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RNA structure(s)

RNA = Linear Polymer = Nucleotides sequence w 2 fA;C;G;Ug?
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Source: 5s rRNA (PDBID: 1K73:B)

Secondary structure S = Set of base-pairs (i; j) 2 [1; n]2 such that:
I Monogamy: Each position x 2 [1; n] involved in at most one base-pair

I No crossing base-pairs: 8(i; j) 2 S;@(k ; l) 2 S such that i < k < j < l

I Steric constraints: 8(i; j) 2 S; ji � jj > � (� = 1 or 3)

I Valid base pairs: 8(i; j) 2 S, fwi ;wjg is either fG;Cg,fA;Ug, or fG;Ug



Paradigms in RNA structural bioinformatics
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Given free-energy E : fA;C;G;Ug? � S! R, at the Boltzmann equilibrium one has:

P(S j w) / e�E(w ;S)=RT

I Minimum Free-Energy (MFE): Relevant structure = Most stable/probable
I Partition function: Equilibrium properties (stationary distribution)
I Kinetics: Finite-time dynamics of concentrations/probabilities



RNA sequence and structure(s)

RNA = Linear Polymer = Sequence over fA;C;G;Ug?
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Energy minimisation: O(n3)

?Finally! [Bonnet/Rzążewski/Sikora, RECOMB’18]
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Energy minimisation: Θ(n3)

Design: NP-hard?

?Finally! [Bonnet/Rzążewski/Sikora, RECOMB’18]



Why would we design RNAs?

I To create building blocks for synthetic systems
Rationally-designed RNAs increase orthogonality

I To assess the significance of observed phenomenon
Random models should include every established characters. . .
. . . including adoption of a single structure

I To test/push our understanding of how RNA folds
Misfolding RNAs reveal gaps in our energy models and descriptors for the
conformational spaces

I To help search for homologous sequences
Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

I To fuel RNA-based therapeutics
Sequence-based (siRNA, synthetic genes), but structure matters

I To perform controlled experiments
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siRNA treatments
3 FDA-approved since 2018

CRISPR/Cas9 Genome editing. . .
. . . powered by gRNAs

mRNA-based vaccines (SARS-Cov2)
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Goal of design ! Function

Goal: Achieve a predefined biological function (as abstracted by a model)

Goal of positive design

Compatibility with a model of function

In practice: Optimize interaction affinity or stability, constrained sequence
composition. . .

Goal of negative design

To avoid unwanted functions

In practice: Avoid off-target interactions, more stable alternative structures, kinetic
traps. . . (inverse combinatorial problems)

In the context of RNA:
I Positive design: Seq/struct comparison, composition, +/- motifs, energie(s)
! Random generation, CSP

I Negative design: Target structure! Minimum Free-Energy + Boltzmann prob%
! Local search, exp algorithms, black magic (heuristics, ?NN, crowdsourcing. . . )



Existing approaches for negative design

Based on local search. . .
I RNAInverse - TBI Vienna

I Info-RNA - Backofen@Freiburg

I RNA-SSD - Condon@UBC

I (Inca)RNAFBinv - Barash@BGU

I NUPack - Pierce@Caltech

. . . bio-inspired algorithms. . .
I FRNAKenstein - Hein@Oxford

I AntaRNA - Backofen@Freiburg

I ERD - Ganjtabesh@Tehran

. . . exact approaches. . .
I RNAIFold - Clote@Boston College

I CO4 - Will@Leipzig

Typical issues:
I Naive initialization strategies
I Synthesized sequences do not necessarily fold properly (kinetics)
I Overly GC-rich sequences
I No negative results

) Combinatorial foundations!
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RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure R + Energy distance ∆ > 0.
Output: RNA sequence S 2 Σ? such that:

8R0 2 SjSj n fRg : E(S;R0) � E(S;R) + ∆

or ? if no such sequence exists.

