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Introduction:
special maximal matching

bipartite matching topological objects



Class of graphs:
Hasse diagrams 

graph coding a cell complex

4. Computational Discrete Morse Theory

This framework was implemented as a set of modules in the visualization
and data analysis software Amira [SWH05]. It can be made available to
researchers for evaluation purposes.

4.1 Graph theoretic formulation

We begin with a graph theoretic description of the domain of the data. We
assume that the domain Ω is represented by a d-dimensional regular cell com-
plex, as introduced in Section 3.2.2. All definitions thereby apply also directly
to the simpler but maybe more familiar notion of a simplicial complex.

The basic idea is to construct a graph to represent the regular cell complex
C in a combinatorial setting. The nodes of this graph represent the cells of
C and the edges represent its boundary operator ∂. Furthermore, each node
is labeled with the dimension of the cell that it represents and each edge is
labeled with the minimum of the labels of its nodes. Such a graph of a cell
complex that consists of a single triangle is shown in Figure 4.2a. A more
complex example is shown Figure 4.1.

(a) (b)

Figure 4.1 Cell graph illustration. (a) a cell complex of a torus consisting of
0-cells (blue), 1-cells (yellow), and 2-cells (red). (b) the induced cell graph
of the cell complex consists of nodes (spheres) that represent the cells and
are colored according to the dimension, and edges (white) that represent the
boundary relationship of the cells.

Formally, the cell graph associated to a cell complex C =
⋃d

!=0C!, where
Ck denotes the k-dimensional cells, is a labeled graph GC = (N,E,ϕ,ψ) with

• N =
⋃d

!=0C!,

• E = {{α,β} ⊆ N : β ∈ ∂α},

• ϕ : N → {0, 1, . . . , d}, ϕ(α) $→ k, where α ∈ Ck,

• ψ : E → {0, 1, . . . , d− 1}, ψ({α,β}) $→ min (ϕ(α),ϕ(β)).
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2 David Günther et al.

lows for memory-e�cient computation of persistent ho-
mology of large 3D images. For example, we only need
about 14GB of memory for a data set of size 1120 ⇥
1131 ⇥ 1552, in contrast to the 500GB that would be
necessary using standard algorithms.

The remaining part of this paper is organized as
follows. The related research is described in Section 2.
In Section 3 the theoretical background of persistence
and discrete Morse theory is introduced. In Sections 4
and 5 we present our method and show computational
results. Finally, we summarize the paper with a brief
discussion in Section 6.

2 Related Work

Persistence We will focus on previous work on com-

puting persistence. For general applications of persis-
tence see [9]; for application in the context of image
data, see [4,23].

The standard, algebraic algorithm [9] for persistence
has cubic running time in the size of the input (i.e.
image). While a simplicial complex example was con-
structed by Morozov [22], showing that this pessimistic
execution can actually occur, the behavior of this al-
gorithm is only slightly super-linear in practical situa-
tions [7].

When focusing on 0-dimensional homology, union-
find data structures can be used to compute persistence
in time O(n↵(n)) [9], where ↵ is the inverse of the Ack-
ermann functions and n the size of the input.

Milosavljevic et al. [21] showed that persistent ho-
mology can be computed in matrix multiplication time
O(n!) where the currently best estimation of ! is 2.376.
Chen and Kerber [6] proposed a randomized algorithm
to compute only pairs with persistence above a cho-
sen threshold. Despite showing an improved theoretical
complexity, it is unclear whether these methods are bet-
ter than the standard persistence algorithm in practice.

A recent variation of the standard algebraic algo-
rithm [9], called killing, introduced by Chen and Ker-
ber [7] significantly reduces the amount of computa-
tions. This idea was also used by Wagner et al. [27] to
compute persistence for n�dimensional images.

In general, purely algebraic methods su↵er from high
memory requirements. In our approach, we alleviate
this e↵ect by reducing the size of data.

Discrete Morse Theory Morse Theory [20] is a mathe-
matical theory which relates the topology of the domain
of a function with critical points of this function. For
example, every continuous function defined on a sphere
has at least one critical point. The set of critical points

a) b)

Fig. 1 Illustration of a cubical complex and its derived cell
graph. Image a) shows the cells of a small uniform grid in an
exploding view. Image b) shows the derived cell graph GC .
The nodes representing the 0-, 1-, 2-, and 3-cells are shown
as blue, green, yellow and red spheres respectively.

extracted should therefore satisfy the constraints de-
scribed by Morse theory. Note that due to the global
nature of topological consistency it is di�cult to enforce
these constraints in local numerical algorithms. Fortu-
nately, Forman [11,12] developed a discrete version of
Morse theory, which allows for algorithms that provably
result in a consistent set of critical points.

The first such algorithm was proposed by Lewiner et
al. [18,19] who also conjectured that persistence could
be e�ciently computed using discrete Morse theory. Re-
cently, several other such algorithms were suggested [3,
13,24]. Gyulassi et al. [15] introduced a fast stream-
ing approach to extract the essential critical points of
large data. The resulting complex is iteratively sim-
plified to di↵erentiate between spurious and important
critical points. However, this approach is not suited for
exact persistence computation since not all points in
this complex can be paired.

