article, they also derive a complicated expression
for AXC (q).

Moreover they can prove that one has periodicity

starting from the length(degree) 2(n/2||n/2]

but conjecture that 1 + [(n —1)/2]|(n + 1)/2] is enough.



Periodicity

Theorem [Hanusa-Jones '09] The coefficients of AFC, (¢) are
ultimately periodic of period n.

e In the same article, they also derive a complicated expression
for AXC (q).

Moreover they can prove that one has periodicity
starting from the length(degree) 2(n/2||n/2]
but conjecture that 1 + [(n —1)/2]|(n + 1)/2] is enough.

e We will prove this conjecture using heaps/paths.

In the process, we will get much simpler rules to compute the
generating functions AXY (q).



FC elements in type A

FC heap satisfy the same local conditions as in finite type A.

— The heaps must avoid I

S; Si Si4+1 Si+2 S; Si+1 Si+

\V)

Difference: the cyclic shape of the Coxeter diagram

— The labels above must be taken with index modulo n: the
heaps must be thought of as “drawn on a cylinder”.



Heaps become Paths

We can form a path as before from a heap: because of the
cyclic diagram, our paths will start and end at the same height.



Heaps become Paths

We can form a path as before from a heap: because of the
cyclic diagram, our paths will start and end at the same height.

Example: 4 the same ~~a

Note that there is just one
minimal element

Heap

S0 S1 S2 83 S4 S5 So



Heaps become Paths

We can form a path as before from a heap: because of the
cyclic diagram, our paths will start and end at the same height.

Example: 4 the same ~~a

Note that there is just one
minimal element

Heap

The area does not take into
account the final height.

Path

—>




Bijection

Starting from an FC element in A,,_1, we thus obtain a path
in O, the set of length n paths with starting and ending point
at the same height.



Bijection

Starting from an FC element in A,,_1, we thus obtain a path
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1. FC elements of A4,,_1 and
2. OF



Bijection

Starting from an FC element in A,,_1, we thus obtain a path
in O, the set of length n paths with starting and ending point
at the same height.

Theorem|[BJN '12] This is a bijection between

1. FC elements of A4,,_1 and
2. OF \{paths at constant height h > 0 with all steps having
the same label L or R}.

Indeed such paths clearly cannot correspond to FC elements.



Bijection

Starting from an FC element in A,,_1, we thus obtain a path
in O, the set of length n paths with starting and ending point
at the same height.

Theorem|[BJN '12] This is a bijection between

1. FC elements of A4,,_1 and

2. OF \{paths at constant height h > 0 with all steps having
the same label L or R}.

Indeed such paths clearly cannot correspond to FC elements.

Corollary zzl/ggl(Q) = 0 (q) — 1 — gn



Periodicity revisited

e For a large enough degree, the series O (gq) has periodic
coefficients with period n: just shift the path up by 1 unit.



Periodicity revisited
e For a large enough degree, the series O (gq) has periodic

coefficients with period n: just shift the path up by 1 unit.

“Large enough” ? As soon as the degree k is such that no
path with area k can have a horizontal step at height h = 0
—k=1+[(n—1)/2]|(n+1)/2] is optimal.

This proves the conjecture of Hanusa and Jones.



Periodicity revisited
e For a large enough degree, the series O (q) has periodic
coefficients with period n: just shift the path up by 1 unit.

“Large enough” ? As soon as the degree k is such that no
path with area k can have a horizontal step at height h = 0

—k=1+[(n—1)/2]|(n+1)/2] is optimal.
This proves the conjecture of Hanusa and Jones.

e We still have to compute the generating function O (q).

| will leave it to you as an (interesting) exercise in generating
functions (maybe you have a better solution than ours).



3. OTHER FINITE AND AFFINE COXETER GROUPS



Other finite types

e The remaining “classical types”

t
A B"’L Dn+1
0—O0—O0—0—------ —0—o0 O—O—---=-- —0
i S1 S9 Sn—1 S1 S2 Sn—1

were also enumerated by Stembridge
— we can reinterpret his proof in terms of paths and give the
length generating polynomials in these cases also.
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— Computer assisted (a proof by hand is also possible).



Other finite types

e The remaining “classical types”

4 Bn t Dn+1

O—O0—O0—O0—--===- —0—o0 O—O—-==n-- —0

were also enumerated by Stembridge

— we can reinterpret his proof in terms of paths and give the
length generating polynomials in these cases also.

e Exceptional types I>(m), Hs, Hy, Fy, Eg, E7, and Ej
— Computer assisted (a proof by hand is also possible).

EI%(q) = 15¢%+30¢2%+43¢* +56¢%°4+69¢*° +83¢**+113¢*3+143¢*2 +171¢** +205¢*°
+ 259¢% 4 319¢'® + 387¢'7 + 457¢'¢ + 527¢'° + 609¢'* + 7014 + 794¢'? + 86741
+924¢'° +9364¢° + 897¢® + 796¢" + 631¢° + 427¢° + 238¢* + 105¢° + 35¢* + 8¢ + 1.



Other affine types

There are 3 classical types

Ch 4
tC S/]. \ 9 A \ Y Sn_]-%
B U
t1>: Dn—|—2 1
A S
t2 S1 n U9




Other affine types

There are 3 classical types

Theorem [BJN "12]

Ch 4
tC Sll \ A \ S;L_l%
B U
t1> =5 |
A S
t2 S1 n U9

For each irreducible affine group W, the sequence of
coefficients of W¥“(q) is ultimately periodic, with period

recorded in the following table.

