Medians of permutations and gene orders

Sylvie Hamel
Université de Montréal

Work in collaboration with:

- Guillaume Blin
- Maxime Crochemore
- Stéphane Vialette

from Université Marne-la-Vallée
Medians of permutations and gene orders

Sylvie Hamel
Université de Montréal

Research trainees/programmers:
- Quentin Dejean
- Anthony Estebe
- Kelsey Lang

from Université Montpellier II and University of Victoria
Biological context:

1: Permutations
Biological context:

2: Signed Permutations
The general problem:

Given \(m \) permutations \(\pi_1, \pi_2, \ldots, \pi_m \) of \(\{1, 2, \ldots, n\} \) and a distance function \(d \), the median problem is to find a permutation \(\pi^* \) that is the “closest”, under the distance \(d \), to the \(m \) given permutations.
Biological context: phylogeny
Blanchette and Sankoff*:

In 1997, they study the problem of finding a median of 3 genomes (permutations) under the breakpoint distance.

The **breakpoint distance** between two permutations π^1 and π^2 is the number of pair of elements which are adjacent in π^1 but not in π^2.

Blanchette and Sankoff*:

In 1997, they study the problem of finding a median of 3 genomes (permutations) under the breakpoint distance.

\[
\pi^1 = [1, 2, 3, 4, 5, 6, 7, 8] \quad \text{distance} = 4
\]

\[
\pi^2 = [1, 5, 6, 8, 4, 3, 2, 7] \quad \text{distance} = 4
\]

Blanchette and Sankoff*:
They described efficient heuristics to find a median of three circular genomes that have, or do not have, the same gene content.

Pe’er and Shamir**:
They show that the median problem of three permutations or signed permutations under the breakpoint distance is NP-complete.

The Kendall-\mathcal{T} distance:

Counts the number of pairwise disagreements between two permutations i.e.

$$d_{KT}(\pi, \sigma) = \sum_{i < j} \left((\pi[i] < \pi[j] \text{ and } \sigma[i] > \sigma[j]) \right.$$

$$\left. \text{ or } (\pi[i] > \pi[j] \text{ and } \sigma[i] < \sigma[j]) \right)$$

The Kendall-\mathcal{T} distance is equivalent to the “bubble-sort” distance i.e. the number of transpositions needed to transform one permutation into the other one.

We have $$d_{KT}(\pi, \iota) = \text{inv}(\pi)$$
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + \]
Example:

$$\pi = [1, 4, 2, 5, 3]$$

$$\sigma = [3, 4, 1, 2, 5]$$

$$d_{KT}(\pi, \sigma) = 1 + 1 +$$
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + 1 + \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + 1 + 1 + 1 + \]

LIX Bioinformatics Colloquium

November 2010
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + 1 + 1 + 1 \]
Example:

\[\pi = [1, 4, 2, 5, 3] \]

\[\sigma = [3, 4, 1, 2, 5] \]

\[d_{KT}(\pi, \sigma) = 1 + 1 + 1 + 1 + 1 = 5 \]
Kendall-\mathcal{T} distance between a permutation π and a set of permutations $A = \{\pi^1, \ldots, \pi^m\}$:

$$d_{KT}(\pi, A) = \sum_{i=1}^{m} d_{KT}(\pi, \pi^i)$$
The problem of finding the median of a set of \(m \) permutations of \(\{1, 2, \ldots, n\} \) under the Kendall-\(\tau \) distance is best known in the literature as the Kemedy Score Problem.

In this problem, we have \(m \) voters that have to order \(n \) candidates from their best-liked candidate to their least-liked one.