Robins et al. [25] presented the first algorithm which
is provably correct in 3D in a sense that the computed
critical points correspond one-to-one to the topological
changes in the sub-level sets of the image data. Günther
et al. [14] built on the method by Robins et al. and
proposed an optimal Morse-Smale complex extraction
algorithm. In this paper, we further improve the al-
gorithm by Günther et al. to enable also a memory-
e�cient parallel computation of the complex.

3 Theoretical Background

Complexes The input of the persistent homology com-
putation is a 3D gray-scale image: an array
⌦ = m⇥ k ⇥ ` and a function f : ⌦ ! R. To cap-
ture the topological information, we need to represent
this as a complex, which is a decomposition of a space
into cells of di↵erent dimensions. See Figure 1a) for
an example. During the first part of computations we
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Figure 4.2 Basic defintions. (a) a combinatorial vector field (dashed) on the
cell graph of a single triangle. The numbers correspond to the dimension of
the represented cells, and matched nodes are drawn solid. (b) a critical point
of index 0. (c) a 0-separatrix. (d) 0-orbit.

To simplify notation, we will often indicate the label of a node ϕ using a
superscript, i.e. a node v with ϕ(v) = k is referred to by vk. Similarly, we
refer to an edge e with ψ(e) = k by ek.

The node labels ϕ and edge labels ψ supply GC with a layered structure –
a cell graph that represents a d-dimensional cell graph consists of d−1 layers.
The #th layer represents the relationship of the cells in C! with the cells in
C!+1. Formally, each layer is a subgraph defined by

Gk,k+1
C = (ϕ−1(k) ∪ ϕ−1(k + 1),ψ−1(k)). (4.1)

The definitions of discrete Morse theory introduced in Section 3.3 will now
be reformulated in the language of graph theory as introduced in Section 3.1.
The main benefit of this reformulation is that the resulting definitions allow
for a straightforward application of algorithms from graph theory for compu-
tational purposes.

Recall that a combinatorial vector field V on a cell complex C is defined as
pairwise disjoint set of pairs V = {{α,β} : β ∈ ∂α}. A combinatorial vector
field can thereby equivalently defined as a matching M of the set of matchings
M in a cell graph GC . Simple examples illustrating this idea are shown in
Figure 4.2.

A critical cell of index k is characterized in Section 3.3.3 as a k-cell which
is not contained in any pair of the combinatorial vector field V . In graph
theoretic terms, a critical cell α of index k is thereby an unmatched node αk

of a given matching in a cell graph. In the graph theoretic setting we will
sometimes call a critical cell a critical node, or a critical point of the graph.
The definition of a critical cell is illustrated in Figure 4.2b.

The graph theoretic formulation of the notion of a separatrix of index k of a
combinatorial vector field is a little more involved. We first recall the definition
of a V -path given in Section 3.3.3. Let α0,α1, . . . ,αm denote (k+1)-cells and
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Hasse diagram

Simple oriented graph 
built out of K:

• - nodes represent the 
cells of K

• - links connect cells 
towards their bounding 
faces



Matching in Hasse diagrams

(unoriented) bipartite matching

selected links have their orientation reversed

umatched = “critical”



Shape of critical cells

Minimum Saddle Maximum



Alternating path

Alternating path between 2 dimensions only

“Gradient V-path”
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(a) Original complex (b) One retraction triangle / boundary edge (c) One retraction triangle / edge

(d) Passing below a critical cell (e) One retraction vertex / edge (f) Last steps until the critical vertex

Figure 4: The inverse route of the gradient of last example

– if lki+1 is a non-regular hyperlink, the shared node of
lki and lki+1 is the source node of lki+1 : lki∩lki+1 =
nlki

Definition 6 (Hypertree) We will say that a simply oriented
hypergraph (N,L) is a hypertree if the 3 conditions below are
satisfied :

1. Every regular component of (N, L) is an ordinary tree.

2. There is at most one source node in each regular
component.

3. (N,L) has no hypercircuit.

(d) Example
On Figure 6 for example, we can see different regular

component in blue. They are isolated or connected by a non-
regular hyperlink (in green). Those hyperlinks in green form
a kind of tree, respecting the above definition 6.

The regular component only have one source node. This
source node is the one incident to a boundary link (orange
loops) or to a non-regular hyperlink (on the dark green arrow
side).

4 Algorithm
In this section we will introduce our algorithm to de-

fine a discrete gradient vector field for a given cell complex.
This algorithm’s validity and analysis will be published else-
where.

The algorithm is optimal for surfaces [21], in the sense
that it minimizes the number of critical cells. But the general
case has been proven to be MAX SNP hard, i.e. any polyno-
mial approximation can be arbitrarily far from the optimal.
However, our algorithm shows to give a reasonable number
of critical cells.

(a) Outline
Let us consider a finite cell complex K of dimension n.

The algorithm consists in the following steps :

1. In the first step, we select all n-cells, with some inci-
dent (n−1)-cells, as explained in section 4(d) Selecting
cells of the dual hypertree. The algorithm optimality re-
lies on this step, and its complexity is quadratic in the
worst case. Elsewhere it has a linear complexity.

