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Optimization problem

Definition (Optimization problem (P))
min f (x), x ∈ C, where f : Rn → R ∪ {+∞} is called the
objective function
C = {x ∈ Rn/g(x) ≤ 0 et h(x) = 0} is the feasible set
g(x) ≤ 0 represent inequality constraints.
g(x) = (g1(x), . . . , gp(x)) so with p contraints.
h(x) = 0 represent equality contraints.
h(x) = (h1(x), . . . , hq(x)) so with q contraints.
an element x ∈ C is said to be feasible
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Taylor at order 2

Assuming f is twice differentiable, the Taylor expansion at order 2
of f at x reads:

∀h ∈ Rn, f (x + h) = f (x) +∇f (x)Th +
1
2
hT∇2f (x)h + o(‖h‖2)

∇f (x) ∈ Rn is the gradient.
∇2f (x) ∈ Rn×n the Hessian matrix.

Remark: Local quadratic approximation
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Ridge regression

We consider problems with n samples, observations, and p features,
variables.

Definition (Ridge regression)

Let y ∈ Rn the n targets to predict and (xi )i the n samples in Rp.
Ridge regression consists in solving the following problem

min
w ,b

1
2
‖y − Xw − b‖2 +

λ

2
‖w‖2 , λ > 0

where w ∈ Rp is called the weights vector, b ∈ R is the intercept
(a.k.a. bias) and the ith row of X is xi .

Remark: : Note that the intercept is not penalized with λ.
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Taking care of the intercept

There are different ways to deal with the intercept.

Option 1: Center the target y and each column feature. After
centering the problem reads:

min
w

1
2
‖y − Xw‖2 +

λ

2
‖w‖2 , λ > 0

Option 2: Add a column of 1 to X and try not to penalize it
(too much).

Exercise

Denote by y ∈ R the mean of y and by X ∈ Rp the mean of
each column of X . Show that b̂ = −XT

ŵ + y .
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Ridge regression

Definition (Quadratic form)

A quadratic form reads

f (x) =
1
2
xTAx + bT x + c

where x ∈ Rp, A ∈ Rp×p, b ∈ Rp and c ∈ R.
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Ridge regression

Questions
Show that ridge regression boils down to the minimization of a
quadratic form.
Propose a closed form solution.
Show that the solution is obtained by solving a linear system.
Is the objective function strongly convex?
Assuming n < p what is the value of the constant of strong
convexity?
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Singular value decomposition (SVD)

SVD is a factorization of a matrix (real here)
M = UΣV T where M ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p,
V ∈ Rp×p

UTU = UUT = In (orthogonal matrix)
V TV = VV T = Ip (orthogonal matrix)
Σ diagonal matrix
Σi ,i are called the singular values
U are left-singular vectors
V are right-singular vectors
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Singular value decomposition (SVD)

SVD is a factorization of a matrix (real here)
U contains the eigenvectors of MMT associated to the
eigenvalues Σ2

i ,i

V contains the eigenvectors of MTM associated to the
eigenvalues Σ2

i ,i

we assume here Σi ,i = 0 for min(n, p) ≤ i ≤ max(n, p)

SVD is particularly useful to find the rank, null-space, image
and pseudo-inverse of a matrix
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Matrix inversion lemma

Proposition (Matrix inversion lemma)

also known as Sherman–Morrison–Woodbury formula states that:

(A + UCV )−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1,

where A ∈ Rn×n, U ∈ Rn×k , C ∈ Rk×k , V ∈ Rk×n.
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Matrix inversion lemma (proof)

Just check that (A+UCV) times the RHS of the Woodbury identity
gives the identity matrix:

(A + UCV )
[
A−1 − A−1U

(
C−1 + VA−1U

)−1
VA−1

]
= I + UCVA−1 − (U + UCVA−1U)(C−1 + VA−1U)−1VA−1

= I + UCVA−1 − UC (C−1 + VA−1U)(C−1 + VA−1U)−1VA−1

= I + UCVA−1 − UCVA−1 = I

Questions
Using the matrix inversion lemma show that if n < p, the ridge
regression problem can be solved by inverting a matrix of size
n × n rather than p × p.
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Primal and dual implementation

The solution of the ridge regression problem (without intercept) is
obtained by solving the problem in the primal form:

ŵ = (XTX + λIp)−1XT y

or in the dual form:

ŵ = XT (XXT + λIn)−1y

In the dual formulation the matrix to invert in Rn×n.

What if X is sparse, n is 1e5 and p is 1e6?
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Conjugate gradient: Solve Ax = b, A ∈ Rn×n and b ∈ Rn

1: x0 ∈ Rn, g0 = Ax0 − b
2: for k = 0 to n do
3: if gk = 0 then
4: break
5: end if
6: if k = 0 then
7: wk = g0
8: else
9: αk = − 〈gk ,Awk−1〉

〈wk−1,Awk−1〉
10: wk = gk + αkwk−1
11: end if
12: ρk = 〈gk ,wk 〉

〈wk ,Awk 〉
13: xk+1 = xk − ρkwk

14: gk+1 = Axk+1 − b
15: end for
16: return xk+1

Alexandre Gramfort - Telecom ParisTech Optimization MS Maths Big Data 19



Notations Ridge regression and quadratic forms SVD Woodbury Dense Ridge Sparse Ridge

Sparse ridge with CG

cf. Notebook
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Logistic regression with CG

cf. Notebook
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Warm starts and paths

In machine learning it is common to try to solve a problem that is
very similar to a previous one.

You train a model every day and you need just to "update"
the model
You look for the best hyperparmater and evaluate the
parameter on a grid of values. For example on a grid of λ.
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