Difficult problem: Probably no obvious DP decomposition
I NP-hard problem [Bonnet et al, RECOMB’18]. . . after almost 30 years!
I Existing algorithms: Heuristics or Exponential-time
I Reason(s): Non locality, no theoretical framework, too many parameters. . .



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]
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I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
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Theorem: Similar motifs exist for any energy model and design criterion

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]
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Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Base pairs! 3 colors: ! G � C; ! C � G; ! A � U or U � A.

Coloring rules: Within each loop, # � 1, # � 1, # � 2 and # + # < 2

Level of a base pair = # �# on path to root.

Separated coloring = and unpaired positions occur at different levels
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Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



Designability in simple BP-based energy models

Partial characterization of designable structures [Hales et al, CPM’15+Algorithmica’17]

I Saturated structures: Designable, Degree of multiloops � 4 (+ Θ(n) algo.)

I Designable) No multiloop of degree � 5 (m5 motif), or degree � 3 with � 1
unpaired base(s) (m3 � motif).

Corollary: Only an exponentially small (on n) fraction of structs is designable
[Yao et al, ACM-BCB’19]

I 9 Separated coloring for structure) Designable (+ Θ(n) algo.)

Corollary: Approximate design for any structure avoiding m5 and m3 � in Θ(n) time

Idea: Insert new BPs on helices to offset unpaired/leaves and

Open problems
I Algorithm/characterization of separated-colorable tree?
I Inserting min #Base pairs: Complexity? Algorithm?
I Complex color sets for more realistic energy models?
I FPT design for some (yet unknown) parameters?
I In practice? Design (approximate) backbone + local search?



In real life. . .

1

10

20

30

40

50

60

70 80

90100

110

120 123



In real life. . .

1

10

20

30

40

50

60

70 80

90100

110

120 123

Root

Level=0



In real life. . .

1

10

20

30

40

50

60

70 80

90100

110

120 125



In real life. . .

1

10

20

30

40

50

60

70 80

90100

110

120 125

Root

Level=1

Level=0



Enumerative properties of secondary structures
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29,35

In dot-bracket notation:
� � ((( � �(((( � � � � � )))) � (( � � � ((( � � � � � ))) � � � )) � � � ))) � �

Secondary structures generated by simple context-free grammar

S ! �S j (T )S j " T ! �S j (T )S j
Theorem (Waterman 1978): Number sn of secondary structures over n nucleotides
asymptotically obeys

sn =
�

2
p
�
� ��n

n
p

n
(1 + O(1=n)) � :=

√
15 + 7

p
5

2
1
�

:=
2

3�p5
� 2:62

Techniques: Generating functions + Singularity (complex) analysis
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Enumerative consequences of forbidden motifs

#Secondary structures of size n! K : 2:62n

n
p

n

m5 m3 �
#Secondary structures of size n avoiding m5 and m3 �: K 0: 2.35n

n
p

n

Theorem (Yao/Chauve/Régnier/P, ACM-BCB 2019)

Proportion of designable sec. struct. of length n decreases exponentially with n.

I Generalizes to any list of forbidden motifs (monkey/typewriter paradox)
I Forbidden motifs (aka local obstructions) exist for all usual negative design

objectives (defects)
I . . . and can be black box computed for complex energy models
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Computing local obstructions

Shallow Motifs

Compatible
Sequences

Minimal Completions

UAGCCCGAA
UAAUCCGAA
UACGCCGAA

UAGAAACCCGAA
UAAAAAUCCGAA
UACAAAGCCGAA

A

A

Constrained Folding
+Defect Filtering

Designable Completions

Structure 
Trimming

Asymptotic Analysis Result

Designable Motifs

Loc al Obstructions

Complement in 
set of motifs

B

C

D

E



Selected local obstructions in Turner energy models

I Very few occurrences in experimental 3D RNA structures (PDB)
I Always seemingly stabilized by non-canonical base pairs



Impact of design objectives



Extension to bivariate analysis (ensemble defect)

Definition: Target S?, sequence w
Ensemble defect DE (w ;S?) = Expected distance to S? within Boltzmann distribution