2. We then define the vector field for the selected cells as
presented in section 4(c) First steps: construction on dual
hypertrees. The cells of K not selected in the last step
form again a complex K

�. As every n-cell is selected
during the first step, K

� has dimension at most n− 1.

3. So we repeat those steps until the unselected cells form
a complex of dimension 1, i.e. a graph. At last, we
build the vector field on that graph as explained in
section 4(b) Last step: construction on graphs.

Figure 7: First step : selecting
faces and edges in a spanning
tree fashion.

Figure 8: Last step : process-
ing the remaining vertex/edge
graph.

Working again on the example of Figure 2, we see on Fig-
ure 7 and Figure 8 the two steps of the algorithm. During the

The corresponding work was published in Visualization and Mathematics III, pp. 95–112. Springer, 2002..

Layers of the Hasse 
diagram

for 2d manifolds:
alternating paths are paths in the primal / dual graph
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Augmenting
alternating paths

improves matching

=

reduces number of 
critical cells



Acyclic matching

No alternating cycle



Maximal acyclic matching
in Hasse diagrams

• Combinatorial problem:

• MAX SNP hard
extendable to subclass of matchings (stable?)

• Topological problem:

• critical cells are building blocks of Morse theory
lower bounds from the cell complex
characterizes homotopy of the cell complex



Simple cases: 2-manifolds

• layers: primal/dual graph

• acyclic matching → tree structure

• maximal → spanning tree

3 Optimal discrete Morse functions for 2-manifolds

Homology groups are commutative and finitely–
generated (as the cell complex is finite). Thus, they can
be written as Hp

∼
=

Zβp

2 , where βp is called the p–th Betti
number. The basic interpretation for Betti numbers is a
way of counting “holes” in a given complex: β0 counts the
number of connected component, β1 is the dimension of
the vector–space of 1–cycles in a surface, β2 the voids of a
solid, and so forth.

(c) Combinatorial manifold

Figure 3: A part of a triangulation (on the left) and its dual
pseudograph (on the right)

An n–manifold is a topological space where each point
has a neighborhood homeomorphic to either Rn or R+ ×
Rn−1. The set of points whose neighborhood is R+ ×Rn−1

is called the boundary of the manifold. It can be shown [18]
that if a finite cell complex is an n–manifold, then each (n-
1)–cell is the sub–face of either one or two n–cells.

Thus, the (n-1)–cells of a manifold can be thought as
links of a pseudograph (i.e., a non–simple graph in which
both loops and multiple edges are permitted) whose nodes
are the n–cells of the manifold. This pseudograph will be
called the dual pseudograph of the manifold. In particular,
the cells of the boundary will be represented by loops in
the dual pseudograph. For example, Figure 3 shows a part
of a triangulation and its dual pseudograph (which is here a
simple graph).

The classification theorem The classification theorem for
surfaces [4] completely characterizes the topology of 2–
manifolds in terms of their Euler characteristic and their
orientability. The following theorem is a simple consequence
of it:
Theorem 1 For a connected 2–manifold K, orientable or
not:

H0 (K)

∼
=

Z2 and

H2 (K)

∼
=

Ω

Z2 if K has no boundary
0 if K has a boundary

In this paper, we will consider 2–manifolds with possibly
many connected component. As our algorithm processes
on each component separately, we will be able to use this
theorem to guarantee the optimality of the result in the case
of 2–manifolds.

3 Elements of discrete Morse theory
Forman’s discrete Morse theory relates the topology of a

cell complex to the critical cells of a discrete Morse function.
For a complete introduction, see Forman’s presentations [12,
13] and Chari’s works [2, 3]. The focus of this paper is to
provide an optimal construction of discrete Morse functions
– optimal in the sense that the function has the minimum
possible number of critical cells in each dimension. We
will introduce some basics of Forman’s theory in the next
paragraphs, and discuss the optimality problem in the last
one.

(a) Discrete Morse function
Definition 2 (Discrete Morse function [10]) A function f
mapping each cell of a cell complex K to a real value
is a discrete Morse function if it satisfies, for every cell
σ(p) ∈ K:

#

n

τ (p+1) � σ(p)
: f (τ) ≤ f (σ)

o

≤ 1

#

n

υ(p−1) ≺ σ(p)
: f (υ) ≥ f (σ)

o

≤ 1

So there is at most one “counterbalancing” sub–face
τ (p+1) of codimension 1 and one “counterbalancing” bound-
ing cell υ(p−1) for every cell σ(p). It is easy to show that a
cell cannot have both of them. A cell that has none of them
will be called critical:

Definition 3 (Critical Cell [10]) A cell σ(p) is a critical cell
of f if:

#

n

τ (p+1) � σ(p)
: f (τ) ≤ f (σ)

o

= 0

#

n

υ(p−1) ≺ σ(p)
: f (υ) ≥ f (σ)

o

= 0

We will denote by mp (f) the number of critical cells of
dimension p.

