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Chapter 1

Introduction : Optimization,
machine learning and convex
analysis

1.1 Optimization problems in Machine Learning

Most of Machine Learning algorithms consist in solving a minimization prob-
lem. In other words, the output of the algorithm is the solution (or an
approximated one) of a minimization problem. In general, non-convex prob-
lems are difficult, whereas convex ones are easier to solve. Here, we are going
to focus on convex problems.
First, let’s give a few examples of well-known issues you will have to deal
with in supervised learning :

Example 1.1.1 (Least squares, simple linear regression or penalized linear
regression).

(a) Ordinary Least Squares:

min
x∈Rp

‖Zx− Y ‖2, Z ∈ Rn×p, Y ∈ Rn

(b) Lasso :
min
x∈Rp

‖Zx− Y ‖2 + λ‖x‖1,

(c) Ridge :
min
x∈Rp

‖Zx− Y ‖2 + λ‖x‖22,

Example 1.1.2 (Linear classification).
The data consists of a training sample D = {(w1, y1), . . . , (wn, yn)}, yi ∈
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{−1, 1}, wi ∈ Rp, where the wi’s are the data’sfeatures (also called regres-
sors), whereas the yi’s are the labels which represent the class of each ob-
servation i. The sample is obtained by independant realizations of a vector
(W,Y ) ∼ P , of unknown distribution P . Linear classifiers are linear func-
tions defined on the feature space, of the kind:

h : w 7→ signe(〈x,w〉+ x0) (x ∈ Rp, x0 ∈ R)

A classifier h is thus determined by a vector x = (x, x0) in Rp+1. The vector
x is the normal vector to an hyperplane which separates the space into two
regions, inside which the predicted labels are respectively “+1” and “−1”.
The goal is to learn a classifier which, in average, is not wrong by much:
that means that we want P(h(W ) = Y ) to be as big as possible.
To quantify the classifier’s error/accuracy, the reference loss function is the
‘0-1 loss’:

L01(x, w, y) =

{
0 if − y (〈x,w〉+ x0) ≤ 0 (h(w) and y of same sign),
1 otherwise .

In general, the implicit goal of machine learning methods for supervised
classification is to solve (at least approximately) the following problem:

min
x∈Rp+1

1

n

n∑
i=1

L0,1(x, wi, yi) (1.1.1)

i.e. to minimize the empirical risk.
As the cost L is not convex in x, the problem (1.1.1) is hard. Classical
Machine learning methods consist in minimizing a function that is similar
to the objective (1.1.1) : the idea is to replace the cost 0-1 by a convex
substitute, and then to add a penalty term which penalizes “complexity” of
x, so that the problem becomes numerically feasible. More precisely, the
problem to be solved numerically is

min
x∈Rp,x0∈R

n∑
i=1

ϕ(−yi(x>wi + x0)) + λP(x), (1.1.2)

where P is the penalty and ϕ is a convex substitute to the cost 0-1.
Different choices of penalties and convex subsitutes are available, yielding a
range of methods for supervised classification :

• For ϕ(z) = max(0, 1 + z) (Hinge loss), P(x) = ‖x‖2, this is the SVM.

• In the separable case (i.e. when there is a hyperplane that separates
the two classes), introduce the “infinite indicator function”(also called
characteristic function),

IA(z) =

{
0 if z ∈ A,
+∞ if z ∈ Ac,

(A ⊂ X )
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and set
ϕ(z) = IR−(z).

The solution to the problem is the maximum margin hyperplane.
To summarize, the common denominator of all these versions of exam-
ple 1.1.2 is as follows:

• The risk of a classifier x is defined by J(x) = E(L(x,D)). We are
looking for x which minimizes J .

• P is unknown, and so is J . However, D ∼ P is available. Therefore,
the approximate problem is to find:

x̂ ∈ arg min
x∈X

Jn(x)=̂
1

n

,∑
i=1

L(x, di)

• The cost L is replaced by a convex surrogate Lϕ, so that the function
Jn,ϕ = 1

n

∑n
i=1 Lϕ(x, di) convex in x.

• In the end, the problem to be solved, when a cnvex enlty term is
incorporated, is

min
x∈X

Jn,ϕ(x) + λP(x). (1.1.3)

In the remaining of the course, the focus is on that last point: how to solve
the convex minimization problem (1.1.3) ?

1.2 General formulation of the problem

In this course, we only consider optimization problems which are defined on
a finite dimension space X = Rn. These problems can be written, without
loss of generality, as follows:

min
x∈X

f(x)

s.t . (such that / under constraint that)
gi(x) ≤ 0 for 1 ≤ i ≤ p, Fi(x) = 0 for 1 ≤ i ≤ m.

(1.2.1)

The function f is the target function (or target),
the vector

C(x) = (g1(x), . . . , gp(x), F1(x), . . . , Fm(x))

is the (functional) constraint vector.
The region

K = {x ∈ X : gi(x) ≤ 0, 1 ≤ i ≤ p, Fi(x) = 0, 1 ≤ i ≤ m }

is the set of feasible points.
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• If K = Rn, this is an unconstrained optimization problem.

• Problems where p ≥ 1 and m = 0, are referred to as inequality con-
trained optimization problems.

• If p = 0 and m ≥ 1, we speak of equality contrained optimization.

• When f and the contraints are regular (differentiable), the problem is
called differentiable or smooth.

• If f or the contraints are not regular, the problem is called non-
differentiable or non-smooth.

• If f and the contraints are convex, we have a convex optimization
problem (more details later).

Solving the general problem (1.2.1) consists in finding

• a minimizer x∗ ∈ arg minK f (if it exists, i.e. if arg minK f 6= ∅),

• the value f(x∗) = minx∈K f(x),

We can rewrite the constrained problem as an unconstrained problem, thanks
to the infinite indicator function I introduced earlier. Let’s name g and (resp)
F the vectors of the inequality and (resp) equality contraints.
For x, y ∈ Rn, we write x � y if (x1 ≤ y1, . . . , xn ≤ yn) and x 6� y otherwise.
The problem (1.2.1) is equivalent to :

min
x∈E

f(x) + Ig�0,F=0(x) (1.2.2)

Let’s notice that, even if the initial problem is smooth, the new problem isn’t
anymore !

1.3 Algorithms

Approximated solutions Most of the time, equation (1.2.1) cannot be
analytically solved. However, numerical algorithms can provide an approx-
imate solution. Finding an ε-approximate solution (ε-solution) consists in
finding x̂ ∈ K such that, if the “true” minimum x∗ exists, we have

• ‖x̂− x∗‖ ≤ ε ,
and/or

• |f(x̂)− f(x∗)| ≤ ε.
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“Black box” model A standard framework for optimization is the black
box. That is, we want to optimize a function in a situation where:

• The target f is not entirely accessible (otherwise the problem would
already be solved !)

• The algorithm does not have any access to f (and to the constraints),
except by successive calls to an oracle O(x).
Typically, O(x) = f(x) (0-order oracle) or O(x) = (f(x),∇f(x)) (1-
order oracle), or O(x) can evaluate higher derivative of f (≥ 2-order
oracle).

• At iteration k, the algorithm only has the informationO(x1), . . . ,O(xk)
as a basis to compute the next point xk+1.

• The algorithm stops at time k if a criterion Tε(xk) is satisfied: the
latter ensures that xk is an ε-solution.

Performance of an algorithm Performance is measured in terms of com-
puting resources needed to obtain an approximate solution.
This obviously depends on the considered problem. A class of problems
is:

• A class of target functions (regularity conditions, convexity or other)

• A condition on the starting point x0 (for example, ‖x− x0‖ ≤ R)

• An oracle.

Definition 1.3.1 (oracle complexity). The oracle complexity of an algo-
rithm A, for a class of problems C and a given precision ε, is the minimal
number NA(ε) such that, for all objective functions and any initial point
(f, x0) ∈ C, we have:

NA(f, ε) ≤ NA(ε)

where : NA(f, ε) is the number of calls to the oracle that are needed for A
to give an ε-solution.
The oracle complexity, as defined here, is a worst-case complexity. The
computation time depends on the oracle complexity, but also on the number
of required arithmetical operations at each call to the oracle. The total
number of arithmetic operations to achieve an ε-solution in the worst case,
is called arithmetic complexity. In practice, it is the arithmetic complexity
which determines the computation time, but it is easier to prove bounds on
the oracle complexity .
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1.4 Preview of the rest of the course

A natural idea to solve general problem (1.2.1) is to start from an arbitrary
point x0 and to propose the next point x1 in a region where f “has a good
chance” to be smaller.
If f is differentiable, one widely used method is to follow “the line of greatest
slope”, i.e. move in the direction given by −∇f .
What’s more, if there is a local minimum x∗, we then have ∇f(x∗) = 0. So
a similar idea to the previous one is to set the gradient equal to zero.
Here we have made implicit assumptions of regularity, but in practice some
problems can arise.

• Under which assumptions is the necessary condition ‘∇f(x) = 0’ suf-
ficient for x to be a local minimum?

• Under which assumptions is a local minimum a global one?

• What if f is not differentiable ?

• How should we proceed when E is a high-dimensional space?

• What if the new point x1 leaves the admissible region K?

The appropriate framework to answer the first two questions is convex analy-
sis. The lack of differentiability can be bypassed by introducing the concept
of subdifferential. Duality methods solve a problem related to ( (1.2.1)),
called dual problem. The dual problem can often be easier to solve (ex: if it
belongs to a space of smaller dimension). Typically, once the dual solution is
known, the primal problem can be written as a unconstrained problem that
is easier to solve than the initial one. For example, proximal methods can
be used to solve constrained problems.

To go further . . .
A panorama in Boyd and Vandenberghe (2009), chapter 4, more rigor in
Nesterov (2004)’s introduction chapter (easy to read !).
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Chapter 2

Elements of convex analysis

Throughout this course, the functions of interest are defined on a subset of
X = Rn. More generally, we work in an Euclidian space E, endowed with a
scalar product denoted by 〈 · , · 〉 and an associated norm ‖ · ‖. In practice,
the typical setting is E = X × R.
Notations: For convenience, the same notation is used for the scalar prod-
uct in X and in E. If a ≤ b ∈ R ∪ {−∞,+∞}, (a, b] is an interval open at
a, closed at b, with similar meanings for [a, b), (a, b) and [a, b].

N.B The proposed exercises include basic properties for you to demon-
strate. You are strongly encouraged to do so ! The exercises marked with ∗

are less essential.

2.1 Convexity

Definition 2.1.1 (Convex set). A set K ⊂ E is convex if

∀(x, y) ∈ K2, ∀t ∈ [0, 1], t x+ (1− t) y ∈ K.

Exercise 2.1.1.