The problem then consists in finding a “Kemedy consensus” i.e. an order of the candidates that agree the most with the orders of the voters.
Example:

\[
\begin{align*}
\pi^1 &= [2, 1, 3, 4] \\
\pi^2 &= [4, 1, 2, 3] \\
\pi^3 &= [4, 2, 3, 1] \\
\end{align*}
\]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(A \):

\[
G(\pi):
\]

\[
\begin{array}{cccc}
4 & 2 & 1 & 3 \\
\end{array}
\]
Example:

\[\pi^1 = [2, 1, 3, 4] \]
\[\pi^2 = [4, 1, 2, 3] \]
\[\pi^3 = [4, 2, 3, 1] \]
\[\pi = [4, 2, 1, 3] \]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(A \):

\(G(\pi) \):

\[4 \xrightarrow{1} 2 \xrightarrow{d_{KT}(\pi, \pi^1)} \pi \]
\[4 \xrightarrow{d_{KT}(\pi, \pi^2)} 2 \]
\[4 \xrightarrow{d_{KT}(\pi, \pi^3)} 2 \]

\[1 \]
\[3 \]
Example:

\[\pi^1 = [2, 1, 3, 4] \]
\[\pi^2 = [4, 1, 2, 3] \]
\[\pi^3 = [4, 2, 3, 1] \]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(A \):

\[G(\pi): \]

1

4 \rightarrow 2 \rightarrow 1 \rightarrow 3
Example:

\[\pi^1 = [2, 1, 3, 4] \]

\[\pi^2 = [4, 1, 2, 3] \]

\[\pi^3 = [4, 2, 3, 1] \]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(\mathcal{A} \):
Example:

\[\pi^1 = [2, 1, 3, 4] \]
\[\pi^2 = [4, 1, 2, 3] \]
\[\pi^3 = [4, 2, 3, 1] \]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(A \):

\[G(\pi): \]

\(4 \) \(\rightarrow \) \(2 \) \(\rightarrow \) \(1 \) \(\rightarrow \) \(3 \)

\(1 \) \(\rightarrow \) \(2 \) \(\rightarrow \) \(1 \) \(\rightarrow \) \(3 \)

\(1 \) \(\rightarrow \) \(2 \) \(\rightarrow \) \(1 \) \(\rightarrow \) \(3 \)

\(1 \) \(\rightarrow \) \(2 \) \(\rightarrow \) \(1 \) \(\rightarrow \) \(3 \)

\(1 \) \(\rightarrow \) \(2 \) \(\rightarrow \) \(1 \) \(\rightarrow \) \(3 \)
Example:

\[
\pi^1 = [2, 1, 3, 4] \\
\pi^2 = [4, 1, 2, 3] \\
\pi^3 = [4, 2, 3, 1]
\]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(A \):
Example:

\[\pi^1 = [2, 1, 3, 4] \]
\[\pi^2 = [4, 1, 2, 3] \]
\[\pi^3 = [4, 2, 3, 1] \]

Disagreement graph \(G(\pi) \) of a permutation \(\pi \) with respect to a set of permutations \(A \):

\(d_{KT}(\pi, \pi^1) \)
\(d_{KT}(\pi, \pi^2) \)
\(d_{KT}(\pi, \pi^3) \)

\(d_{KT} = 5 \)
Our problem:

Given a set of m permutations $A \subseteq S_n$, we want to find a permutation π^* such that

$$d_{KT}(\pi^*, A) \leq d_{KT}(\pi, A), \text{ for all } \pi \in S_n.$$

- If m is the cardinality of the set $A \subseteq S_n$, the problem is NP-complete for $m \geq 4$, m even*
- We will then considered the case $m \geq 3$, m odd

Example where there is more than one median:

\[A = \{ \pi^1 = [1, 2, 3], \pi^2 = [3, 1, 2], \pi^3 = [2, 3, 1] \} \]
Finding a median with a brute force algorithm:
n! permutations de \{1, 2, 3, \ldots n\}

- n=5, 120 permutations
- n=6, 720 permutations
- n=7, 5040 permutations
- n=8, 40 320 permutations
- n=9, 362 880 permutations
- n=10, 3 628 800 permutations
- n=11, 39 916 800 permutations
- . . .
Lemma 1: If a pair of elements appear in the same order in all permutations of the set A, then they also appear in that order in all medians π^*.

Lemma 1 follows directly from the Extended Condorcet criterion (Truchon, 1998): If there is a partition (C, C') of $\{1, 2, \ldots, n\}$ such that for any x in C and y in C' the majority prefers x to y, then x must be ranked above y.