Examples One can define a trivial discrete Morse function
by f

°

σ(p)
¢

= p, for which every cell is critical (see Fig-
ure 4(a)). Of course, not all functions are valid as discrete
Morse function: on Figure 4(b) for example, the face (with
value 4) and the edge with value 0 are assigned values invalid
for definition 2. The critical cells of Figure 4(c) are assigned
values 0 and 5.

(b) Morse inequalities

We aim to construct optimal Morse functions, i.e., func-
tions with the minimum number of critical cells. To ensure
we reached the optimality, we need a lower bound to the
number of critical cells. The weak Morse inequalities pro-
vide such a bound in terms of the Betti numbers. Those in-
equalities are valid whatever the field is chosen to calculate
the Betti numbers [11].

Preprint MAT. 03/02, communicated on December 3rd, 2001 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.



Primal spanning tree

Image: Erickson 2011



Dual spanning Co-tree

Slides from J. Erickson 
2011



Tree-cotree decomposition

Slides from J. Erickson 
2011



Spheres: χ=2 critical

• Jordan curve theorem:

• dual spanning tree leaves a 
primal spanning tree



A stronger theorem

• Given an acyclic matching on the 
Hasse diagram of a cell complex K, 
K is homotopy equivalent to a CW 
complex with only the critical cells



Idea of the proof



Main Theorem

• Given an acyclic matching on the 
Hasse diagram of a cell complex K, 
K is homotopy equivalent to a CW 
complex with only the critical cells

•



Topological bounds
for manifolds

• m(k) = # critical k-cells
β(k) = kth Betti number

• Euler characteristic

• β(n) - β(n-1)+…±β(0) = m(n) - m(n-1) +…± m(0) 

• Weak Morse inequalities

• β(k) ≤ m(k)

• Strong Morse inequalities

• β(k) - β(k-1) + … ± β(0) ≤ m(k) - m(k-1) + … ± m(0)



Complexity from topology

• MAX SNP-hard

• Reduces to collapsibility:

• smaller number of simplices to remove from a 
2-simplicial complex for it to collapse.

• reduces to vertex cover

Ö. Eğecioğlu and T. F. Gonzalez



Quick way of computing 
topology!!!

• get the big picture

• partially self-validated

• global (high info) from local (low cost)

� =
dX

i=0

(�1)i ·mi













Frame by frame



Topological objects

Manifolds,
Subsets of Vector fieldsRn



Submersion intuition

• subset of      respecting a condition

• ➾ closer to real data

Rn f



Submersion topology

• critical set of    (Morse lemma)

• ➾ global from local function analysis

f

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum �smoothness and �point constraints to form a single
least squares optimization problem. For each constraint point
p ⇥ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight �p. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM
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The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:
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⇤

↵uM =
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t(p) �2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain ⇥ where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ⇥, the u(p) � ⇥ and
u(p) + ⇥ level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+� (resp. ��) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.
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f



Usual critical sets

• minima

• new 
component

• saddles

• joins / splits 
components

• maxima

• end 
component



Immersion intuition

• locally equivalent to 

• ➾ intuitive differential tools

Rd
© Goce sat

telite



Immersion Morse topology

• critical set of a function on the manifold

• ➾ global from local function analysis

0! 1a!
1b!

2!
0! 1a!

1b!
2!



Morse-Smale 
Decomposition



Morse-Smale 
Decomposition



Morse-Smale 
Decomposition



Morse-Smale 
Decomposition



Morse-Smale complex

• relation between critical points

• ➾ local function analysis + graph



Vector field

• essentially tubular flow

• sparse invariant sets

© http://www.falstad.com/vector/



Vector field topology

• isolated singularities behavior

• ➾ local analysis (Hartman Grobman)+graph

• + closed orbits + non-generic

© http://www.falstad.com/vector/



Gradient vector field

• generic gradient

• ➾ Morse-Smale structure



Morse theory

• topology from local function analysis

• + Smale complex / topological graph

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum �smoothness and �point constraints to form a single
least squares optimization problem. For each constraint point
p ⇥ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight �p. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM
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The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:
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We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain ⇥ where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ⇥, the u(p) � ⇥ and
u(p) + ⇥ level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+� (resp. ��) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.
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5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum �smoothness and �point constraints to form a single
least squares optimization problem. For each constraint point
p ⇥ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight �p. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:
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The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:
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We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain ⇥ where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ⇥, the u(p) � ⇥ and
u(p) + ⇥ level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+� (resp. ��) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.
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Figure 11: The addition of scribbles in the weak regions allows a faithful reconstruction: the original scan (left), our FEM reconstruction
without scribble (center-left) and with four scribbles to reinforce and correct the initial reconstruction (right).

Appendix: Construction of the matrix K
The construction of K is a standard finite-elements one, based

on [14] but simplified to our particular case and made completely
explicit.

Let {(xi, yi, zi)}n
i=1 be the coordinates of the vertices of the

mesh and let {(n(1)
j , n(2)

j , n(3)
j , n(4)

j )}m
j=1 be the vertices’ indices

of the tetrahedrons in the mesh. For each tetrahedron we compute
the 4-by-4 matrix (linear tetrahedral element):
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and Ej is a 3-by-4 matrix which is the solution of the following
linear system

J�
j Ej =

2

4
1 0 0 �1
0 1 0 �1
0 0 1 �1

3

5 .

