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Introduction:
special maximal matching
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bipartite matching topological objects



Class of graphs:

graph coding a cell complex



Hasse diagram

Simple oriented graph
built out of K:

- nodes represent the
cells of K

- links connect cells
towards their bounding
faces

2-cells:

1-cells:

O-cells:




Matching in Hasse diagrams

2-cells:

(unoriented) bipartite matching

selected links have their orientation reversed



Shape of critical cells
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Alternating path

Alternating path between 2 dimensions only

“Gradient V-path”
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Layers of the Hasse
diagram

for 2d manifolds: _
alternating paths are paths in the primal / dual graph



Augmenting
alternating paths

improves matching

reduces number of
critical cells




Acyclic matching
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No alternating cycle




Maximal acyclic matching
in Hasse diagrams

Combinatorial problem:

MAX SNP hard
extendable to subclass of matchings (stable?)

Topological problem:

critical cells are building blocks of Morse theory
lower bounds from the cell complex cocceriililie.
characterizes homotopy of the cell complex ( FFEEEE

’



Simple cases: 2-manifolds

acyclic matching — tree structure

maximal — spanning tree



Primal spanning tree

Image: Erickson 201 |



Dual spanning Co-tree

Slides from J. Erickson



Tree-cotree decomposition

Slides from J. Erickson



Spheres: X=2 critical
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Jordan curve theorem:

dual spanning tree leaves a
primal spanning tree



A stronger theorem

B e ndndny

Given an acyclic matching on the
Hasse diagram of a cell complex K,
K is homotopy equivalent to a CW
complex with only the critical cells



ldea of the proof



Main Theorem

Given an acyclic matching on the
Hasse diagram of a cell complex K,
K is homotopy equivalent to a CW
complex with only the critical cells




Topological bounds l
for manifolds <+

m(k) = # critical k-cells
B(k) = k™ Betti number

Euler characteristic

B(n) - B(n-1)+...£B(0) = m(n) - m(n-1) +...£ m(0) ,
Weak Morse inequalities

Bk) = m(k)
Strong Morse inequalities

B(k) - B(k-1) + ... £ B(0) < m(k) - m(k-1) + ... £ m(0)




Complexity from topolcgy
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MAX SNP-hard -

Reduces to collapsibility:

0. Egecioglu and T. F. Gonzalez

smaller number of simplices to remove from a
2-simplicial complex for it to collapse.

reduces to vertex cover



Quick way of computing
topology!!!

get the big picture

partially self-validated | @
X=> (-1)"-m;
1=0

global (high info) from local (low cost)


















Frame by frame
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Topological objects

Manifolds,
Subsets of R"™




Submersion intuition

f:R° =R

: —~{zef(n}

subset of R" respecting a condition f

= closer to real data



critical set of f (Morse lemma)

= global from local function analysis



Usual critical sets
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minima saddles maxima

new joins / splits end
component components component



. n 1 ) — n
r R g, P

Immersion intuition

d

locally equivalent to

= intuitive differential tools



Immersion Morse topology
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critical set of a function on the manifold

= global from local function analysis



Morse-Smale
Decomposition




Morse-Smale
Decomposition




Morse-Smale
Decomposition




Morse-Smale
Decomposition




Morse-Smale complex
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relation between critical points

= local function analysis + graph



Vector field

e S S e nti al Iy tu b u I a r' fI OW © http://www.falstad.com/vector/

sparse invariant sets




Vector field topology

...........

© http://www.falstad.com/vector/

isolated singularities behavior
= local analysis (Hartman Grobman)+graph

+ closed orbits + non-generic




Gradient vector field &

generic gradient

= Morse-Smale structure



topology from local function analysis

+ Smale complex / topological graph



3 Morse theory

Manifold M CR"

Function f - M—=R

Critical point x & M,0f(x) =0

Index #{\ & Eig(0°f),\ < 0}

Topology x=> (=1)"-m; ...
1=0



Applications that motivated me

reservoir characterization
from huge seismic data

surface extraction
and reconstruction




|Isosurface extraction
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|Isosurface extractio
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Topological cases of Marching Cubes

= differentiable function analysis



Large isosurface topology

Topology without the isosurface

Mid-scale control and filtering

lobal + efficiency = Forman’s line
g Y



Some Isosurfaces’ Topology

© L., Lopes,Vieira, Tavares

o
Smale complex Reeb graph



Surface reconstruction

“. © Ju, Zhou, Hu
© Sharf, L., Shamir, Kobbelt, Cohen-Or

noisy, sparse point set
=> correct topology?




Surface reconstruction

© Sharf, L., Shklarski, Toledo, Cohen-Or

interactive topology edition

local critical regions
= Banchoft’s line


http://www.tau.ac.il/~stoledo/students.html
http://www.tau.ac.il/~stoledo/students.html

Topology-aware

Ion

reconstruct

© Sharf, L., Shklarski, Toledo, Cohen-Or


http://www.tau.ac.il/~stoledo/students.html
http://www.tau.ac.il/~stoledo/students.html

Vector field de-noising

Mechanical Dept, PUC-Rio

noise at the scale of the data
clean data + “important” vortices

local interpolation analysis



Interactive de-noising
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Filtering Local ' /l
singularities

Scale space



Scale-dependent singularity

V(s(x),x)
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© Nascimento, Paixao, Lopes, L.

Topology-aware de-noising

Impinging plate

Smoothed Reconstructed



e common points

© Gyulassy, Natarajan, Pascucci, Bremer, Hamann

singular points only
= several applications

topology: intuitive interfaces

noise / scale problems



Analysis is hard to compute
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© http://www.karlscalculus.org/
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But intuitive:
quick and ready insight
immediate apprehension or cognition







Forman’s approach,
/é ° ° °
gorithmic views

combinatorial field

W5 .
o’\a(\\(\ => matching along the flow
@ => critical = unmatched
\ gradient field
“6

no closed gradient path = acyclic



Geometric Morse function

Smooth Morse function = greedy order
orient first



Elementary optimization




~ 4

ée nt improvements ~ ©

© L.

On triangulated surface, greedy construction of
Forman’s vector field keeps Banchoff’s critical set
for slowly varying function f : y — R



Critical cells
in the right place
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Minimum Saddle Maximum




Maximal weight matching
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Link Welam

© Reininghaus, Guenther, Hotz, Prohaska, Hege

Forman’s critical set results from
global construction:

O o
number of critical cells S e(\(‘)@sé
quality of the field approximation é?»:i\“(@ 4



Higher dimension (besides NP)

L., Lopes, Tavares, Joswig, Pfetsch...

More general cases (infinite complexes)

Ayala,Vilches...

More complex objects (tensors,{ f; })

Forman, Tricoche, Tong, Desbrun...

More theoretical guarantees

L., Zhang, Mischaikow...

More matchings
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