DE (w) =
∑

S2Sw

BPDist(S;S?)
e�Ew ;S=kT

Zw

Property: DE is super additive over any subset of disjoint motifs m1;m2 : : : in S?

min
w

DE (w ;S?) �
(

min
w1

DE (w1;m1)

)
+

(
min

w2
DE (w2;m2)

)
+ : : :

! Additive lower bound for ensemble defect

Remark: Occurrences of motifs can be marked within sec. struct. grammar
! Bivariate gen. fun. + strongly connected, aperiodic system of equations
! Normal distribution for lower bound on defect (Drmota Theorem)
! (Expectation: �n, Std dev.: �

p
n)
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Asymptotic distribution of ensemble defect

I List of motifs restricted to ensure absence of overlap
I Motifs additive! Lower bound on real ensemble defect



Empirical distribution of ensemble defect

I NUPACK optimizes ensemble defect [Zadeh et al, 2011]

I Local search! Upper bound on real ensemble defect



Conclusions

I RNA design is a timely topic for Bio Maths/CS

I Negative design, a hard problem, poorly understood
! Future combinatorial studies needed!

I Structure approximating design: a promising tractable alternative?

I Parameterized complexity of inverse folding?

I Forbidden motifs: Ubiquitous in DP-based inverse combinatorial optimization

I Way less designable structures than initially thought

I Does Nature find a way around undesignability?
Or should we refine phenotype/genotype studies (neutral networks)?
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Multiple RNA design: Motivation

Example: Riboswitch for translation control

+

Multiple target structures! Multiple design of RNAs

b

c

d
e

f g
h i

j k l m

n
opq

rs

a t

u
v

a b c d e

f

g
h

i
j
k l

m
n o

p
q
r

s t u v

a

b

c

d

e f

g

h i
j

k

l m n o

p

q

r s
t

u

v

abcdefghijklmnopqrstuv

(((((.)).(((..))).))).

((.))((...))..(((..)))

....(((((..)))...))...

Objective: To randomly generate RNA sequences under constraints
1 Validity for targeted structures wrt base pairing nucleotides
2 Stability (low free-energy, comparable across structures. . . ) of target structures
3 Constrained composition: (prescribed GC content), +/- motifs. . .

Stochastic backtrack: Pre-count and generate valid sequence (uniform distrib.)
+ Further refinements using local search
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Our problem (simplified)

Question: How many valid sequences over Σn := fA;C;G;Ugn ?

Problem (#ValidSequences)

Input: Secondary structures R = fR1; : : : ;Rkg of length n
Output: Num. of valid sequences

jfS 2 Σn j 8(i; j) 2 R`; (Si ;Sj ) forms a valid base pairgj
C

U

G

A

Valid base pairs



State of the art

Abfalter/Flamm/Stadler 2003:
I Ear decomposition [Whitney 1932] A

B

CI Peel input graph as paths A1; : : : ;Ak

such that only the ends of Ai are in [j>iAj

I Dynamic programming: Counting #valid paths for each component, conditioned
by nucleotide chosen for its anchors (black nodes);

I Careful combination of values yields #valid sequences.

Complexity: Θ(n:4Ω) where Ω = Max #anchors. Worst-case: Ω 2 Θ(n)

Some comments:
I Is this optimal? Other algorithms/parameters?
I Which extensions possible? (Multidim.) Boltzmann-Gibbs distrib.
I Is this exp. really necessary? Probably since counting #P-hard
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Counting valid sequences: WC/Wobble + single structure
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Counting valid sequences: WC/Wobble + Two structures
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Counting valid sequences for paths and cycles

p(n) : #Valid sequences for path of length n.
c(n) : #Valid sequences for cycle of length n.

Theorem (#Valid sequences for paths and cycles)

p(n) = 2Fn+2 et c(n) = 2Fn + 4Fn�1

where Fn is the n-th Fibonacci number.

For paths: A simple automaton. . .