1. Show that a ball, a vector subspace or an affine subspace of Rn are
convex.

2. Show that any intersection of convex sets is convex.

In constrained optimization problems, it is useful to define cost functions
with value +∞ outside the admissible region. For all f : X → [−∞,+∞], the
domain of f , denoted by dom(f), is the set of points x such that f(x) < +∞.
A function f is called proper if dom(f) 6= ∅ (i.e f 6≡ +∞) and if f never
takes the value −∞.
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Definition 2.1.2. Let f : X → [−∞,+∞]. The epigraph of f , denoted by
epi f , is the subset of X × R defined by:

epi f = {(x, t) ∈ X × R : t ≥ f(x) }.

Beware : the “ordinates” of points in the epigraph always lie in (−∞,∞), by
definition.

Definition 2.1.3 (Convex function). f : X → [−∞,+∞] is convex if its
epigraph is convex.

Exercise 2.1.2. Show that:

1. If f is convex then dom(f) is convex.

2. If f1, f2 are convex and a, b ∈ R+, then af1 + bf2 is convex.

3. If f is convex and x, y ∈ dom f , for all t ≥ 1, zt = x+ t(y−x) satisfies
f(z) ≤ f(x) + t(f(y)− f(x).

4. If f is convex, proper, with dom f = X , and if f is bounded, then f is
constant.

Proposition 2.1.1. A function f : X → [−∞,+∞] is convex if and only if

∀(x, y) ∈ dom(f)2, ∀t ∈ (0, 1), f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Proof. Assume that f satisfies the inequality. Let (x, u) and (y, v) be two
points of the epigraph : u ≥ f(x) and v ≥ f(y). In particular, (x, y) ∈
dom(f)2. Let t ∈]0, 1[. The inequality implies that f(tx + (1 − t)y) ≤
tu+ (1− t)v. Thus, t(x, u) + (1− t)(y, v) ∈ epi(f), which proves that epi(f)
is convex.
Conversely, assume that epi(f) is convex. Let (x, y) ∈ dom(f)2. For (x, u)
and (y, v) two points in epi(f), and t ∈ [0, 1], the point t(x, u) + (1− t)(y, v)
belongs to epi(f). So, f(t(x+ (1− t)y) ≤ tu+ (1− t)v.

• If f(x) et f(y) are > −∞, we can choose u = f(x) and v = f(y),
which demonstrates the inequality.

• If f(x) = −∞, we can choose u arbitrary close to −∞.Letting u go
to −∞, we obtain f(t(x + (1 − t)y) = −∞, which demonstrates here
again the inequality we wanted to prove.

Exercise 2.1.3. *
Let f be a convex function and x, y in dom f , t ∈ (0, 1) and z = tx + (1 −
t)y. Assume that the three points (x, f(x)), (z, f(z) and (y, f(y) are aligned.
Show that for all u ∈ (0, 1), f(ux+ (1− u) y) = u f(x) + (1− u) f(y).
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In the following, the upper hull of a family (fi)i∈I of convex functions will
play a key role. By definition, the upper hull of the family is the function
x 7→ supi fi(x).

Proposition 2.1.2. Let (fi)i∈I be a family of convex functions X → [−∞,+∞],
with I any set of indices. Then the upper hull of the family (fi)i∈I is
convex.

Proof. Let f = supi∈I fi be the upper hull of the family.

(a) epif =
⋂
i∈I epi fi. Indeed,

(x, t) ∈ epi f ⇔ ∀i ∈ I, t ≥ fi(x)⇔ ∀i ∈ I, (x, t) ∈ epi fi ⇔ (x, t) ∈ ∩i epi fi.

(b) Any intersection of convex sets K = ∩i∈IKi is convex (exercice 2.1.1)

(a) and (b) show that epi f is convex, i.e. that f is convex.

2.2 Separation, subdifferential

Separation theorems stated in this section are easily proved in finite dimen-
sion, using the existence of the “orthogonal projection” of a point x onto a
closed convex set, which is stated below.

Proposition 2.2.1 (Projection). Let C ⊂ E be a convex, closed set, and let
x ∈ E.

1. There is a unique point in C, denoted by PC(x), such that

for all y ∈ C, ‖y − x‖ ≥ ‖PC(x)− x‖.

The point PC(x) satisfies :

2. ∀y ∈ C, 〈y − PC(x), x− PC(x)〉 ≤ 0.

3. ∀(x, y) ∈ E2, ‖PC(y)− PC(x)‖ ≤ ‖y − x‖.

The point PC(x) is called projection of x on C.

Proof.
1. Let dC(x) = infy∈C ‖y−x‖. There exists a sequence (yn)n in C such that
‖yn−x‖ → dC(x). The sequence is bounded, so extract a subsequence which
converges to y0. By continuity of y 7→ ‖y − x‖, we have ‖y0 − x‖ = dC(x),
as required.
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To prove unicity, consider a point z ∈ C such that ‖z − x‖ = dC(x). By
convexity of C, w = (y0 + z)/2 ∈ C, so ‖w − x‖ ≥ dC(x). According to the
parallelogram identity 1,

4dC(x)2 = 2‖y0 − x‖2 + 2‖z − x‖2

= ‖y0 + z − 2x‖2 + ‖y0 − z‖2

= 4‖w − x‖2 + ‖y0 − z‖2

≥ 4dC(x) + ‖y0 − z‖2.

Thus, ‖y0 − z‖ = 0 and y0 = z.

2. Let p = PC(x) and let y ∈ C. For ε ∈ [0, 1], let zε = p + ε(y − p). By
convexity, zε ∈ C. Consider the function ’squared distance from x’:

ϕ(ε) = ‖zε − x‖2 = ‖ε(y − p) + p− x‖2.

For 0 < ε ≤ 1, ϕ(ε) ≥ dC(x)2 = ϕ(0). Furthermore, for ε sufficiently close
to zero,

ϕ(ε) = dC(x)2 − 2ε 〈y − p, x− p〉+ o(ε),

whence ϕ′(0) = −2 〈y − p, x− p〉. In the case ϕ′(0) < 0, we would have, for
ε close to 0, ϕ(ε) < ϕ(0) = dC(x), which is impossible. So ϕ′(0) ≥ 0 and the
result follows.

3. Adding the inequalities

〈PC(y)− PC(x), x− PC(x)〉 ≤ 0 , et
〈PC(x)− PC(y), y − PC(y)〉 ≤ 0 ,

yields 〈PC(y)− PC(x), y − x〉 ≥ ‖PC(x) − PC(y)‖2. The conclusion follows
using Cauchy-Schwarz inequality.

The existence of a projection allows to explicitly obtain the “separating hy-
perplanes”. First, let’s give two definitions, illustrated in figure 2.1.

Definition 2.2.1 (strong separation, proper separation). Let A,B ⊂ E, and
H an affine hyperplane, H = {x ∈ E : 〈x,w〉 = α}, where w 6= 0.

• H properly separates A et B if,

∀x ∈ A, 〈w, x〉 ≤ α , and
∀x ∈ B, 〈w, x〉 ≥ α.

• H strongly separates A et B if, for some δ > 0,

∀x ∈ A, 〈w, x〉 ≤ α− δ , et
∀x ∈ B, 〈w, x〉 ≥ α+ δ ,
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Figure 2.1: séparation stricte de A et B par H1 , au sens faible par H2.

The following theorem is one of the two major results of this section (with
the existence of a supporting hyperplane). It is the direct consequence of
the proposition 2.2.1.

Theorem 2.2.1 (Strong separation closed convex point). Let C ⊂ E convex,
closed, and let x /∈ C. Then, there is an affine hyperplane which strongly
separates x and C.

Proof. Let p = pC(x), w = x − p. For y ∈ C, according to the proposi-
tion 2.2.1, 2., we have 〈w, y − p〉 ≤ 0, i.e

∀y ∈ C, 〈w, y〉 ≤ 〈p, w〉 .

Furhter, 〈w, x− p〉 = ‖w‖2 > 0, so that

〈w, x〉 = 〈w, p〉+ ‖w‖2.

Now, define δ = ‖w‖2/2 > 0 and α = 〈p, w〉 + δ, so that the inequality
defining strong separation is satisfied.

An immediate consequence, which will be repeatedly used thereafter :

Corollary 2.2.1 (Consequence of the strong separation). Let C ⊂ E be
convex, closed. And let x0 /∈ C. Then there is w ∈ E, such that

∀y ∈ C, 〈w, y〉 < 〈w, x0〉

In the following, we denote by cl(A) the closure of a set A and by int(A) its
interior.The following lemma is easily proved:

Lemma 2.2.1. If A is convex, then cl(A) and int(A) are convex.

Exercise 2.2.1. Show the lemma 2.2.1.
Hint: construct two sequences in A converging towards two points of the
closure of A; Envelop two points of its interior inside two balls.

The second major result is the following :
12‖a‖2 + 2‖b‖2 = ‖a+ b‖2 + ‖a− b‖2.
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Theorem 2.2.2 (supporting hyperplane). Let C ⊂ E be a convex set and
let x0 be a point of its boundary, x0 ∈ ∂(C) = cl(C) \ int(C). There is an
affine hyperplane that properly separates x0 and C, i.e.,

∃w ∈ E : ∀y ∈ C, 〈w, y〉 ≤ 〈w, x0〉 .

Proof. Let C and x0 as in the statement.
There is a sequence (xn) with xn ∈

(
cl(C)

)c and xn → x0, otherwise there
would be a ball included in C that would contain x0, and x0 would be in
int(C). Each xn can be strongly separated from cl(C), according to the
theorem 2.2.1. Furthermore, corollary 2.2.1 implies :

∀n, ∃wn ∈ E : ∀y ∈ C, 〈wn, y〉 < 〈wn, xn〉

In particular, each wn is non-zero, so that the corresponding unit vector
un = wn/‖wn‖ is well defined. We get:

∀n, ∀y ∈ C, 〈un, y〉 < 〈un, xn〉 . (2.2.1)

Since the sequence (un) is bounded, we can extract a subsequence (ukn)n
that converges to some u ∈ E. Since each un belongs to the unit sphere,
which is closed, so does the limit u, so u 6= 0. By passage to the limit in
(2.2.1) (for y fixed), and using the linearity of scalar product, we get:

∀y ∈ C, 〈u, y〉 ≤ 〈u, x0〉

Remark 2.2.1. In infinite dimension, theorems 2.2.1 and 2.2.2 remain valid
if E is a Hilbert space (or even a Banach space). This is the “Hahn-Banach
theorem”, the proof of which may be found, for example, within the first few
pages of Brezis (1987)

As a consequence (proposition 2.2.2) of the theorem 2.2.2, the following
definition is ‘non-empty’:

Definition 2.2.2 (Subdiffential). Let f : X → [−∞,+∞] and x ∈ dom(f).
A vector φ ∈ X is called a subgradient of f at x if:

∀y ∈ X , f(y)− f(x) ≥ 〈φ, y − x〉 .