We define K̂j to be an n-by-n symmetric matrix which is
zero except for rows and columns n(1)

j , n(2)
j , n(3)

j , n(4)
j , where

K̂j(n
(a)
j , n(b)

j ) = Kj(a, b). Finally, we sum the K̂j to generate
K =

Pm
j=1 K̂j .

The corresponding work was published in the proceedings of Siggraph 2007. Transactions on Graphics, volume 26, number 3, pp. 43.1–43.9. ACM, 2007..
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Efficient implementation of Marching Cubes’ cases with topological guarantees
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Abstract. Marching Cubes’ methods first offered visual access to experimental and theoretical data. The imple-
mentation of this method usually relies on a small lookup table. Many enhancements and optimizations of Marching
Cubes still use it. However, this lookup table can lead to cracks and inconsistent topology. This paper introduces
a full implementation of Chernyaev’s technique to ensure a topologically correct result, i.e. a manifold mesh, for
any input data. It completes the original paper for the ambiguity resolution and for the feasibility of the implemen-
tation. Moreover, the cube interpolation provided here can be used in a wider range of methods. The source code
is available online.
Keywords: Marching Cubes. Isosurface extraction. Implicit surface tiler. Topological guarantees.

Figure 1: Implicit surface of linked tori generated by the classical Marching Cubes algorithm, and ours.

1 Introduction
Isosurface extractors and implicit surface tilers opened up

visual access to experimental and theoretical data, such as
medical images, mechanical pieces, sculpture scans, mathe-
matical surfaces, and physical simulation by finite elements
methods. Among those techniques, the Marching Cubes [5]
produces a surface out of a sampling of a scalar field f :
R3 � R. It has been enhanced to a wide range of applica-
tions, from geological reconstruction [10], medical images
to 3D scanning (see [4] for an original use in the Digital
Michelangelo Project). Although this paper focuses on sur-
face reconstruction from sampled data, the tilings of cubes
introduced here can be used in simple reconstruction meth-

Preprint MAT. 05/03, communicated on December 3rd, 2002 to the Depart-
ment of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro,
Brazil. The corresponding work was published in the Journal of Graphics
Tools, volume 8, number 2, pp. 1–15. ACM Press, 2003..

ods for synthetic data [2, 13] in order to guarantee the topo-
logical consistency of the result when the precision of the
result is limited.

Marching Cubes [5] has become the reference method
when the sampled scalar field is structured on a cuberille
grid. It classifies vertices as positive or negative, according
to their comparison with a given isovalue. Then, it uses a
lookup table to tile the surface inside the cube. This method
has been enhanced and generalized in various directions,
especially to reduce the number of cubes to be evaluated.
However, most of those modern techniques still use a simple
lookup table, which does not ensure the topological consis-
tency of the result.

Prior work. The main obstacles of the Marching Cubes’
derived methods are the ambiguities inherent to data sam-
pling. Those ambiguities can appear on the faces of a cube,

© L., Lopes, Vieira, Tavares
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(a) (b) (c) (d)
Figure 10: Editing the topology of the Hip model with different targets (a,c) results in the removal of different handles. Each handle is
removed by breaking the handle ring (b) or filling the handle hole (d), whichever involves less modification to the model.

(a) (b) (c) (d)
Figure 11: Editing the topology of the Mother model (a) with the target (b) selectively removes handles that user desires. Without the target,
a typical topology repair method would identify thin handles to be removed (d), yielding an undesirable result.

the screen. Last but not least, we are planning to design user-tests
to see how well novice users understand and perform the task.

Shape control in topology editing In our current algorithm, the
resulting shape change is automatically determined with the goal
of minimizing the amount of volume added or removed. However,
it may be desirable to have the user control the shape change. For
example, the user may desire to use addition in certain places even
if subtraction would induce smaller volume change, to create a new
tunnel with a certain width (instead of a thin hole in Figure 12 (b)),
or to replace small handles by a smooth surface. Such shape control
can be made possible by associating sketches with shape properties.
For example, a colored sketch can be used to indicate desired solid
thickness or surface smoothness. The current guided topology edit-
ing algorithm will be modified to minimize a weighted sum of the
modified volume and deviation from the sketch shape.