"start

A
U

G
C

A

U

C

G

G

C
G

U

U

A

Remark: A$ C=G$ U symmetry
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Counting valid sequences for paths and cycles

p(n) : #Valid sequences for path of length n.
c(n) : #Valid sequences for cycle of length n.

Theorem (#Valid sequences for paths and cycles)

p(n) = 2Fn+2 et c(n) = 2Fn + 4Fn�1

where Fn is the n-th Fibonacci number.

For cycles: A slightly more complex automaton. . .
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Counting valid sequences for paths and cycles

p(n) and c(n): #Valid sequences for paths and cycles of length n.

Theorem (#Valid sequences for paths and cycles)

p(n) = 2Fn+2 et c(n) = 2Fn + 4Fn�1

where Fn is the n-th Fibonacci number.

G: Dependency graph, merging the two structures (max degree � 2).
G uniquely decomposed in P(G) paths and C(G) cycles.

Theorem (#Valid sequences for 2-structures)

The number #Designs(G) of valid sequences for G is

#Designs(G) =
∏

p2P(G)

2Fjpj+2 �
∏

c2C(G)

(
2Fjcj + 4Fjcj�1

)

Caterpilar tree: (2+
p

3)�(1+
p

3)n+(2�
p

3)�(1�
p

3)n

2 (n nodes)
Complete binary: 2 ak (height k ) ak = (ak�2 + 1)4 + 2(ak�1 + 1)(ak�2 + 1)2 + (ak�1 + 1)2 � 1



Counting valid sequences: WC/Wobble + Two structures

C

U

G

A

Valid base pairs (BPs) = Including Wobble base pairs

a b c d e f g h i j k l m n o p q r s t u v

aeg

p

u

k

Dependency graph:
Cycles + Paths

bd

h j q

t

f l o v c s

i m n r

Question: How many valid sequences?

Answer :6= ?! (both BP and dependency graphs bipartite)

#Designs(G) =
∏

c2CC(G)

#Designs(cc) = 2 322 432



Counting valid sequences: WC/Wobble + > 2 structures
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A

Valid base pairs (BPs) = Including Wobble base pairs

a b c d e f g h i j k l m n o p q r s t u v
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Cycles, Paths, Trees. . .
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Question: How many valid sequences?

Answer: Non-bipartite ! ?; Bipartite ! ????
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Independent sets , Valid sequences
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Remark: Black circles non-adjacent in valid sequences

Up to trivial symmetry? (e.g. north-western position 2 fU;Cg):

Designs?(cc) � IndSets(cc)

Independent Sets (black) + NW 2 fU;Cg ) Valid sequence

) Bijection between Designs?(cc) and IndSets(cc).
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Valid sequences and independent sets

Theorem (#Designs and ind. sets in connected bipartite graphs)

Let G be a bipartite and connected dependency graph:

#Designs(G) = 2�#Designs?(G) = 2�#IndSets(G)

For bipartite dependency graph G, one has:

#Designs(G) =
∏

cc2CC(G)

2�#IndSets(cc) = 2jCC(G)j �#IndSets(G)

But #IndSets(G) is #P-hard on bipartite graphs (#BIS) [Dyer & Greenhill’00]

(+ Any graph G is the dependency graph of some structure family)

So 9 Poly-Time algorithm for #Designs(G)! Poly-Time algorithm for #BIS. . .

Theorem

Counting #Designs is #P-hard.

No Poly-Time algorithm for #Designs(G) unless #P = FP () P = NP)
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Consequences

Corollary (#Approximability for � 5 structures) [[Weitz’06]

For � 5 structures (crossings allowed), #Design(G) can be approximated within any
ratio in Poly-time (PTAS)

Corollary (#BIS-hardness for > 5 structures) [[Cai, Galanis et al’16]

For more than 5 structures (crossings allowed), #Design is equally as hard to
approximate as general #BIS.