The subdifferential of f in x, denoted by ∂f(x), is the whole set of the
subgradients of f at x. By convention, ∂f(x) = ∅ if x /∈ dom(f).

Interest: Gradient methods in optimization can still be used in the non-
differentiable case, choosing a subgradient in the subdifferential.
In order to clarify in what cases the subdifferential is non-empty, we need
two more definitions:
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Definition 2.2.3. A set A ⊂ X is called an affine space if, for all (x, y) ∈
A2 and for all t ∈ R, x + t(y − x) ∈ A. The affine hull A(C) of a set
C ⊂ X is the smallest affine space that contains C.

Definition 2.2.4. Let C ⊂ E. The topology relative to C is a topology
on A(C). The open sets in this topology are the sets of the kind {V ∩A(C)},
where V is open in E.

Definition 2.2.5. Let C ⊂ X . The relative interior of C, denoted by
relint(C), is the interior of C for the topology relative to C. In other words,
it consists of the points x that admit a neighborhood V , open in E, such that
V ∩ A(C) ⊂ C.

Clearly, int(C) ⊂ relint(C). What’s more, if C is convex, relint(C) 6= ∅.
Indeed :

• if C is reduced to a singleton {x0}, then relint{x0} = {x0}. ( A(C) =
{x0} and for an open set U ⊂ X , such that x0 ⊂ U , we indeed have
x0 ∈ U ∩ {x0}) ;

• if C contains at least two points x, y, then any other point within the
open segment {x+ t(y − x), t ∈ (0, 1)} is in A(C).

Proposition 2.2.2. Let f : X → [−∞,+∞] be a convex function and x ∈
relint(dom f). Then ∂f(x) is non-empty.

Proof. Let x0 ∈ relint(dom f). We assume that f(x0) > −∞ (otherwise the
proof is trivial). We may restrict ourselves to the case x0 = 0 and f(x0) = 0
(up to replacing f by the function x 7→ f(x+ x0)− f(x0)).
In this case, for all vector φ ∈ X ,

φ ∈ ∂f(0) ⇔ ∀x ∈ dom f, 〈φ, x〉 ≤ f(x) .

Let A = A(dom f). A contains the origin, so it is an Euclidean vector space.
Let C be the closure of epi f ∩ (A × R). The set C is a convex closed
set in A × R, which is endowed with the scalar product 〈(x, u), (x′, u′)〉 =
〈x, x′〉+ uu′.
The pair (0, 0) = (x0, f(x0)) belongs to the boundary of C, so that theo-
rem 2.2.2 applies in A × R : There is a vector w ∈ A × R, w 6= 0, such
that

∀z ∈ C, 〈w, z〉 ≤ 0

Write w = (φ, u) ∈ A× R. For z = (x, t) ∈ C, we have

〈φ, x〉+ u t ≤ 0.

Let x ∈ dom(f). In particular f(x) < ∞ and for all t ≥ f(x), (x, t) ∈ C.
Thus,

∀x ∈ dom(f), ∀t ≥ f(x), 〈φ, x〉+ u t ≤ 0. (2.2.2)
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Letting t tend to +∞, we obtain u ≤ 0.
Let us proove by contradiction that u < 0. Suppose not (i.e. u = 0). Then
〈φ, x〉 ≤ 0 for all x ∈ dom(f). As 0 ∈ relint dom(f), there is a set Ṽ , open
in A, such that 0 ∈ Ṽ ⊂ dom f . Thus for x ∈ A, there is an ε > 0 such that
εx ∈ Ṽ ⊂ dom(f). According to (2.2.2), 〈φ, εx〉 ≤ 0, so 〈φ, x〉 ≤ 0. Similarly,
〈φ,−x〉 ≤ 0. Therefore, 〈φ, x〉 ≡ 0 on A. Since φ ∈ A, φ = 0 as well. Finally
w = 0, which is a contradiction.
As a result, u < 0. Dividing inequality (2.2.2) by −u, and taking t = f(x),
we get

∀x ∈ dom(f), ∀t ≥ f(x),
〈−1

u
φ, x

〉
≤ f(x) .

So −1
u φ ∈ ∂f(0).

Remark 2.2.2 (the question of −∞ values).
If f : X → [−∞,+∞] is convex and if relint dom f contains a point x such
that f(x) > −∞, then f never takes the value −∞. So f is proper.

Exercise 2.2.2. Show this point, using proposition 2.2.2.

When f is differentiable at x ∈ dom f , we denote by ∇f(x) its gradient at x.
The link between differentiation and subdifferential is given by the following
proposition :

Proposition 2.2.3. Let f : X → (−∞,∞] be a convex function, differen-
tiable in x. Then ∂f(x) = {∇f(x)}.

Proof. If f is differentiable at x, the point x necessarily belongs to int
(
dom(f)

)
.

Let φ ∈ ∂f(x) and t 6= 0. Then for all y ∈ dom(f), f(y)− f(x) ≥ 〈φ, y − x〉.
Applying this inequality to y = x+ t(φ−∇f(x)) (which belongs to dom(f)
for t small enough) leads to :

f (x+ t(φ−∇f(x)))− f(x)

t
≥ 〈φ, φ−∇f(x)〉 .

The left term converges to 〈∇f(x), φ−∇f(x)〉. Finally,

〈∇f(x)− φ, φ−∇f(x)〉 ≥ 0,

i.e. φ = ∇f(x).

Example 2.2.1. The absolute-value function x 7→ |x| defined on R → R
admits as a subdifferential the sign application, defined by :

sign(x) =


{1} si x > 0
[−1, 1] si x = 0
{−1} si x < 0 .
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Exercise 2.2.3. Determine the subdifferentials of the following functions,
at the considered points :

1. In X = R, f(x) = I[0,1], at x = 0, x = 1 and 0 < x < 1.

2. In X = R2, f(x) = IB(0,1) (closed Euclidian ball), at ‖x‖ < 1, ‖x‖ = 1.

3. In X = R2, f(x1, x2) = Ix1<0, at x such that x1 = 0, x1 < 0.

4. X = R,

f(x) =

{
+∞ si x < 0

−
√
x si x ≥

at x = 0, and x > 0.

5. X = Rn, f(x) = ‖x‖, determine ∂f(x), for any x ∈ Rn.

6. X = R, f(x) = x3. Show that ∂f(x) = ∅, ∀x ∈ R. Explain this result.

7. X = Rn, C = {y : ‖y‖ ≤ 1}, f(x) = IC(x). Give the subdifferential of
f at x such that ‖x‖ < 1 and at x such that ‖x‖ = 1.

Hint: For ‖x‖ = 1:

• Show that ∂f(x) = {φ : ∀y ∈ C, 〈φ, y − x〉 ≤ 0.

• Show that x ∈ ∂f(x) using Cauchy-Schwarz inequality. Deduce
that the cone R+x = {t x : t ≥ 0} ⊂ ∂f(x).

• To show the converse inclusion : Fix φ ∈ ∂f and pick u ∈ {x}⊥
(i.e., u s.t. 〈u, x〉 = 0). Consider the sequence yn = ‖x +
tnu‖−1(x + tnu), for some sequence (tn)n, tn > 0, tn → 0. What
is the limit of yn ?

Consider now un = t−1
n (yn − x). What is the limit of un ? Con-

clude about the sign of 〈φ, u〉.

Do the same with −u, conclude about 〈φ, u〉. Conclude.

8. Let f : R→ R, differentiable. Show that: f is convex, if and only if

∀(x, y) ∈ R2, 〈∇f(y)−∇f(x), y − x〉 ≥ 0.

2.3 Fermat’s rule, optimality conditions.

A point x is called a minimizer of f if f(x) ≤ f(y) for all y ∈ X . The set
of minimizers of f is denoted arg min(f).

Proposition 2.3.1 ( Fermat’s rule ). x ∈ arg min f ⇔ 0 ∈ ∂f(x).
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Proof.

x ∈ arg min f ⇔ ∀y, f(y) ≥ f(x) + 〈0, y − x〉 ⇔ 0 ∈ arg min f.

Recall that, in the differentiable, non convex case, a necessary condition
(not a sufficient one) for x̄ to be a local minimizer of f , is that ∇f(x̄) =
0. Convexity allows handling non differentiable functions, and turns the
necessary condition into a sufficient one.
Besides, local minima for any function f are not necessarily global ones. In
the convex case, everything works fine:

Proposition 2.3.2. Let x be a local minimum of a convex function f . Then,
x is a global minimizer.

Proof. The local minimality assumption means that there exists an open ball
V ⊂ X , such that x ∈ V and that, for all u ∈ V , f(x) ≤ f(u).
Let y ∈ X and t such that u = x+ t(y− x) ∈ V . Then using convexity of f ,
f(u) ≤ tf(y) + (1− t)f(x). Re-organizing, we get

f(y) ≥ t−1
(
f(u)− (1− t)f(x)

)
≥ f(x).
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Chapter 3

Fenchel-Legendre
transformation, Fenchel
Duality

We introduce now the second basic tool of convex analysis (after sub-differentials),
especially useful for duality approaches: the Fenchel-Legendre transform.
One precision on notations before proceeding: If f is any mapping X → Y,
and A ⊂ X , write f(A) = {f(x), x ∈ A}.

3.1 Fenchel-Legendre Conjugate

Definition 3.1.1. Let f : X → [−∞,+∞] . The Fenchel-Legendre con-
jugate of f is the function f∗ : X → [−∞,∞], defined by

f∗(φ) = sup
x∈X
〈φ, x〉 − f(x) , φ ∈ X .

= sup 〈φ,X〉 − f(X )

Notice that
f∗(0) = − inf f(X ).

Figure provides a graphical representation of f∗. You should get the intu-
ition that, in the differentiable case, if the maximum is attained in the defini-
tion of f∗ at point x0, then φ = ∇f(x0), and f∗(φ) = 〈∇f(x0), x0〉 − f(x0).
This intuition will be proved correct in proposition 3.2.3.
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Figure 3.1: Fenchel Legendre transform of a smooth function f . The max-
imum positive difference between the line with slope tan(φ) and the graph
Cf of f is reached at x0.

Exercise 3.1.1.
Prove the following statements.
General hint : If hφ : x 7→ 〈φ, x〉 − f(x) reaches a maximum at x∗, then
f∗(φ) = hφ(x∗). Furthermore, hφ is concave (if f is convex). If hφ is differ-
entiable, it is enough to find a zero of its gradient to obtain a maximum.
Indeed, x ∈ arg min(−hφ) ⇔ 0 ∈ ∂(−hφ), and, if −hφ is differentiable,
∂(−hφ) = {−∇hφ}.