Geometric fidelity To process triangular meshes, we currently re-
quire the meshes to be converted to and from a volumetric grid,
which may result in loss of geometric details. Using feature-
sensitive scan-conversion [Ju 2004] and iso-surfacing techniques
[Ju et al. 2002], we are able to retain features (e.g., sharp edges and
corners) on the original mesh in an accurate manner, as shown in the
example of Figure 12. Note that our method can be easily extended
to further preserve the tessellation on the original mesh. In partic-
ular, we note that our guided topology editing algorithm works on
cell complexes defined in any structured or unstructured 3D grids.
As a result, application onto a tetrahedral grid that contains both the
triangles of the original mesh and the lines in the target shape would
retain the original triangles as part of the resulting edited mesh.
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can be made possible by associating sketches with shape properties.
For example, a colored sketch can be used to indicate desired solid
thickness or surface smoothness. The current guided topology edit-
ing algorithm will be modified to minimize a weighted sum of the
modified volume and deviation from the sketch shape.
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quire the meshes to be converted to and from a volumetric grid,
which may result in loss of geometric details. Using feature-
sensitive scan-conversion [Ju 2004] and iso-surfacing techniques
[Ju et al. 2002], we are able to retain features (e.g., sharp edges and
corners) on the original mesh in an accurate manner, as shown in the
example of Figure 12. Note that our method can be easily extended
to further preserve the tessellation on the original mesh. In partic-
ular, we note that our guided topology editing algorithm works on
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5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum �smoothness and �point constraints to form a single
least squares optimization problem. For each constraint point
p ⇥ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight �p. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM

�����������
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,

The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:

⇥

⌦K +
�

p�P

�2
p cT

p cp

⇤

↵uM =
�

p�P

t(p) �2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain ⇥ where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ⇥, the u(p) � ⇥ and
u(p) + ⇥ level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+� (resp. ��) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.
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Figure 8: In complex shapes automatic detection of weak regions is necessary to guide the user: original scan with the weak regions (left),
reconstruction without scribbles generates some spurious connections (center), which are removed after the user adds scribbles (right).

inside/outside constraints. The location and the sign of these
initial automatic constraints can be computed heuristically.
In this work we simply compute an unsigned distance trans-
form from the data points by fast marching over the hierar-
chy. We use local maxima, detected by examining field gra-
dients in the neighborhood of an octree cell, as automatic
constrains (in Figure 3(left) automatic constraints were ex-
tracted from the 2D medial-axis for illustration purposes).
We automatically classify constraints as inside/outside ap-
plying a simplified space carving method [8]. Although this
process is prone to errors, it serves only as an initial coarse
guess for the function u as described in Section 4. This tech-
nique actually performs an initial reconstruction similar to
automatic reconstruction based on global optimizations such
as [7, 22, 15] (see Figure 9), without using the normals of the
input scan. In our experiments, this process could be easily
skipped using only manual scribbles.

User interaction. The user can visualize arbitrary 2D cross
sections of the implicit function using a pseudo-color map
(see Figure 1 (center-left)). The user picks one of the cross
sections which are displayed at the weak regions (see Sec-
tion 5). This cross section of the field is reproduced in a sep-
arate window, which we call a tablet, over which the user
draws the scribbles. The user is not required to precisely
position the scribbles, but rather loosely define inside and
outside relations locally at the weak regions. These in/out
scribbles are inserted as constraints to the FEM system, with
negative/positive sign and value according the distance field.

With each additional constraint, the field and the weak re-
gions are updated within less than a second. This interactiv-
ity relies on Equation (4), which allows a pre-factorization of
the FEM matrix. As the user adds more scribbles, the topo-
logical stability of the implicit function locally increases. Af-
ter the user’s validation, the octree is locally refined close
to the zero level-set of the implicit function, and the FEM
matrix is pre-factorized again. Our non-smoothness penalty
constraint avoids spurious topological instabilities (as also
observed in [21]), while incorporating the scribbles con-
straints. The whole process takes between a few seconds and
a few minutes, depending on the octree depth and the shape

complexity.
Note that except for the scribbles drawing, the user is

not required for any parameter tuning. The critical points
filtering is determined by the octree depth (|u(v)| < 8 ·
2�depth), and the relative weights �p in Equation (4) are
fixed to a low value (0.01) for the initial constraints, medium
(1) for the data points and high (1000) for the user scribbles.

Final surface reconstruction. Once the implicit function
achieves the expected topology, a final mesh is extracted
from its zero level-set. Since the field is smooth everywhere
(see Figure 10), we can use any isosurfacing method. We
choose the dual marching cubes method [24] since it guar-
antees the resulting topology, and since it works on the same
data structure as our octree dual. We further improve mesh
quality using standard mesh optimization techniques (edge
flips/collapse and normal smoothing) that do not alter the
shape topology.

7 Results
To demonstrate the effectiveness of the proposed method,

we focused on complex objects, such as the riding monk
(Figure 1), which we acquired with few structured light
scans. This relatively inexpensive technology has the advan-

# # Auto- Inter- #
points shots matic action scribbles

Riding Monk 469 k 10 130 s. 3 min 9
Elephant 217 k 6 88 s. 2 min 7
Knot 497 k 15 206 s. 4 min 10
Hand 259 k 8 92 s. 30 s. 2
Saddle 284 k 11 118 s. 0 min 0
Hip 222 k 9 109 s. 30 s. 4
Tiger 340 k 10 157 s. 6 min 12
Woman 333 k 9 116 s. 5 min 12
Camel 282 k 12 128 s. 3 min 6

Table 1: Reconstruction timings for our scanned models. From left
to right: the number of data points, the number of structured light
shots, the time of the automatic FEM reconstruction, the interaction
time of the reconstruction session and the number of scribbles used.
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Figure 2: Reconstruction pipeline for a scanned elephant model. An initial coarse function is automatically computed from loose, automatic
inside/outside (blue/red balls) constraints (left). The topological analysis of this function selects weak regions (center-left), where the user
can make local decisions by scribbling over 2D tablets at a coarse resolution (center-right). Further iterations at finer resolutions lead to a
complete reconstruction of the model (right).