The “original” Condorcet criterion, proposed by Marie Jean Antoine Nicolas de Caritat in 1785, marquis de Condorcet, stated that if there is some element of $\{1, 2, \ldots, n\}$ that defeats every other in pairwise simple majority voting, then this element should be ranked first.

M.-J. Condorcet, Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785.
Lemma 1: If a pair of elements appear in the same order in all permutations of the set A, then they also appear in that order in all medians π^*.

Lemma 1 gives us a set of constraints which π^* must satisfy.

Lemma 1 imply that in the disagreement graph of π^*, there are no arcs of weight m.
Lemma 2: The order of any adjacent pair of elements in a median π^* agree with the order of this pair of element in the majority of the permutations in A.

So in the disagreements graph of a median, all adjacent nodes are linked by an edge of weight $\leq \left\lfloor \frac{m}{2} \right\rfloor$, where m is the cardinality of A.
Comparaison des temps de l’algorithme force brute et algorithme force brute + contraintes

![Graph showing comparison of algorithm force brute and force brute + constraints]

- 0.001 (8)
- 0.004 (9)
- 0.03 (10)
- 0.26 (11)
- 2.26 (12)

1024 ~17 minutes

LIX Bioinformatics Colloquium

November 2010
Some definitions for our heuristic:

Definition 1:

Given \(\pi = \pi_1 \pi_2 \ldots \pi_n \), we call **cyclic movement** of a segment \(\pi[i..j] \), denoted \(c[i..j](\pi) \), the cycling shifting of the elements of the segment to the right or to the left:

\[
c_r[i, j](\pi) = \pi_1 \ldots \pi_{i-1} \pi_j \pi_{i+1} \ldots \pi_{j-1} \pi_{j+1} \ldots \pi_n
\]

\[
c_l[i, j](\pi) = \pi_1 \ldots \pi_{i-1} \pi_{i+1} \ldots \pi_j \pi_i \pi_{j+1} \ldots \pi_n
\]
Some definitions for our heuristic:

Definition 2:

Given our set of permutations A, we say that a cyclic movement is a k-move if

$$d_{KT}(c[i, j](\pi), A) = d_{KT}(\pi, A) + k$$

Definition 3:

A good cyclic movement is a k-move, where $k < 0$
Example of k-move:

\[\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5] \]
\[\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8] \]
\[\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2] \]
Example of k-move:

\[\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5] \]
\[\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8] \]
\[\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2] \]
Example of k-move:

\[\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5] \]
\[\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8] \]
\[\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2] \]
Example of k-move:

\[\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5] \]
\[\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8] \]
\[\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2] \]
Example of k-move:

\[\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5] \]
\[\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8] \]
\[\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2] \]
Example of k-move:

\[\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5] \]
\[\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8] \]
\[\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2] \]
Example of k-move:

$$\pi^1 = [1, 3, 8, 4, 6, 2, 7, 5]$$

$$\pi^2 = [7, 2, 1, 3, 4, 5, 6, 8]$$

$$\pi^3 = [5, 3, 1, 8, 7, 6, 4, 2]$$

$k = -2$

Total = 7

Total = 5
Our to find k-moves:

\[\pi_1 = [1, 3, 8, 4, 6, 2, 7, 5] \]

\[\pi_2 = [7, 2, 1, 3, 4, 5, 6, 8] \]

\[\pi_3 = [5, 3, 1, 8, 7, 6, 4, 2] \]

Theorem: We have that \(c_r[i, j](\pi) \) is a k-move iff

\[
k = 3(j - i) - 2 \sum_{t=i}^{j-1} w_g(\pi)(\pi_t, \pi_j)
\]
Our heuristic:

Given a set of permutations $A = \{\pi^1, \ldots, \pi^m\}$:

1) Take π^1 as a starting point for the heuristic

2) Find and execute a good move, if any

3) Repeat 2) till there is no more good moves and keep the result as a possible median for A

4) Repeat 1) with $\pi^i, 2 \leq i \leq m$

5) Take the best of the m result as one median of A
Why do we execute our heuristic on each permutations of A?

