
A Semantics for Proof Evidence

Zakaria Chihani, Dale Miller, and Fabien Renaud
INRIA and LIX, Ecole Polytechnique, Palaiseau, France

October 1, 2013

Theorem provers are generally complex systems that search for proofs using
some combination of automatic and interactive tools. Given their nature, it is
important for them to be formally correct. Given their complexity, they are
extremely hard to certify as such. One can arrange, however, for provers to be
“certifying” in the sense that they can be built to output evidence of the proofs
they achieved and then employ an independent proof checker to check them.
Some proof systems, such as Coq, use this certifying approach by employing a
trusted kernel to check proofs built outside the kernel [2].

In the ProofCert project, we are exploring to what extent we might be able
to accommodate a wide range of proof evidence from various provers and then
to have independent checkers certify such proof evidence. We have identified
three different stages to achieving such a proof checking scheme [4].

1. The implementers of theorem provers must describe their proof evidence
in some textual form. Presumably, such documents are roughly the result
of “pretty printing” the evidence that they have collected. For example,
the implementer of a resolution prover might output a numbered list of
clauses as well as a list of triples (indicating which two clauses resolve to
form a third clause). Such documents will be called proof certificates. One
expects that there will be a great many kinds of proof certificate formats
that are ultimately created and used.

2. A general framework for defining the semantics of proof evidence must
be designed. In such a framework, the format and structure of proof
certificates would be given a clear and precise semantics. Such a semantic
framework will need to be sufficiently low-level so as to capture the essence
of a proof and general enough to accommodate a wide range of proof
systems. In the resolution prover example, the relationship of “resolvent”
must be defined in terms of more basic inference rules of proof.

3. Trusted proof checkers must be implemented to execute the semantic de-
scriptions of proof certificates. We need to be able to trust that a success-
ful execution of the proof checker on a given certificate implies that the
certificate does, in fact, elaborate into a recognized formal proof.

1



We shall show in this talk how focused sequent calculus proof systems, which
are now available for linear, intuitionistic, and classical logics [1, 5, 6], can be
used to address the second of these stages: i.e., they provide a flexible framework
for defining the “semantics of proof evidence”.

A simple analogy in the area of programming languages is worth pointing
out for this three stage organization. (1) There are many kinds of programming
languages and researchers are routinely designing new ones. (2) In order to de-
fine such programming languages precisely (for, say, mathematical treatment or
for implementations), the semantics of such programming languages need to be
given: a popular form of such semantic specifications is Structural Operational
Semantics (SOS) [8]. (3) Finally, compliant interpreters and compilers for a
given programming language can be built based on such semantic descriptions.

This analogy can be pushed an additional step. Since an SOS specification
is given as a set of simple inference rules, a general purpose interpreters for SOS
specifications can be given using logic programming languages [3, 7]. Similarly,
since our evidence of proof is based on the generation of sequent calculus proofs,
logic programming (particularly the more expressive and abstract form available
in λProlog [7]) can be used to provide a reference interpreter for checking proof
certificates.

References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
J. of Logic and Computation, 2(3):297–347, 1992.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer, 2004.

[3] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. Centaur: the system. In Third Annual Symposium on Software
Development Environments (SDE3), pages 14–24, Boston, 1988.

[4] Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof cer-
tificates in first-order logic. In Maria Paola Bonacina, editor, CADE 24:
Conference on Automated Deduction 2013, LNAI 7898, pages 162–177, 2013.

[5] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuition-
istic, and classical logics. Theoretical Computer Science, 410(46), 2009.

[6] Chuck Liang and Dale Miller. A focused approach to combining logics.
Annals of Pure and Applied Logic, 162(9):679–697, 2011.

[7] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic.
Cambridge University Press, June 2012.

[8] Gordon Plotkin. A structural approach to operational semantics. DAIMI
FN-19, Aarhus University, Aarhus, Denmark, September 1981.

2