AFFINE TYPE H A, _1 ‘ Ch ‘

B 1 ‘ Dy 0 ‘ F ‘ E; ‘ Go ‘ Fy, Eg

PERIODICITY || n |[n+1|(n+1)2n+1)|n+1] 4 ]9 [5 | 1



CFC(q) =1 + 5g + 14¢® + 29¢° + 47¢* + 64¢° + 764¢° + 814"
+ 80¢° + 75¢” + 68¢'° + 63¢" + 61¢"7
+59q'3 + 59q** + 60q*® + 59q'¢ + 59q17
+59q'® + 59q*° + 60q%° + 59g3! + 59q>2
+59G23 + 59¢2% + 60q2° + 59q2° + 59¢27
NI
We obtain here also certain heaps corresponding to paths,

but there are in addition infinitely many exceptional FC heaps,
certain “zigzag heaps’ .



YPE 5

Two families of paths survive for large enough length:

9 Finite factors of

Path




Da(q) = 1+ 5q + 14¢® + 28¢® + 39¢* + 44¢° + 45¢5 + 344" +
30¢% + 36¢” + 30¢'° + 30! + 364912 4+ 30¢'3 + 309 + 364> +
30(]16 L 30q17 e 36(]18 e 30q19 e 30q20 36q21 e 30(]22 L 30q23 e
36¢%* +30¢%° +30q2° +36¢%" +309%® +30¢%° + 36430 + 3043 +
30¢°? + 36¢°3 + 30¢°* 4 30¢7° + 36¢3° + 30¢°" 4 30¢7° + - - - .

Here the minimal period is 3, while the period predicted by the
theorem is 6.



ype B

zi§CKQ)::il%-4q%—9q2%—15q34—19q44_21q54_21q6+_18q7_
17¢% +19¢° + 18¢"0 + 17¢" +19¢'2 + 17¢"3 + 17¢'* 4- 204" -

17q16__
17q23__

20q° 4
17q38_
17q46_
19¢°% -

- 17q17
- 19¢°4
—17q31—
_19q39_
_17q47_
_18q55_

17¢%2 -

- 19¢18
- 18¢%°
17432
- 18440 4
_19q48_
—17q567

_19q63_

_19q33_
- 17g%! -
_17q49_
_19q57_

- 175 4

17q26__

17¢" + 1842 -
- 19¢°7 A

17434
- 19¢*2

18¢°7° -
17¢*3 -

—18q50
_17q58

19q51_
17q59_

—18q65—

_19q66

__19q21_
- 17¢%° 4

_19q36_
~ 17q44 =
_17q52_
r20q60—

17¢%7 -

- 17422 -
- 17g%° 4

_17q37_
- 20g™*°
17453 -
- 17¢%! -

- 17¢°8 -

_19q69_

18q70-+-17q71-+-19q72-+-17q73-+-17q74-+-20q75-+-17q76_+...



YP€E i§

E:fc(Q) = 1+4+4qg+9qg° + 15¢> + 19¢* + 21¢° + 21¢° + 18¢" -
17¢% +19¢° + 18¢° + 17¢" +19¢'2 + 17¢"3 + 17¢'* 4- 204" -
17q16_“_17q17
17¢%3 + 19¢**

20q30—
17q38_
17q46_
19¢°% -

- 172! -
— 19q39 -
- 17¢* 4
—18q55—

17q62_

+ 19¢1®
-"-18q25
_17q32_
—18q40—
—19q48—
—17q56—

- 19¢°9 -

—19q33—
- 17g* -
- 17¢* 4
—19q57—

- 175 4

17¢°%

17¢"° + 18¢%" -
—-19q27-—

- 17¢3%
- 19¢*2
- 18¢°Y
_17q58

- 18¢°° -

—19q66

18q35—

17¢*3 -

19¢°" -
17¢°° -

- 19¢2%! 4
- 17¢°%° -

—19q36—
717q44—
- 17g°2 -
—20q60—

17¢%" -

- 17¢°% +
- 17¢%° +

- 17¢°7 4
—20q45—
- 17q°3 -
- 17¢°! -

- 17¢°8 -

—19q69—

18q70-+-17q71-+-19q72-+-17q73—+-17q74-+-20q75-+-17q76_+...

The period is 15 in this case, corresponding to (n + 1)(2n + 1)
for n = 2.



Further questions

e All of this work can be easily restricted to deal with FC
involutions.

e Other statistics to consider, e.g. descent numbers.

e Formulas for our generating functions ? (and not just
functional equations/recurrences).

e (Affine case) Repartition of the alcoves corresponding to FC
elements.

e Classification: for which Coxeter groups W is it true that
W< (q) has periodic coefficients ?



Further questions

e All of this work can be easily restricted to deal with FC
involutions.

e Other statistics to consider, e.g. descent numbers.

e Formulas for our generating functions ? (and not just
functional equations/recurrences).

e (Affine case) Repartition of the alcoves corresponding to FC
elements.

e Classification: for which Coxeter groups W is it true that
W< (q) has periodic coefficients ?

THANK YOU
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