One of the major difficulties is the coverage of the
scanned model: As a result of physical inaccessibility, poor
visibility and material properties, the coverage is often im-
perfect and significant portions of the surface are either
under-sampled or completely missing. The problem is more
acute for complex shapes with deep cavities and bifurcations
(e.g., Figure 1). While it is reasonable to assume that scan-
ning hardware will advance, future reconstruction systems
will still need to employ algorithms that reconstruct under-
sampled areas. Systems that reconstruct poorly-sampled ar-
eas merely based on priors, without any user intervention,
fail in many cases to faithfully reconstruct the expected
shape. At the other extreme, systems that rely only on ex-
plicit manual surface editing are too tedious.

Without prior assumptions and user constraints, the re-
construction problem is ill posed; an infinite number of sur-
faces pass through or near the data points. Smoothness and
watertight constraints usually regularize the problem and re-
move the ill posedness. Nevertheless, even if the problem is
successfully transformed into a well conditioned one, the re-
constructed object is not necessarily the expected one. Our
method is based on the observation that it is often possi-
ble to detect the ill conditioning and to ask the user for in-
side/outside constraints to locally resolve them and achieve
the expected shape.

In this paper we present a topology-aware reconstruction
technique that requires minimal user input to make correct
decisions at critical regions, where the topology of the shape
cannot be induced automatically with a reasonable degree of
confidence. Our method uses priors to reconstruct the sur-
face, but it also allows the user to influence the prior dis-
tribution. Two aspects of the prior distribution are fixed: we
assume that the surface is smooth almost everywhere, and
that it should be watertight. Other aspects of the prior dis-
tribution are controlled by the user who specifies constraint
points that should be inside or outside the surface.

To reconstruct a watertight surface given raw scans with-
out normals, and possibly the user’s inside/outside con-
straints, we first construct a continuous function over a three-
dimensional domain. The zero level-set of this function ap-

proximates the data points. We construct this function by
minimizing a penalty that measures its non-smoothness, the
deviation of its zero level-set from the data points, and its
deviations from prescribed positive/negative values at the in-
side/outside constraints. Our function optimization problem
is formulated in a mesh-independent manner, and mapped
onto a specific mesh using the finite-element method. Com-
putationally, the function is constructed by solving a large
sparse linear system. However, at complex under-sampled
regions these constraints might be insufficient. Therefore, we
analyze the local topological stability of the zero level-set to
detect weak regions of the surface. These regions are sug-
gested to the user for adding local inside/outside constraints
by merely scribbling over a 2D tablet corresponding to a
cross section of the field (see Figure 2). The new user input
augments the linear system with additional constrains, im-
proving the reconstruction. The stability analysis is then re-
peated. If the surface is still topologically unstable, the user
is prompted for additional constraints. This incremental pro-
cess refines the surface until it is topologically stable.

2 Related Works
The problem of reconstructing a surface from scans has

been researched extensively for almost two decades [12, 18].
Many different techniques have been developed, based on
signed distance functions [12, 8], Voronoı̈ diagrams [2, 6,
11], radial basis functions and local implicit functions [7, 22,
23], moving least square approximation [1, 3], or wrapping
techniques [5], to mention a few. Nevertheless, these tech-
niques are concerned with a faithful reconstruction of the
local structure of the surface, whereas we also focus on its
global structure.

Some related works are concerned with the reconstruction
of a surface from inhomogeneous sample density or missing
data [9, 11, 16, 25, 13]. These techniques use some heuristics
to define the locus of the surface in under-sampled or noisy
data. Our technique is similar to the works of [16, 13] in that
we use a global optimization technique and that we guaran-
tee a continuous watertight surface reconstruction. However,
the method of Kolluri et al. [16], requires filtering of the

The corresponding work was published in the proceedings of Siggraph 2007. Transactions on Graphics, volume 26, number 3, pp. 43.1–43.9. ACM, 2007..
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Some common points 

• singular points only
• ➾ several applications

• topology: intuitive interfaces 

• noise / scale problems
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Figure 11: Features extracted from the fuel data set (maximum persistence = 255): the input data is shown on the left. The middle figure
shows the Morse-Smale complex after performing cancellations that remove all critical points with persistence value lower than 1. The figure
on right shows features represented by critical points with persistence value greater than 7.4.

Figure 12: Features extracted from the neghip data set (maximum persistence = 255): the input data has over a thousand critical points, many
of which have low persistence values and are removed. The middle figure shows the complex after all critical points with persistence value lower
than 1 are canceled. Canceling critical points with persistence value lower than 36 isolates the various clusters of atoms present in this protein.