1. If X = R and f is a quadratic function ( of the kind f(x) = (x−a)2+b),
then f∗ is also quadratic.

2. In Rn, let A by a symmetric, definite positive matrix and f(x) =
〈x,Ax〉 (a quadratic function). Show that f∗ is also quadratic.

3. f : X → [−∞,+∞]. Show that f = f∗ ⇔ f(x) = 1
2‖x‖

2.

Hint: For the ‘if’ part : show first that f(φ) ≥ 〈φ, φ〉 − f(φ).

Then, show that f(φ) ≤ supx 〈φ, x〉 − 1
2‖x‖

2. Conclude.

4. X = R,

f(x) =

{
1/x if x > 0;

+∞ otherwise .

then,

f∗(φ) =

{
−2
√
−φ if φ ≤ 0;

+∞ otherwise .
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5. X = R, f(x) = exp(x), then

f∗(φ) =


φ ln(φ)− φ if φ > 0;

0 if φ = 0;

+∞ if φ < 0.

Notice that, if f(x) = −∞ for some x, then f∗ ≡ +∞.
Nonetheless, under ‘reasonable’ conditions on f , the Legendre transform
enjoys nice properties, and even f can be recovered from f∗ (through the
equality f = f∗∗, see proposition 3.2.5. This is the starting point of dual
approaches. To make this precise, we need a to introduce a weakened notion
of continuity: semi-continuity, which allows to use separation theorems.

3.2 Lower semi-continuity

Definition 3.2.1 (Reminder : lim inf : limit inferior).
The limit inferior of a sequence (un)n∈N, where un ∈ [−∞,∞], is

lim inf(un) = sup
n≥0

(
inf
k≥n

uk

)
.

Since the sequence Vn = infk≥n uk is non decreasing, an equivalent definition
is

lim inf(un) = lim
n→∞

(
inf
k≥n

uk

)
.

Definition 3.2.2 (Lower semicontinuous function). A function f : X →
[−∞,∞] is called lower semicontinuous (l.s.c.) at x ∈ X if For all
sequence (xn) which converges to x,

lim inf f(xn) ≥ f(x).

The function f is said to be lower semicontinuous, if it is l.s.c. at x, for
all x ∈ X .

The interest of l.s.c. functions becomes clear in the next result

Proposition 3.2.1 (epigraphical characterization). Let f : X → [−∞,+∞],
any function
f is l.s.c. if and only if its epigraph is closed.

Proof. If f is l.s.c., and if (xn, tn) ∈ epi f → (x̄, t̄), then, ∀n, tn ≥ f(xn).
Consequently,

t̄ = lim inf tn ≥ lim inf f(xn) ≥ f(x̄).

Thus, (x̄, t̄) ∈ epi f , and epi f is closed.
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Conversely, if f is not l.s.c., there exists an x ∈ X , and a sequence (xn)→ x,
such that f(x) > lim inf f(xn), i.e., there is an ε > 0 such that ∀n ≥ 0,
infk≥n f(xk) ≤ f(x) − ε. Thus, for all n, ∃kn ≥ kn−1, f(xkn) ≤ f(x) − ε.
We have built a sequence (wn) = (xkn , f(x)− ε), each term of which belongs
to epi f , and which converges to a limit w̄ = (f(x)− ε) which is outside the
epigraph. Consequently, epi f is not closed.

There is a great variety of characterizations of l.s.c. functions, one of them
is given in the following exercise.

Exercise 3.2.1. Show that a function f is l.s.c. if and only if its level sets :

L≤α = {x ∈ X : f(x) ≤ α}

are closed.
(see, e.g., Rockafellar et al. (1998), theorem 1.6.)

One nice property of the family of l.s.c. functions is its stability with respect
to point-wise suprema

Lemma 3.2.1. Let (fi)i∈I a family of l.s.c. functions. Then, the upper hull
f = supi∈I fi is l.s.c.

Proof. Let Ci denote the epigraph of fi and C = epi f . As already shown
(proof of proposition 2.1.2), C = ∩i∈ICi. Each Ci is closed, and any inter-
section of closed sets is closed, so C is closed and f is l.s.c.

In view of proposition 3.2.1, separations theorem can be applied to the epi-
graph of a l.s.c. function f . The next result shows that it will also be feasible
with the epigraph of f∗.

Proposition 3.2.2 (Properties of f∗).
Let f : X → [−∞,+∞] be any function.

1. f∗ is always convex, and l.s.c.

2. If dom f 6= ∅, then −∞ /∈ f∗(X )

3. If f is convex and proper, then f∗ is convex, l.s.c., proper.

Proof.

1. Fix x ∈ X and consider the function hx : φ 7→ 〈φ, x〉 − f(x). From
the definition, f∗ = supx∈X hx. Each hx is affine, whence convex.
Using proposition 2.1.2, f∗ is also convex. Furthermore, each hx is
continuous, whence l.s.c, so that its epigraph is closed. Lemma 3.2.1
thus shows that f∗ is l.s.c.
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2. From the hypothesis, there is an x0 in dom f . Let φ ∈ X . The result
is immediate:

f∗(φ) ≥ hx0(φ) = f(x0)− 〈φ, x0〉 > −∞.

3. In view of points 1. and 2., it only remains to show that f∗ 6≡ +∞.
Let x0 ∈ relint(dom f). According to proposition 2.2.2, there exists a
subgradient φ0 of f at x0. Moreover, since f is proper, f(x0) < ∞.
From the definition of a subgradient,

∀x ∈ dom f, 〈φ0, x− x0〉 ≤ f(x)− f(x0).

Whence, for all x ∈ X ,

〈φ0, x〉 − f(x) ≤ 〈φ0, x0〉 − f(x0),

thus, supx 〈φ0, x〉 − f(x) ≤ 〈φ0, x0〉 − f(x0) < +∞.

Therefore, f∗(φ0) < +∞.

Proposition 3.2.3 (Fenchel - Young). Let f : X → [−∞,∞]. For all
(x, φ) ∈ X 2, the following inequality holds:

f(x) + f∗(φ) ≥ 〈φ, x〉 ,

With equality if and only if φ ∈ ∂f(x).

Proof. The inequality is an immediate consequence of the definition of f∗.
The condition for equality to hold (i.e., for the converse inequality to be
valid), is obtained with the equivalence

f(x) + f∗(φ) ≤ 〈φ, x〉 ⇔ ∀y, f(x) + 〈φ, y〉 − f(y) ≤ 〈φ, x〉 ⇔ φ ∈ ∂f(x) .

An affine minorant of a function f is any affine function h : X → R, such
that h ≤ f on X . Denote AM(f) the set of affine minorants of function f .
One key result of dual approaches is encapsulated in the next result: under
regularity conditions, if the affine minorants of f are given, then f is entirely
determined !

Proposition 3.2.4 (duality, episode 0). Let f : X → (−∞,∞] a convex,
l.s.c., proper function. Then f is the upper hull of its affine minorants.
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Proof. For any function f , denote Ef the upper hull of its affine minorants,
Ef = suph∈AM(f) h. For φ ∈ X and b ∈ R, denote hφ,b the affine function
x 7→ 〈φ, x〉+ b. With these notations,

Ef (x) = sup{〈φ, x〉 − b : hφ,b ∈ AM(f)}.

Clearly, Ef ≤ f .
To show the converse inequality, we proceed in two steps. First, we assume
that f is non negative. The second step consists in finding a ‘change of basis’
under which f is replaced with non negative function.

1. Case where f is non-negative, i.e. f(X ) ⊂ [0,∞]) :
Assume the existence of some x0 ∈ X , such that t0 = Ef (x0) < f(x0) to
come up with a contradiction. The point (x0, t0) does not belong to the
convex closed set epi f . The strong separation theorem 2.2.1 provides a
vector w = (φ, b) ∈ X × R, and scalars α, b, such that

∀(x, t) ∈ epi f, 〈φ, x〉+ bt < α < 〈φ, x0〉+ bt0. (3.2.1)

In particular, the inequality holds for all x ∈ dom f , and for all t ≥ f(x).
Consequently, b ≤ 0 (as in the proof of proposition 2.2.2). Here, we cannot
conclude that b < 0 : if f(x0) = +∞, the hyperplane may be ‘vertical’.
However, using the non-negativity of f , if (x, t) ∈ epi f , then t ≥ 0, so that,
for all ε > 0, (b− ε) t ≤ b t. Thus, (3.2.1) implies

∀(x, t) ∈ epi f, 〈φ, x〉+ (b− ε)t < α.

Now, b− ε < 0 and, in particular, for x ∈ dom f , and t = f(x),

f(x) >
1

b− ε
(〈−φ, x〉+ α) := hε(x).

Thus, the function hε is an affine minorant of f . Since t0 ≥ hε(x0) (by
definition of t0),

t0 >
1

b− ε
(〈−φ, x0〉+ α),

i.e.
(b− ε)t0 ≤ 〈−φ, x0〉+ α

Letting ε go to zero yields

b t0 ≤ −〈φ, x0〉+ α

which contradicts (3.2.1)

2. General case. Since f is proper, its domain is non empty. Let x0 ∈
relint(dom f). According to proposition 2.2.2, ∂f(x0) 6= ∅. Let φ0 ∈ ∂f(x0).
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Using Fenchel-Young inequality, for all x ∈ X , ϕ(x) := f(x) + f∗(φ0) −
〈φ0, x〉 ≥ 0. The function ϕ is non negative, convex, l.s.c., proper ( because
equality in Fenchel-Young ensures that f∗(φ0) ∈ R). Part 1. applies :

∀x ∈ X , ϕ(x) = sup
(φ,b):hφ,b∈AM(ϕ)

〈φ, x〉+ b . (3.2.2)

Now, for (φ, b) ∈ X × R,

hφ,b ∈ AM(ϕ)⇔ ∀x ∈ X , 〈φ, x〉+ b ≤ f(x) + f∗(x0)− 〈φ0, x〉
⇔ ∀x ∈ X , 〈φ+ φ0, x〉+ b− f∗(x0) ≤ f(x)

⇔ hφ+φ0,b−f∗(x0) ∈ AM(f).

Thus, (3.2.2) writes as

∀x ∈ X , f(x) + f∗(φ0)− 〈φ0, x〉 = sup
(φ,b)∈Θ(f)

〈φ− φ0, x〉+ b+ f∗(x0) .

In other words, x ∈ X , f(x) = Ef (x).

The announced result comes next:

Definition 3.2.3 (Fenchel Legendre biconjugate). Let f : X → [−∞,∞],
any function. The biconjugate of f (under Fenchel-Legendre conjugation), is

f∗∗ : X → [−∞,∞]

x 7→ f∗(f∗(x)) = sup
φ∈X
〈φ, x〉 − f∗(φ).

