Optimization MS Maths Big Data

 $\label{lem:alexandre} A lexandre \ Gramfort$ $a lexandre \ .gramfort @ telecom-paristech \ .fr$

Telecom ParisTech

M2 Maths Big Data

- Notations
- SVD

- Sparse Ridge

Dense Ridge

Optimization problem

Notations

Definition (Optimization problem (P))

- min f(x), $x \in \mathcal{C}$, where $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is called the objective function
- $\mathcal{C} = \{x \in \mathbb{R}^n / g(x) \le 0 \text{ et } h(x) = 0\}$ is the feasible set
- $g(x) \le 0$ represent inequality constraints. $g(x) = (g_1(x), \dots, g_p(x))$ so with p contraints.
- h(x) = 0 represent equality contraints. $h(x) = (h_1(x), \dots, h_q(x))$ so with q contraints.
- an element $x \in \mathcal{C}$ is said to be **feasible**

Taylor at order 2

Assuming f is twice differentiable, the Taylor expansion at order 2 of f at x reads:

$$\forall h \in \mathbb{R}^n, \ f(x+h) = f(x) + \nabla f(x)^T h + \frac{1}{2} h^T \nabla^2 f(x) h + o(\|h\|^2)$$

- $\nabla f(x) \in \mathbb{R}^n$ is the gradient.
- $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ the Hessian matrix.

Remark: Local quadratic approximation

- Notations
- 2 Ridge regression and quadratic forms
- 3 SVD
- Woodbury
- Dense Ridge
- Sparse Ridge

We consider problems with n samples, observations, and p features, variables.

Definition (Ridge regression)

Let $y \in \mathbb{R}^n$ the *n* targets to predict and $(x_i)_i$ the *n* samples in \mathbb{R}^p . Ridge regression consists in solving the following problem

$$\min_{w,b} \frac{1}{2} \|y - Xw - b\|^2 + \frac{\lambda}{2} \|w\|^2, \lambda > 0$$

where $w \in \mathbb{R}^p$ is called the weights vector, $b \in \mathbb{R}$ is the intercept (a.k.a. bias) and the ith row of X is x_i .

Remark: Note that the intercept is not penalized with λ .

Taking care of the intercept

There are different ways to deal with the intercept.

 Option 1: Center the target y and each column feature. After centering the problem reads:

$$\min_{w} \frac{1}{2} \|y - Xw\|^2 + \frac{\lambda}{2} \|w\|^2, \lambda > 0$$

 Option 2: Add a column of 1 to X and try not to penalize it (too much).

Exercise

• Denote by $\overline{y} \in \mathbb{R}$ the mean of y and by $\overline{X} \in \mathbb{R}^p$ the mean of each column of X. Show that $\hat{b} = -\overline{X}^T \hat{w} + \overline{v}$.

Ridge regression

Notations

Definition (Quadratic form)

A quadratic form reads

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

SVD

where $x \in \mathbb{R}^p$, $A \in \mathbb{R}^{p \times p}$, $b \in \mathbb{R}^p$ and $c \in \mathbb{R}$.

Notations

Questions

- Show that ridge regression boils down to the minimization of a quadratic form.
- Propose a closed form solution.
- Show that the solution is obtained by solving a linear system.
- Is the objective function strongly convex?
- Assuming n < p what is the value of the constant of strong convexity?

- 1 Notations
- 2 Ridge regression and quadratic forms
- 3 SVD
- Woodbury
- Dense Ridge
- 6 Sparse Ridge

Singular value decomposition (SVD)

- SVD is a factorization of a matrix (real here)
- $M = U \Sigma V^T$ where $M \in \mathbb{R}^{n \times p}$, $U \in \mathbb{R}^{n \times n}$, $\Sigma \in \mathbb{R}^{n \times p}$. $V \in \mathbb{R}^{p \times p}$
- $U^T U = U U^T = I_n$ (orthogonal matrix)
- $V^T V = V V^T = I_p$ (orthogonal matrix)
- Σ diagonal matrix
- $\Sigma_{i.i}$ are called the singular values
- U are left-singular vectors
- V are right-singular vectors