Figure 13: Features extracted from the bonsai tree data set (maximum persistence = 255): topology-based simplification applied to the CT
scan of a bonsai tree identifies important features. The input data (left) is a down sampled version and has noisy regions which manifest as
clusters of critical points (middle). Removing all critical points with persistence value lower than 19 makes these regions smooth resulting in a
better identification of features using volume rendering (right).

Figure 14: Noise in a synthetic function is detected as features with negligible persistence and removed. Left: the function consists of various
spikes with the central one being the largest. Each spike is visualized as a sphere in the volume-rendered image. Middle: all nine spikes are
clearly visible after removing noise that created the thin shells surrounding the spheres. Right: further simplification destroys all maxima except
the one representing the central feature.
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Figure 2: Reconstruction pipeline for a scanned elephant model. An initial coarse function is automatically computed from loose, automatic
inside/outside (blue/red balls) constraints (left). The topological analysis of this function selects weak regions (center-left), where the user
can make local decisions by scribbling over 2D tablets at a coarse resolution (center-right). Further iterations at finer resolutions lead to a
complete reconstruction of the model (right).

One of the major difficulties is the coverage of the
scanned model: As a result of physical inaccessibility, poor
visibility and material properties, the coverage is often im-
perfect and significant portions of the surface are either
under-sampled or completely missing. The problem is more
acute for complex shapes with deep cavities and bifurcations
(e.g., Figure 1). While it is reasonable to assume that scan-
ning hardware will advance, future reconstruction systems
will still need to employ algorithms that reconstruct under-
sampled areas. Systems that reconstruct poorly-sampled ar-
eas merely based on priors, without any user intervention,
fail in many cases to faithfully reconstruct the expected
shape. At the other extreme, systems that rely only on ex-
plicit manual surface editing are too tedious.

Without prior assumptions and user constraints, the re-
construction problem is ill posed; an infinite number of sur-
faces pass through or near the data points. Smoothness and
watertight constraints usually regularize the problem and re-
move the ill posedness. Nevertheless, even if the problem is
successfully transformed into a well conditioned one, the re-
constructed object is not necessarily the expected one. Our
method is based on the observation that it is often possi-
ble to detect the ill conditioning and to ask the user for in-
side/outside constraints to locally resolve them and achieve
the expected shape.

In this paper we present a topology-aware reconstruction
technique that requires minimal user input to make correct
decisions at critical regions, where the topology of the shape
cannot be induced automatically with a reasonable degree of
confidence. Our method uses priors to reconstruct the sur-
face, but it also allows the user to influence the prior dis-
tribution. Two aspects of the prior distribution are fixed: we
assume that the surface is smooth almost everywhere, and
that it should be watertight. Other aspects of the prior dis-
tribution are controlled by the user who specifies constraint
points that should be inside or outside the surface.

To reconstruct a watertight surface given raw scans with-
out normals, and possibly the user’s inside/outside con-
straints, we first construct a continuous function over a three-
dimensional domain. The zero level-set of this function ap-

proximates the data points. We construct this function by
minimizing a penalty that measures its non-smoothness, the
deviation of its zero level-set from the data points, and its
deviations from prescribed positive/negative values at the in-
side/outside constraints. Our function optimization problem
is formulated in a mesh-independent manner, and mapped
onto a specific mesh using the finite-element method. Com-
putationally, the function is constructed by solving a large
sparse linear system. However, at complex under-sampled
regions these constraints might be insufficient. Therefore, we
analyze the local topological stability of the zero level-set to
detect weak regions of the surface. These regions are sug-
gested to the user for adding local inside/outside constraints
by merely scribbling over a 2D tablet corresponding to a
cross section of the field (see Figure 2). The new user input
augments the linear system with additional constrains, im-
proving the reconstruction. The stability analysis is then re-
peated. If the surface is still topologically unstable, the user
is prompted for additional constraints. This incremental pro-
cess refines the surface until it is topologically stable.

2 Related Works
The problem of reconstructing a surface from scans has

been researched extensively for almost two decades [12, 18].
Many different techniques have been developed, based on
signed distance functions [12, 8], Voronoı̈ diagrams [2, 6,
11], radial basis functions and local implicit functions [7, 22,
23], moving least square approximation [1, 3], or wrapping
techniques [5], to mention a few. Nevertheless, these tech-
niques are concerned with a faithful reconstruction of the
local structure of the surface, whereas we also focus on its
global structure.

Some related works are concerned with the reconstruction
of a surface from inhomogeneous sample density or missing
data [9, 11, 16, 25, 13]. These techniques use some heuristics
to define the locus of the surface in under-sampled or noisy
data. Our technique is similar to the works of [16, 13] in that
we use a global optimization technique and that we guaran-
tee a continuous watertight surface reconstruction. However,
the method of Kolluri et al. [16], requires filtering of the

The corresponding work was published in the proceedings of Siggraph 2007. Transactions on Graphics, volume 26, number 3, pp. 43.1–43.9. ACM, 2007..
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Recent improvements

• On triangulated surface, greedy construction of 
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Next challenges

• Higher dimension (besides NP)

• More general cases (infinite complexes)

• More complex objects (tensors,       )

• More theoretical guarantees

• More matchings
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