Proposition 3.2.5 (Involution property, Fenchel-Moreau). If f is convex,
l.s.c., proper, then f = f∗∗.

Proof. Using proposition 3.2.4, it is enough to show that f∗∗(x) = Ef (x)

1. From Fenchel-Young, inequality, for all φ ∈ X , the function x 7→
hφ(x) = 〈φ, x〉 − f∗(φ) belongs to AM(f). Thus,

AM∗ = {hφ, φ ∈ X} ⊂ AM(f),

so that
f∗∗(x) = sup

h∈AM∗
h(x) ≤ sup

h∈AM(f)
h(x) = Ef (x).

2. Conversely, let hφ,b ∈ AM(f). Then, ∀x, 〈φ, x〉 − f(x) ≤ −b, so

f∗(φ) = sup
x
〈φ, x〉 − f(x) ≤ −b.

Thus,
∀x, 〈φ, x〉 − f∗(φ) ≥ 〈φ, x〉+ b = h(x).

In particular, f∗∗(x) ≥ h(x). Since this holds for all h ∈ AM(f), we
obtain

f∗∗(x) ≥ sup
h∈AM(f)

h(x) = Ef (x).
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One local condition to have f(x) = f∗∗(x) at some point x is the following.

Proposition 3.2.6. Let f : X → [−∞,∞] a convex function, and let x ∈
dom f .

If ∂f(x) 6= ∅, then f(x) = f∗∗(x).

Proof. Let λ ∈ ∂f(x). This is the condition for equality in Fenchel-Young
inequality (proposition 3.2.3), i.e.

f(x) + f∗(λ)− 〈λ, x〉 = 0 (3.2.3)

Consider the function hx(φ) = f∗(φ)− 〈φ, x〉. Equation (3.2.3) writes as

hx(λ) = −f(x).

The general case in Fenchel Young writes

∀φ ∈ X , hx(φ) ≥ −f(x) = hx(λ).

Thus, λ is a minimizer of hx,

λ ∈ arg min
φ∈X

hx(φ) = arg max
φ∈X

(−hx(φ))

In other words,

f(x) = −hx(λ) = sup
φ
−hx(φ) = sup

φ
〈φ, x〉 − f∗(φ) = f∗∗(x).

Exercise 3.2.2. Let f : X → (−∞,+∞] a proper, convex, l.s.c. function.
Show that

∂(f∗) = (∂f)−1

where, for φ ∈ X , (∂f)−1(φ) = {x ∈ X : φ ∈ ∂f(x)}.
Hint : Use Fenchel-Young inequality to show one inclusion, and the property
f = f∗∗ for the other one.

3.3 Fenchel duality**

This section may be skipped at first reading.
Dual approaches use the fact that, under ‘qualification assumptions’, the
optimal value of a primal problem is also that of a dual problem. In the
following definition, think of f as the objective function, whereas g summa-
rizes the constraints, e.g. g = Ig̃(x)≤0. For applications in optimization, it
is convenient to consider a linear transformation M : X → Y and let g be
defined on Y.
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Definition 3.3.1 (Fenchel duality : primal and dual problems).
Let f : E→ [−∞,∞], g : Y :→ [−∞,∞] two convex functions.
Let M : X → Y a linear operator and denote M∗ its adjoint, i.e. 〈y,M x〉 =
〈M∗y, x〉 , ∀(x, y) ∈ X × Y.
The primal value associated to f and g is

p = inf
x∈X

f(x) + g(M x).

A point x is called primal optimal if x ∈ arg minX (f + g).
The dual value of the problem is

d = sup
φ∈X

(−f∗(M∗φ)− g∗(−φ)) .

= − inf
φ∈X

(f∗(M∗φ) + g∗(−φ)) .

The dual gap is the difference

∆ = p− d

Proposition 3.3.1 (Dual gap). In the setting of definition 3.3.1, the dual
gap is always non negative,

p ≥ d

Proof. From Fenchel-Young inequality, for all x ∈ X and φ ∈ Y,

∀(x, φ) ∈ X × Y, f(x) + f∗(M∗φ) ≥ 〈x,M∗φ〉 ;

g(Mx) + g∗(−φ) ≥ −〈Mx,φ〉 .

Adding the two yields f(x) + g(Mx) ≥ −f∗(M∗φ) − g∗(−φ); taking the
infimum in the left-hand side and the supremum in the right-hand side gives
the result.

The interesting case is the zero-duality gap situation, when p = d, allowing
two solve the (hopefully easier) dual problem as an intermediate step to find
a primal solution.
Before proceeding, we need to define operations on ensembles

Definition 3.3.2 (addition and transformations of ensembles). Let A,B ⊂
X . The Minkowski sum and difference of A and B are the sets

A+B = {x ∈ X : ∃a ∈ A,∃b ∈ B, x = a+ b}
A−B = {x ∈ X : ∃a ∈ A,∃b ∈ B, x = a+ b}

Let Y another space and M any mapping from X to Y. Then MA is the
image of A by M ,

MA = {y ∈ Y : ∃a ∈ A, y = Ma}.
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Now, we can give a condition ensuring a zero-duality gap:

Theorem 3.3.1 (Fenchel-Rockafellar). In the setting of definition 3.3.1, if

0 ∈ relint(dom g −M dom f) , (3.3.1)

then p = d, i.e.

inf
x∈E

(
f(x) + g(M x)

)
= − inf

φ∈Y

(
f∗(M∗φ) + g∗(−φ)

)
. (3.3.2)

Besides, the dual value is attained as soon as it is finite.

Proof. Let p and d the primal and dual values. In view of proposition 3.3.1,
we only need to prove that p ≤ d.
Introduce the value function

ϑ(y) = inf
x∈X

(f(x) + g(Mx+ y)) . (3.3.3)

Notice that p = ϑ(0). Furthermore, for φ ∈ X ,

ϑ∗(−φ) = sup
u∈X
〈−φ, u〉 − ϑ(u)

= sup
u∈X
〈−φ, u〉 − inf

x∈X
f(x) + g(Mx+ u)

= sup
u∈X

sup
x∈X
〈−φ, u〉 − f(x)− g(Mx+ u)

= sup
x∈X

(
sup
u∈X
〈−φ,Mx+ u〉 − g(Mx+ u)

)
+ 〈φ,Mx〉 − f(x)

= sup
x∈X

(
sup
ũ∈X
〈−φ, ũ〉 − g(ũ)

)
+ 〈φ,Mx〉 − f(x)

= g∗(−φ) + f∗(M∗φ) (3.3.4)

We shall show later on, that ϑ is convex and that its domain is dom(g) −
M dom(f). Admit it temporarily. The qualification hypothesis (3.3.1), to-
gether with proposition 2.2.2, thus imply that ∂ϑ(0) is non empty. Let
λ ∈ ∂ϑ(0). Equality in Fenchel-Young writes : ϑ(0) + ϑ(λ) = 〈λ, 0〉 = 0.
Thus, we have

p = ϑ(0) = −ϑ∗(λ)

= −g∗(λ)− f∗(−M∗λ) from(3.3.4)

≤ sup
φ
−g∗(−φ)− f∗(M∗φ) = d

whence, p ≤ d and the proof is complete.
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convexity of ϑ: Let u, v ∈ dom(ϑ) and t ∈ (0, 1). We need to check
that ϑ(tu + (1 − t)v) ≤ tϑ(u) + (1 − t)ϑ(v). For any x̄ ∈ X , we have
ϑ(tu + (1 − t)v) ≤ f(x̄) + g(Mx̄ + tu + (1 − t)v). Pick (x, y) ∈ X 2 and fix
x̄ = tx+ (1− t)y. The latter inequality becomes

ϑ(tu+ (1− t)v) ≤ f(tx+ (1− t)y) + g
(
t(Mx+ u) + (1− t)(My + v)

)
≤ t
(
f(x) + g(Mx+ u)

)
+ (1− t)

(
f(y) + g(My + v)

)
.

Taking the infimum of the right hand side with respect to x and y concludes
the proof.

domain of ϑ There remains to check that dom(ϑ) = dom(g)−M dom(f).
It is enough to notice that

y ∈ dom(ϑ)⇔ ∃x ∈ dom f : g(Mx+ y) < +∞,

so that

y ∈ dom(ϑ)⇔ ∃x ∈ dom f : Mx+ y ∈ dom g

⇔ ∃x ∈ dom f, ∃u ∈ dom g : u = Mx+ y

⇔ ∃x ∈ dom f, ∃u ∈ dom g : u−Mx = y

⇔ y ∈ dom g −M dom f

3.4 Operations on subdifferentials

Until now, we have seen example of subdifferential computations on basic
functions, but we haven’t mentioned how to derive the subdifferentials of
more complex functions, such as sums or linear transforms of basic ones. A
basic fact from differential calculus is that, when all the terms are differen-
tiable, ∇(f + g) = ∇f +∇g. Also, if M is a linear operator, ∇(g ◦M)(x) =
M∗∇g(Mx). Under qualification assumptions, these properties are still valid
in the convex case, up to replacing the gradient by the subdifferential and
point-wise operations by set operations.

Proposition 3.4.1. Let f : X → (−∞,+∞], g : Y → (−∞,∞] two con-
vex functions and let M : X → Y a linear operator. If the qualification
condition (3.3.1) holds, then

∀x ∈ X , ∂(f + g ◦M)(x) = ∂f(x) +M∗∂g(Mx)

Proof. Let us show first that ∂f( · ) + M∗∂g(M · ) ⊂ ∂(f + g ◦M)( · ). Let
x ∈ X and φ ∈ ∂f(x) + M∗∂g ◦M(x), which means that φ = u + M∗v
where u ∈ ∂f(x) and v ∈ ∂g ◦ M(x). In particular, none of the latter
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subdifferentials is empty, which implies that x ∈ dom f and x ∈ dom(g ◦M).
By definition of u and v, for y ∈ X ,{

f(y)− f(x) ≥ 〈u, y − x〉
g(My)− g(Mx) ≥ 〈v,M(y − x)〉 = 〈M∗v, y − x〉 .

Adding the two inequalities,

(f + g ◦M)(y)− (f + g ◦M)(x) ≥ 〈φ, y − x〉 .

Thus, φ ∈ ∂(f + g ◦M)(x) and ∂f(x) +M∗∂g(Mx) ⊂ ∂(f + g ◦M)(x).