\[\pi^1 = [3, 6, 4, 2, 1, 7, 5] \]
\[\pi^2 = [4, 6, 5, 1, 2, 7, 3] \rightarrow \pi^* = [6, 4, 1, 7, 5, 3, 2] \]
\[\pi^3 = [1, 7, 5, 3, 6, 2, 4] \]

\[\pi^1 \rightarrow [3, 6, 4, 1, 2, 7, 5] \]
\[d_{KT} = 23 \]

\[\pi^2 \rightarrow [6, 4, 1, 5, 2, 7, 3] \]
\[d_{KT} = 23 \]

\[\pi^3 \rightarrow \pi^* \]
\[d_{KT} = 22 \]
Some results of our heuristic for set of permutations A of cardinality 3:

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20</td>
<td>2024</td>
<td>280840</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>% of errors</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.05%</td>
<td>0.25%</td>
</tr>
<tr>
<td>distance difference</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Some results of our heuristic for set of permutations A of cardinality 3:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0%</td>
<td>0.05%</td>
<td>0.25%</td>
<td>0.35%</td>
<td>0.6%</td>
<td>1.1%</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adding 0-moves:

$\pi^1 = [3, 6, 4, 2, 1, 7, 5]$

$\pi^2 = [4, 6, 5, 1, 2, 7, 3] \quad \sim \quad \pi^* = [6, 4, 1, 7, 5, 3, 2]$

$\pi^3 = [1, 7, 5, 3, 6, 2, 4]$

$\pi^2 \sim [6, 4, 1, 5, 2, 7, 3]$
Good 0-moves:

A good 0-move is a 0-move that can be immediately follow by any good -k move

\[\pi^1 = [3, 6, 4, 2, 1, 7, 5] \]
\[\pi^2 = [4, 6, 5, 1, 2, 7, 3] \]
\[\pi^3 = [1, 7, 5, 3, 6, 2, 4] \]

\[\pi^* = [6, 4, 1, 7, 5, 3, 2] \]
Good 0-moves:

A good 0-move is a 0-move that can be immediately follow by any good -k move

\[\pi^1 = [3, 6, 4, 2, 1, 7, 5] \]
\[\pi^2 = [4, 6, 5, 1, 2, 7, 3] \]
\[\pi^3 = [1, 7, 5, 3, 6, 2, 4] \]

\[\pi^* = [6, 4, 1, 7, 5, 3, 2] \]
Good 0-moves:

\[c_r[i, j](\pi) \text{ is good 0-move if it is a 0-move and } \]
\[w_G(\pi)(\pi_{j-1}, \pi_{j+1}) = 2 \text{ or } w_G(\pi)(\pi_{i-1}, \pi_{j}) = 2 \]

\[\pi^1 = [3, 6, 4, 2, 1, 7, 5] \]
\[\pi^2 = [4, 6, 5, 1, 2, 7, 3] \]
\[\pi^3 = [1, 7, 5, 3, 6, 2, 4] \]

\[\pi^* = [6, 4, 1, 7, 5, 3, 2] \]
Results of our heuristic with 0-moves:

We applied our heuristic on 20,000 triplets of permutations of \{1, 2, ..., n\} for n between 6 and 10 and for each of these triplet, we computed the number of required 0-moves to get to the median.

The maximal number of 0-move permitted was 3.

<table>
<thead>
<tr>
<th>n</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>error %</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% of cases with 0 0-move</td>
<td>100</td>
<td>99.8</td>
<td>99.7</td>
<td>99.5</td>
<td>99.2</td>
</tr>
<tr>
<td>% of cases with 1 0-move</td>
<td>0</td>
<td>0.15</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>% of cases with 2 0-moves</td>
<td>0</td>
<td>0.05</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>% of cases with 3 0-moves</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
What's left to do:

- Understand why for some given set of permutations there is only one median and for others more than one (we even found 33 medians for a triplet of permutations of \{1, 2, ..., 10\})

- Study the problem under important biological distances on permutations and signed permutations

- Is the median problem of a set of m permutations, m odd, under the Kendall-τ distance polynomial?

- If we know the medians of a set of permutations A and the medians of set of permutations B, does it tell us something on the set of medians of $A \cup B, A \cap B, A \setminus B, \bar{A}$, ...