Woodbury

Singular value decomposition (SVD)

- SVD is a factorization of a matrix (real here)
- U contains the eigenvectors of MM^T associated to the eigenvalues $\Sigma_{i,i}^2$
- V contains the eigenvectors of M^TM associated to the eigenvalues $\Sigma_{i,i}^2$
- we assume here $\Sigma_{i,i} = 0$ for $\min(n,p) \le i \le \max(n,p)$
- SVD is particularly useful to find the rank, null-space, image and pseudo-inverse of a matrix

- 1 Notations
- 2 Ridge regression and quadratic forms
- 3 SVD
- Woodbury
- Dense Ridge
- 6 Sparse Ridge

SVD

Sparse Ridge

Matrix inversion lemma

Notations

Proposition (Matrix inversion lemma)

also known as Sherman-Morrison-Woodbury formula states that:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1},$$

where $A \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{n \times k}$. $C \in \mathbb{R}^{k \times k}$. $V \in \mathbb{R}^{k \times n}$.

Dense Ridge

Sparse Ridge

Matrix inversion lemma (proof)

Just check that (A+UCV) times the RHS of the Woodbury identity gives the identity matrix:

$$(A + UCV) \left[A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U \right)^{-1} VA^{-1} \right]$$

$$= I + UCVA^{-1} - (U + UCVA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$$= I + UCVA^{-1} - UC(C^{-1} + VA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$$= I + UCVA^{-1} - UCVA^{-1} = I$$

Questions

• Using the matrix inversion lemma show that if n < p, the ridge regression problem can be solved by inverting a matrix of size $n \times n$ rather than $p \times p$.

- 1 Notations
- 2 Ridge regression and quadratic forms
- 3 SVD
- 4 Woodbury
- Dense Ridge
- 6 Sparse Ridge

Sparse Ridge

Primal and dual implementation

The solution of the ridge regression problem (without intercept) is obtained by solving the problem in the primal form:

$$\hat{w} = (X^T X + \lambda I_p)^{-1} X^T y$$

or in the dual form:

Notations

$$\hat{w} = X^T (XX^T + \lambda I_n)^{-1} y$$

In the dual formulation the matrix to invert in $\mathbb{R}^{n \times n}$.

What if X is sparse, n is 1e5 and p is 1e6?

Notations

Primal and dual implementation

The solution of the ridge regression problem (without intercept) is obtained by solving the problem in the primal form:

$$\hat{w} = (X^T X + \lambda I_p)^{-1} X^T y$$

or in the dual form:

$$\hat{w} = X^T (XX^T + \lambda I_n)^{-1} y$$

In the dual formulation the matrix to invert in $\mathbb{R}^{n\times n}$.

What if X is sparse, n is 1e5 and p is 1e6?

Sparse Ridge

- 3 SVD

- 6 Sparse Ridge

1:
$$x_0 \in \mathbb{R}^n$$
, $g_0 = Ax_0 - b$

2: **for**
$$k = 0$$
 to n **do**

3: **if**
$$g_k = 0$$
 then

6: if
$$k = 0$$
 then

7:
$$w_k = g_0$$

9:
$$\alpha_k = -\frac{\langle g_k, Aw_{k-1} \rangle}{\langle w_{k-1}, Aw_{k-1} \rangle}$$

$$w_k = g_k + \alpha_k w_{k-1}$$

12:
$$\rho_k = \frac{\langle g_k, w_k \rangle}{\langle w_k, Aw_k \rangle}$$

13:
$$x_{k+1} = x_k - \rho_k w_k$$

14:
$$g_{k+1} = Ax_{k+1} - b$$

16: **return**
$$x_{k+1}$$

Sparse ridge with CG

Notations

cf. Notebook

Logistic regression with CG

Notations

cf. Notebook

Warm starts and paths

In machine learning it is common to try to solve a problem that is very similar to a previous one.

- You train a model every day and you need just to "update" the model
- You look for the best hyperparmater and evaluate the parameter on a grid of values. For example on a grid of λ .