The proof of the converse inclusion requires to use Fenchel-Rockafellar the-
orem 3.3.1, and may be skipped at first reading.
Notice first that dom(f + g ◦M) = {x ∈ dom f : Mx ∈ dom g}. The latter
set is non empty: to see this, use assumption (3.3.1) : 0 ∈ dom g−M dom f ,
so that ∃ (y, x) ∈ dom g × dom f : 0 = y −Mx.
Thus, let x ∈ dom(f + g ◦M). Then x ∈ dom f and Mx ∈ dom g.
Assume φ ∈ ∂(f + g ◦M)(x). For y ∈ X ,

f(y) + g(My)− (f(x) + g(Mx)) ≥ 〈φ, y − x〉 ,

thus, x is a minimizer of the function ϕ : y 7→ f(y)−〈φ, y〉+g(My), which is
convex. Using Fenchel-Rockafellar theorem 3.3.1, where f − 〈φ, · 〉 replaces
f , the dual value is attained : there exists ψ ∈ Y, such that

f(x)− 〈φ, x〉+ g(Mx) = −(f − 〈φ, . 〉)∗(−M∗ψ)− g∗(ψ) .

It is easily verified that (f − 〈φ, · 〉)∗ = f∗( · + φ). Thus,

f(x)− 〈φ, x〉+ g(Mx) = −f∗(−M∗ψ + φ)− g∗(ψ) .

In other words,

f(x) + f(−M∗ψ + φ)− 〈φ, x〉+ g(Mx) + g∗(ψ) = 0 ,

so that

[f(x) + f(−M∗ψ + φ)− 〈−M∗ψ + φ, x〉]+[g(Mx) + g∗(ψ)− 〈ψ,Mx〉] = 0 .

Each of the terms within brackets is non negative (from Fenchel-Young in-
equality). Thus, both are null. Equality in Fenchel-Young implies that ψ ∈
∂g(Mx) and −M∗ψ+φ ∈ ∂f(x). This means that φ ∈ ∂f(x) +M∗∂g(Mx),
which concludes the proof.
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Chapter 4

Lagrangian duality

4.1 Lagrangian function, Lagrangian duality

In this chapter, we consider the convex optimization problem

minimize over Rn : f(x) + Ig(x)�0 . (4.1.1)

(i.e. minimize f(x) over Rn, under the constraint g(x) � 0),
where f : Rn → (−∞,∞] is a convex, proper function; g(x) = (g1(x), . . . , gp(x)),
and each gi : Rn → (−∞,+∞) is a convex function (1 ≤ i ≤ p). Here, we
do not allow g(x) ∈ {+∞,−∞}, for the sake of simplicity. This condition
may be replaced by a weaker one :

0 ∈ relint(dom f − ∩pi=1 dom gi, )

without altering the argument.

It is easily verified that under these conditions, the function x 7→ f(x) +
Ig(x)�0 is convex.

Definition 4.1.1 (primal value, primal optimal point). The primal value
associated to (4.1.1) is the infimum

p = inf
x∈Rn

f(x) + Ig(x)�0.

A point x∗ ∈ Rn is called primal optimal if

p = f(x∗) + Ig(x∗)�0.

Notice that, under our assumption, p ∈ [−∞,∞]. Also, there is no guarantee
about the existence of a primal optimal point, i.e. that the primal value be
attained.

Since (4.1.2) may be difficult to solve, it is useful to see this as an ‘inf sup’
problem, and solve a ‘sup inf’ problem instead (see definition 4.1.3 below).
To make this precise, we introduce the Lagrangian function.
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Definition 4.1.2. The Lagrangian function associated to problem (4.1.1)
is the function

L : Rn × R+p −→ [−∞,+∞]

(x, φ) 7→ f(x) + 〈φ, g(x)〉

(where R+p = {φ ∈ Rp, φ � 0}).

The link with the initial problem comes next:

Lemma 4.1.1 (constrained objective as a supremum). The constrained ob-
jective is the supremum (over φ) of the Lagrangian function,

∀x ∈ Rn, f(x) + Ig(x)�0 = sup
φ∈R+p

L(x, φ)

Proof. Distinguish the case g(x) � 0 and g(x) 6� 0.
(a) If g(x) 6� 0, ∃i ∈ {1, . . . , p} : gi(x) > 0. Choosing φt = tei (where
e = (e1, . . . , ep) is the canonical basis of Rp)), t ≥ 0, then limt→∞ L(x, φt) =
+∞, whence supφ∈R+p L(x, φ) = +∞. On the other hand, in such a case,
Ig(x)�0 = +∞, whence the result.

(b) If g(x) � 0, then ∀φ ∈ R+p, 〈φ, g(x)〉 ≤ 0, and the supremum is attained
at φ = 0. Whence, supφ�0 L(x, φ) = f(x).
On the other hand, Ig(x)≤0 = 0, so f(x) + Ig(x)�0 = f(x). The result follows.

Equipped with lemma 4.1.1, the primal value associated to problem (4.1.1)
writes

p = inf
x∈Rn

sup
φ∈R+p

L(x, φ). (4.1.2)

One natural idea is to exchange the order of inf and sup in the above problem.
Before proceeding, the following simple lemma allows to understand the
consequence of such an exchange.

Lemma 4.1.2. Let F : A×B → [−∞,∞] any function. Then,

sup
y∈B

inf
x∈A

F (x, y) ≤ inf
x∈A

sup
y∈B

F (x, y).

Proof. ∀(x̄, ȳ) ∈ A×B,

inf
x∈A

F (x, ȳ) ≤ F (x̄, ȳ) ≤ sup
y∈B

F (x̄, y).

Taking the supremum over ȳ in the left-hand side we still have

sup
ȳ∈B

inf
x∈A

F (x, ȳ) ≤ sup
y∈B

F (x̄, y).
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Now, taking the infimum over x̄ in the right-hand side yields

sup
ȳ∈B

inf
x∈A

F (x, ȳ) ≤ inf
x̄∈A

sup
y∈B

F (x̄, y).

up to to a simple change of notation, this is

sup
y∈B

inf
x∈A

F (x, y) ≤ inf
x∈A

sup
y∈B

F (x, y).

Definition 4.1.3 (Dual problem, dual function, dual value).
The dual value associated to (4.1.2) is

d = sup
φ∈R+p

inf
x∈Rn

L(x, φ).

The function
D(φ) = inf

x∈Rn
L(x, φ)

is called the Lagrangian dual function. Thus, the dual problem associ-
ated to the primal problem (4.1.1) is

maximize over R+p : D(φ).

A vector λ ∈ R+p is called dual optimal if

d = D(λ).

Without any further assumption, there is no reason for the two values (primal
and dual) to coincide. However, as a direct consequence of lemma 4.1.2, we
have :

Lemma 4.1.3. Let p and d denote respectively the primal and dual value
for problem (4.1.1). Then,

d ≤ p .

Proof. Apply lemma 4.1.2.

One interesting property of the dual function, for optimization purposes, is :

Lemma 4.1.4. The dual function D is concave.

Proof. For each fixed x ∈ Rn, the function

hx : φ 7→ L(x, φ) = f(x) + 〈φ, g(x)〉

is affine, whence concave on R+p. In other words, the negated function −hx
is convex. Thus, its upper hull h = supx(−hx) is convex. There remains to
notice that

D = inf
x
hx = − sup

x
(−hx) = −h,

so that D is concave, as required.
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4.2 Zero duality gap

The inequality d ≤ p (lemma 4.1.3) leads us to the last definition

Definition 4.2.1. The dual gap associated to problem (4.1.1) is the non-
negative difference

∆ = p− d .

The remaining of this section is devoted to finding conditions under which the
primal and dual values do coincide, also called zero duality gap conditions.
Notice, that, under such conditions, it is legitimate to solve the dual problem
instead of the primal one. The course of ideas is very similar to the proof of
Fenchel-Rockafellar theorem 3.3.1.

Introduce the Lagrangian value function

V(b) = inf
x∈Rn

f(x) + Ig(x)�b , b ∈ Rp. (4.2.1)

Thus, V(b) is the infimum of a perturbated version of problem (4.1.1), where
the constraints have been shifted by a constant b. Notice that

p = V(0).

The remaining of the argument relies on manipulating the Fenchel conjugate
and biconjugate of V. The following result is key to provide zero duality gap
conditions and allows to understand why we have introduced V.

Proposition 4.2.1 (conjugate and biconjugate of the value function).
The Fenchel conjugate of the Lagrangian value function satisfies, for φ ∈ Rp,

V∗(−φ) =

{
−D(φ) if φ � 0

+∞ otherwise,
(4.2.2)

and the dual value d is related to V via

V∗∗(0) = d (4.2.3)

To prove proposition 4.2.1, the following technical lemma is needed (the
proof of which may be skipped at first reading).

Lemma 4.2.1. The Lagrangian value function V is convex.

Proof. We need to show that, for a, b ∈ dom(V), and α ∈ (0, 1),

V(αa+ (1− α)b) ≤ αV(a) + (1− α)V(b).

Let a, b and α as above. For x, y ∈ dom(f), let ux,y = αx + (1 − α)y and
γ = αa + (1 − α)b. Since g is component-wise convex, we have g(uxy) �
αg(x) + (1− α)g(y); whence
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Ig(uxy)�γ ≤ Iαg(x)+(1−α)g(y)�γ

= Iαg(x)+(1−α)g(y)�αa+(1−α)b

≤ αIg(x)�a + (1− α)Ig(y)�b, (4.2.4)

where the last inequality follows from

{g(x) � a , g(y) � b} ⇒ αg(x) + (1− αg(y) � αa+ (1− α)b,

and the fact that, for any t > 0, t I = I.
Using (4.2.4) and the convexity of f , we get

f(uxy) + Ig(uxy) ≤ α
(
f(x) + Ig(x)�a

)
+ (1− α)

(
f(y) + Ig(y)�b

)
. (4.2.5)

Taking the infimum in (4.2.5) with respect to x and y yields

inf
(x,y)∈dom f

f(uxy) + Ig(uxy)≤γ ≤ inf
(x,y)∈dom f

[
α
(
f(x) + Ig(x)�a

)
+ . . .

. . . (1− α)
(
f(y) + Ig(y)�b

) ]
= inf

x∈Rn

[
α
(
f(x) + Ig(x)�a

) ]
+ . . .

. . . inf
y∈Rn

[
(1− α)

(
f(y) + Ig(y)≤b

) ]
= α V(a) + (1− α) V(b).

For the second line, we used the fact that the infimum in the definition of
V may be taken over dom f , since on the complementary set of the latter,
f(x) + Ig(x)�c = +∞, for all c ∈ Rp.
Finally, notice that if A ⊂ B, infA(. . . ) ≥ infB(. . . ), thus the left-hand
side in the above inequalities is greater than, or equal to V(γ). The result
follows.

proof of proposition 4.2.1.
We first prove (4.2.2). For φ ∈ Rp, by definition of the Fenchel conjugate,

V∗(−φ) = sup
y∈Rp

〈−φ, y〉 − V(y)

= sup
y∈Rp

〈−φ, y〉 − inf
x∈Rn

[
f(x) + Ig(x)�y

]
= sup

y∈Rp
〈−φ, y〉+ sup

x∈Rn

[
− f(x)− Ig(x)�y

]
= sup

y∈Rp
sup
x∈Rn

〈−φ, y〉 − f(x)− Ig(x)�y

= sup
x∈Rn

[
sup
y∈Rp

〈−φ, y〉 − Ig(x)�y︸ ︷︷ ︸
ϕx(y)

]
− f(x). (4.2.6)
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For fixed x ∈ dom f , consider the function ϕx : y 7→ 〈−φ, y〉 + Ig(x)�y.
Distinguish the cases φ � 0 and φ 6� 0.
a) If φ 6� 0: Let i ∈ {1, . . . , p} such that φi < 0, and let x ∈ dom f . Choose
y = g(x) and ỹt = y + t ei, so that g(x) � yt,∀t ≥ 0. Equation (4.2.6)
implies:

∀x, ∀y, V∗(−φ) ≥ ϕx(y)− f(x),

in particular

∀t ≥ 0, V∗(−φ) ≥ 〈−φ, yt〉 − Ig(x)�yt − f(x)

= 〈−φ, yt〉 − f(x)

= 〈−φ, y〉+ tφi − f(x)

−−−−→
t→+∞

+∞

Thus, V∗(−φ) = +∞.
b) If φ � 0: Fix x ∈ dom f . The function ϕx is componentwise non-
increasing in y on the feasible set {y : y � g(x)}, and ϕx(y) = −∞ if
y 6� g(x), so that

sup
y∈Rp

ϕx(y) = ϕ(g(x)) = 〈−φ, g(x)〉 .

Thus, (4.2.6) becomes

V∗(−φ) = sup
x∈Rn

〈−φ, g(x)〉 − f(x),

= − inf
x∈Rn

f(x) + 〈φ, g(x)〉︸ ︷︷ ︸
L(x,φ)

= −D(φ)

This is exactly (4.2.2).

The identity d = V∗∗(0) is now easily obtained : by definition of the bicon-
jugate,

V∗∗(0) = sup
φ∈Rp

−V∗(φ) = sup
φ∈Rp

−V∗(−φ) (by symmetry of Rp)

= sup
φ∈Rp,φ�0

D(φ) (using (4.2.2))

= d (by definition of d),

and the proof is complete.

We shall see next that under a condition of constraint qualification, the
primal and dual values coincide and that the dual optimal λ brings some
knowledge about the primal optimal x∗. Roughly speaking, we say that
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the constraints are qualified if the problem is satisfiable (there exists some
point in dom f , such that g(x) � 0, i.e., V(0) < ∞), and if, moreover, the
constraints can even be strengthened without altering the satisfiability of
the problem: we ask (again, roughly speaking), that, for b � 0, close to 0,
V(b) < +∞.

Exercise 4.2.1. Show that, without any further assumption, if V(0) < +∞,
then, ∀b � 0, V(b) < +∞.

Definition 4.2.2 (constraint qualification). The constraints g(x) � 0 in the
convex problem (4.1.1) are called qualified if

0 ∈ relint domV. (4.2.7)

Now comes the main result of this section

Proposition 4.2.2 (Zero duality gap condition).
If the constraints are qualified for the convex problem (4.1.1), then

1. p < +∞

2. p = d ( i.e., the duality gap is zero).

3. (Dual attainment at some λ � 0):

∃λ ∈ Rp, λ � 0, such that d = D(λ).

Proof.

1. The condition of the statement implies that 0 ∈ domV. Thus,
p = V(0) < +∞.

2. Proposition 2.2.2 implies ∂V(0) 6= ∅. Thus, proposition 3.2.6 shows
that V(0) = V∗∗(0). Using proposition 4.2.1 (d = V∗∗(0)), we obtain

d = V(0) = p.

3. Using proposition 2.2.2, pick φ0 ∈ ∂V(0). Notice that the value func-
tion is (componentwise) non increasing (the effect of a non negative b
in V(b) is to relax the constraint), so that

∀b � 0, 〈b, φ0〉 ≤ V(b)− V(0) (subgradient)
≤ 0.
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This implies φ0 � 0. Fenchel-Young equality yields V(0) +V∗(φ0) = 0.
Thus, proposition 4.2.1 shows that

D(−φ0) = −V∗(φ0) = V(0)

= p

= d

= sup
φ∈R+p

D(φ),

whence, λ = −φ0 is a maximizer of D and satisfies λ � 0, as required.

Before proceeding to the celebrated KKT (Karush,Kuhn,Tucker) theorem,
let us mention one classical condition under which the constraint qualification
condition (4.2.7) holds

Proposition 4.2.3 (Slater conditions). Consider the convex optimization
problem (4.1.1). Assume that

∃x̄ ∈ dom f : ∀i ∈ {1, . . . , p}, gi(x̄) < 0.

Then, the constraints are qualified, in the sense of (4.2.7) (0 ∈ relint domV).

Exercise 4.2.2. Prove proposition 4.2.3.

4.3 Saddle points and KKT theorem

Introductory remark (Reminder: KKT theorem in smooth convex op-
timization). You may have already encountered the KKT theorem, in the
smooth convex case: If f and the gi’s (1 ≤ i ≤ p) are convex, differentiable,
and if the constraints are qualified in some sense ( e.g., Slater) it is a well
known fact that, x∗ is primal optimal if and only if, there exists a Lagrange
multiplier vector λ ∈ Rp, such that

λ � 0, 〈λ, g(x∗)〉 = 0, ∇f(x∗) = −
∑
i∈I

λi∇gi(x∗).

(where I is the set of active constraints, i.e. the i’s such that gi(x) = 0.)
The last condition of the statement means that, if only one gi is involved,
and if there is no minimizer of f within the region gi < 0, the gradient of
the objective and that of the constraint are colinear, in opposite directions.
The objective of this section is to obtain a parallel statement in the convex,
non-smooth case, with subdifferentials instead of gradients.

First, we shall prove that, under the constraint qualification condition (4.2.7),
the solutions for problem (4.1.1) correspond to saddle points of the La-
grangian function.
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Definition 4.3.1 (Saddle point). Let F : A × B → [−∞,∞] any function,
and A,B two sets. The point (x∗, y∗) ∈ A×B is called a saddle point of
F if, for all (x, y) ∈ A×B,

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗).

Proposition 4.3.1 (primal attainment and saddle point).
Consider the convex optimization problem (4.1.1) and assume that the con-
straint qualification condition (4.2.7) holds. The following statements are
equivalent:

(i) The point x∗ is primal-optimal,

(ii) ∃λ ∈ R+p, such that the pair (x∗, λ) is a saddle point of the Lagrangian
function L.

Furthermore, if (i) or (ii) holds, then

p = d = L(x∗, λ).

Proof. From proposition 4.2.2, under the condition 0 ∈ relint domV, we
know that the dual value is attained at some λ ∈ R+p. We thus have, for
such a λ,

d = D(λ) = inf
x∈Rn

L(x, λ) (4.3.1)

(the second equality is just the definition of D).
Assume that (i) holds. Using the Lagrangian formulation of the constrained
objective (lemma 4.1.1), f(x) + Ig(x)≤0 = supφ�0 L(x, φ), saying that x∗ is
primal optimal means

p = sup
φ�0

L(x∗, φ) (4.3.2)

In view of (4.3.1) and (4.3.2),

d = inf
x
L(x, λ) ≤ L(x∗, λ) ≤ sup

φ�0
L(x∗, φ) = p (4.3.3)

Since p = d (proposition 4.2.2), all the above inequalities are equalities, thus

L(x∗, λ) = sup
φ
L(x, φ),

which is the first inequality in the definition of a saddle point.
Furthermore, using equality in (4.3.3) again,

L(x∗, λ) = inf
x
L(x, λ),

which is the second inequality in the definition of a saddle point. We thus
have, for (x, φ) ∈ Rn × R+p,

L(x∗, φ) ≤ L(x∗, λ) ≤ L(x, λ)

38



which is (ii)
Conversely, assume (ii). The second inequality from the definition of a saddle
point writes

L(x∗, λ) = inf
x
L(x∗, λ) = D(λ). (4.3.4)

The second inequality is

L(x∗, λ) = sup
φ�0

L(x∗, φ). (4.3.5)

Thus
p = inf

x
sup
φ�0

L(x, φ) ≤ sup
φ�0

L(x∗, φ)

= L(x∗, λ) ( from (4.3.5))

= D(λ) ( from (4.3.4))

≤ sup
φ�0
D(φ)

= d.

Since we know (lemma 4.1.2) that d ≤ p, all the above inequalities are
equalities, so that λ is a maximizer of D, p = d = L(x∗, λ). Finally,

inf
x

sup
φ
L(x, φ) = sup

φ
L(x∗, φ),

which means that x∗ is a minimizer of

x 7→ sup
φ�0

L(x∗, φ) = f(x) + Ig(x)�λ

(lemma 4.1.1. In other words, x∗ is primal optimal.

The last ingredient of KKT theorem is the complementary slackness proper-
ties of λ. If (x∗, λ) is a saddle point of the Lagrangian, and if the constraints
are qualified, then g(x∗) � 0. Call I = {i1, . . . , ik}, k ≤ p, the set of active
constraints at x∗, i.e.,

I =
{
i ∈ {1, . . . , p} : gi(x

∗) = 0
}
.

the indices i such that gi(x∗) = 0.

Proposition 4.3.2. Consider the convex problem (4.1.1) and assume that
the constraints satisfiability condition 0 ∈ relint domV is satisfied.
The pair (x∗, λ) is a saddle point of the Lagrangian, if an only if

g(x∗) � 0 (admissibility)
λ � 0, 〈λ, g(x∗)〉 = 0, (i) (complementary slackness)
0 ∈ ∂f +

∑
i∈I λi∂gi(x

∗). (ii)

(4.3.6)
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Remark 4.3.1. The condition (4.3.6) (ii) may seem complicated at first
view. However, notice that, in the differentiable case, this the usual ‘colin-
earity of gradients’ condition in the KKT theorem :

∇f(x∗) = −
∑
i∈I

λi∇gi(x∗).

Proof. Assume that (x∗, λ) is a saddle point of L. By definition of the
Lagrangian function, λ � 0. The first inequality in the saddle point property
implies ∀φ ∈ R+p, L(x∗, φ) ≤ L(x∗, λ), which means

f(x∗) + 〈φ, g(x∗)〉 ≤ f(x∗) + 〈λ, g(x∗)〉 ,

i.e.
∀φ ∈ R+p, 〈φ− λ, g(x∗)〉 ≤ 0.

Since x∗ is primal optimal, and the constraints are qualified, g(x∗) � 0. For
i ∈ {1, . . . , p},

• If gi(x) < 0, then choosing φ =

{
λj (j 6= i)

0 (j = i)
yields −λigi(x∗) ≤ 0,

whence λi ≤ 0, and finally λi = 0. Thus, λigi(x∗) = 0.

• If gi(x) = 0, then λigi(x∗) = 0 as well.

As a consequence, λjgj(x∗) = 0 for all j, and (4.3.6 (i) ) follows.
Furthermore, the saddle point condition implies that x∗ is a minimizer of
the function Lλ : x 7→ L(x, λ) = f(x) +

∑
i∈I λigi(x). (the sum is restricted

to the active set of constraint, due to (i) ). From Fermat’s rule,

0 ∈ ∂
[
f +

∑
λigi

]
Since dom gi = Rn, the condition for the subdifferential calculus rule 3.4.1
is met and an easy recursion yield 0 ∈ ∂f(x∗) +

∑
i∈I ∂(λigi(x

∗)). As easily
verified, ∂λigi = λi∂gi, and ( 4.3.6 (ii)) follows.

Conversely, assume that λ satisfies (4.3.6) By Fermat’s rule, and the subd-
ifferential calculus rule 3.4.1, condition (4.3.6) (ii) means that x∗ is a mini-
mizer of the function hλ : x 7→ f(x)+

∑
i∈I λigi(x). using the complementary

slackness condition (λi = 0 for i 6∈ I), hλ(x) = L(x, λ), so that the second
inequality in the definition of a saddle point holds:

∀x, L(x∗, λ) ≤ L(x, λ).

Furthermore, for any φ � 0 ∈ Rp,

L(x∗, φ)− L(x∗, λ) = 〈φ, g(x∗)〉 − 〈λ, g(x∗)〉 = 〈φ, g(x∗)〉 ≤ 0,

since g(x∗) � 0. This is the second inequality in the saddle point condition,
and the proof is complete.
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Definition 4.3.2. Any vector λ ∈ Rp which satisfies (4.3.6) is called a
Lagrange multiplier at x∗ for problem (4.1.1).

The following theorem summarizes the arguments developed in this section

Theorem 4.3.1 (KKT (Karush, Kuhn,Tucker) conditions for optimality).
Assume that the constraint qualification condition (4.2.7) is satisfied for the
convex problem (4.1.1). Let x∗ ∈ Rn. The following assertions are equiva-
lent:

(i) x∗ is primal optimal.

(ii) There exists λ ∈ R+p, such that (x∗, λ) is a saddle point of the La-
grangian function.

(iii) There exists a Lagrange multiplier vector λ at x∗, i.e. a vector λ ∈ Rp,
such that the KKT conditions:

g(x∗) � 0 (admissibility)
λ � 0, 〈λ, g(x∗)〉 = 0, (complementary slackness)
0 ∈ ∂f +

∑
i∈I λi∂gi(x

∗). (‘colinearity of subgradients’)

are satisfied.

Proof. The equivalence between (ii) and (iii) is proposition 4.3.2; the one
between (i) and (ii) is proposition 4.3.1.

4.4 Examples, Exercises and Problems

In addition to the following exercises, a large number of feasible and instruc-
tive exercises can be found in Boyd and Vandenberghe (2009), chapter 5, pp
273-287.

Exercise 4.4.1 (Examples of duals, Borwein and Lewis (2006), chap.4).
Compute the dual of the following problems. In other words, calculate the
dual function D and write the problem of maximizing the latter as a convex
minimization problem.

1. Linear program
inf
x∈Rn

〈c, x〉

under constraint Gx � b

where c ∈ Rn, b ∈ Rp and G ∈ Rp×n.
Hint : you should find that the dual problem is again a linear program,
with equality constraints.
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2. Linear program on the non negative orthant

inf
x∈Rn

〈c, x〉+ Ix�0

under constraint Gx � b

Hint : you should obtain a linear program with inequality constraints
again.

3. Quadratic program

inf
x∈Rn

1

2
〈x,Cx〉

under constraint Gx � b

where C is symmetric, positive, definite.

Hint : you should obtain an unconstrained quadratic problem.

• Assume in addition that the constraints are linearly independent,

i.e. rang(G) = p, i.e. G =

w>1
...
w>p

, where (w1, . . . , wp) are

linearly independent. Compute then the dual value.

Exercise 4.4.2 (dual gap). Consider the three examples in exercise 4.4.1,
and assume, as in example 3., that the constraints are linearly independent.
Show the duality gap is zero under the respective following conditions:

1. Show that there is zero duality gap in examples 1 and 3 (linear and
quadratic programs).

Hint : Slater.

2. For example 2, Assume that ∃x̄ > 0 : Gx̄ = b. Show again that the
duality gap is zero.

Hint (spoiler) : Show that 0 ∈ int domV. In other words, show that
for all y ∈ Rp close enough to 0, there is some small ū ∈ Rn, such that
x = x̂+ ū is admissible, and Gx ≤ b+ y.
To do so, exhibit some u ∈ Rn such that Gu = −1p (why does it
exist ?) Pick t such that x̂ + tu > 0. Finally, consider the ‘threshold’
Y = −t1p ≺ 0 and show that, if y � Y , then V(y) <∞. Conclude.

Exercise 4.4.3 (Gaussian Channel, Water filling.). In signal processing, a
Gaussian channel refers to a transmitter-receiver framework with Gaussian
noise: the transmitter sends an information X (real valued), the receiver
observes Y = X + ε, where ε is a noise.
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A Channel is defined by the joint distribution of (X,Y ). If it is Gaussian,
the channel is called Gaussian. In other words, if X and ε are Gaussian, we
have a Gaussian channel.

Say the transmitter wants to send a word of size p to the receiver. He does
so by encoding each possible word w of size p by a a certain vector of size n,
xwn = (xw1 , . . . , x

w
n ). To stick with the Gaussian channel setting, we assume

that the xwi ’s are chosen as i .i .d . replicates of a Gaussian, centered random
variable, with variance x.
The receiver knows the code (the dictionary of all 2p possible xwn ’s) and he
observes yn = xwn + ε, where ε ∼ N (0, σ2In)). We wants to recover w.
The capacity of the channel, in information theory, is (roughly speaking) the
maximum ratio C = n/p, such that it is possible (when n and p tend to ∞
while n/p ≡ C), to recover a word w of size p using a code xwn of length n.

For a Gaussian Channel , C = log(1+x/σ2). (x/σ2 is the ratio signal/noise).
For n Gaussian channels in parallel, with αi = 1/σ2

i , then

C =
n∑
i=1

log(1 + αixi).

The variance xi represents a power affected to channel i. The aim of the
transmitter is to maximize C under a total power constraint :

∑n
i=1 xi ≤ P .

In other words, the problem is

max
x∈Rn

n∑
i=1

log(1 + αixi) under constraints : ∀i, xi ≥ 0,

n∑
i=1

xi ≤ P.

(4.4.1)

1. Write problem (4.4.1) as a minimization problem under constraint
g(x) � 0. Show that this is a convex problem (objective and con-
straints both convex).

2. Show that the constraints are qualified. (hint: Slater).

3. Write the Lagrangian function

4. Using the KKT theorem, show that a primal optimal x∗ exists and
satisfies :

• ∃K > 0 such that xi = max(0,K − 1/αi).
• K is given by

n∑
i=1

max(K − 1/αi, 0) = P

5. Justify the expression water filling
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Exercise 4.4.4 (Max-entropy). Let p = (p1, . . . , pn), pi > 0,
∑

i pi = 1
a probability distribution over a finite set. If x = (x1, . . . , xn) is another
probability distribution (xi ≥ 0), an if we use the convention 0 log 0 = 0, the
entropy of x with respect to p is

Hp(x) = −
n∑
i=1

xi log
xi
pi
.

To deal with the case xi < 0, introduce the function ψ : R→ (−∞,∞]:

ψ(u) =


u log(u) if u > 0

0 if u = 0

+∞ otherwise .

If g : Rn → Rp, the general formulation of the max-entropy problem under
constraint g(x) � 0 is

maximize over Rn
∑
i

(
− ψ(xi) + xi log(pi))

under constraints
∑

xi = 1; g(x) � 0.

In terms of minimization, the problem writes

inf
x∈Rn

n∑
i=1

ψ(xi)− 〈x, c〉+ I〈1n,x〉=1 + Ig(x)�0. (4.4.2)

with c = log(p) = (log(p1), . . . , log(pn)) and 1n = (1, . . . , 1) (the vector of
size n which coordinates are equal to 1).

A : preliminary questions

1. Show that

∂I〈1n,x〉 =

{
{λ01n : λ0 ∈ R} := R1n if

∑
i xi = 1

∅ otherwise.

2. Show that ψ is convex
hint : compute first the Fenchel conjugate of the function exp, then
use proposition 3.2.2.

Compute ∂ψ(u) for u ∈ R.

3. Show that

∂(
∑
i

ψ(xi)) =

{∑
i(log(xi) + 1) ei if x � 0

∅ otherwise,

where (ei, . . . , en) is the canonical basis of Rn.
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4. Check that, for any set A, A+ ∅ = ∅.

5. Consider the unconstrained optimization problem, (4.4.2) where the
term Ig(x)�0 has been removed. Show that there exists a unique primal
optimal solution, which is x∗ = p.

Hint : Do not use Lagrange duality, apply Fermat’s rule (section 2.3)
instead. Then, check that the conditions for subdifferential calculus
rules (proposition 3.4.1) apply.

B : Linear inequality constraints In the sequel, we assume that the
constraints are linear, independent, and independent from 1n, i.e.: g(x) =
Gx− b, where b ∈ Rp, and G is a p× n matrix,

G =

(
(w1)>

...
(wp)>

)
,

where wj ∈ Rn, and the vectors (w1, . . . ,wp,1n) are linearly independent.
We also assume the existence of some point x̂ ∈ Rn, such that

∀i, x̂i > 0,
∑
i

x̂i = 1, Gx̂ = b. (4.4.3)

1. Show that the constraints are qualified, in the Lagrangian sense (4.2.7).

Hint (spoiler) : proceed as in exercise 4.4.2, (2). This time, you need
to introduce a vector u ∈ Rn, such that Gu = −1p and

∑
ui = 0

(again, why does it exist ?). The remaining of the argument is similar
to that of exercise 4.4.2, (2).

2. Using the KKT conditions, show that any primal optimal point x∗

must satisfy :
∃Z > 0,∃λ ∈ R+p :

x∗i =
1

Z
pi exp

[
−

p∑
j=1

λjw
j
i

]
(i ∈ {1, . . . , n})

(this is a Gibbs-type distribution).
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