Why crossings/Pseudokots? Because any bipartite graph of max degree ∆ can be
decomposed in ∆ matchings in Poly-Time (Vizing theorem).

Connection between counting and sampling [Jerrum/Valiant/Vazirani’86].

Conjecture (#BIS-hardness of multiple positive design)

Quasi-uniform generation as hard as approximation of general #BIS

) Sampling #P hard?
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Tree decomposition and Boltzmann sampling of sequences
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Tree decomposition and width

Tree decomposition T for a graph G = (V ;E):
1 Nodes of T = Some subsets of V
2 All vertices present: 8v 2 V ;9b 2 B s.t. v 2 b
3 All edges present: 8(v ; v 0) 2 E ;9b 2 B s.t. fv ; v 0g � B
4 Nodes having v 2 V form a connected subtreee

a b c d e

( . . ) .

. ( ( ) )

( ( . ) )

Target structures

a

de

b c

Dependency graph

e | b

d | b e 

d

a | d e

a

c | e

c

b

e

b

Z(a | d e)
 A C G U

A:1 0 0 0
C:0 1 0 0
G:1 0 2 0
U:0 1 0 2

Z(c | d)
A:1
C:1
G:2
U:2

Z(d | e)
  A C G U
A:? ? ? ?
C:? ? ? ?
G:? ? ? ?
U:? ? ? ?

Tree decomposition
b = fb1; b2 : : :g : node of D
Tb : subtree rooted at b
w : Width of tree decomposition D (=maxb2B jbj � 1)

Z(Tb j b2  v2 : : :) =
∑

b1 v1
v12fA;C;G;Ug

∏
c child of b

Z(Tc j b1  v1; b2  v2 : : :)

Complexity: Θ (n m k + n k 2w ) for uniform generation of m sequences (k structs)
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Tree decomposition
b = fb1; b2 : : :g : node of D
Tb : subtree rooted at b
w : Width of tree decomposition D (=maxb2B jbj � 1)

Z(Tb j b2  v2 : : :) =
∑

b1 v1
v12fA;C;G;Ug

∏
c child of b

Z(Tc j b1  v1; b2  v2 : : :)

Complexity: Θ (n m k + n k 2w ) for uniform generation of m sequences (k structs)



Counting valid sequences: WC/Wobble + > 2 structures
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Valid base pairs (BPs) = Including Wobble base pairs
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Dependency graph:
Cycles, Paths, Trees. . .
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Question: How many valid sequences?

Answer: Non-bipartite ! ?; Bipartite ! 496 672



Our problem for general free-energy models
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Question: Which partition function for valid sequences

Problem (PFDesigns)

Input: Structures R = fR1; : : : ;Rkg of length n + Weight (x1; : : : ; xk )
Output: Partition function

Z =
∑
S2Σn

S valid for R

k∏
i=1

xE(S;Ri )
i



Counting/sampling, the Boltzmann-Gibbs way
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Tree Decomposition

b = fb1; b2 : : :g : node of D
Tb : subtree rooted at b
w : Width of treedecomposition D

Z(Tb j b2  v2 : : :) =
∑

b1 v1
v12fA;C;G;Ug

k∏
i=1

x
∑

E2b E(b;v1;:::)

i

∏
c child of b

Z(Tc j b1  v1; : : :)

Complexity: Θ
(
n m k + n k 2w+#CC) for sampling in Boltzmann-Gibbs distrib.



Practical impact of Boltzmann-Gibbs sampling

Boltzmann probability of structure R, pour une séquence S:

P(R j S) =
e�

E(S;R)
�T

ZS
ZS :=

∑
R0

e�
E(S;R0)

�T

Objectif classique du design négatif (! spécificité)



RNARedPrint: a flexible method for (positive) design
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iv) Tree Decomposition

RNARedPrint

Partition Function
Stochastic Backtrack
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v) Weight Optimization (Adaptive Sampling)

Weights
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vi) Final Designs

[Hammer/P/Wang/Will, RECOMB’18 + BMC Bioinfo 2019]

I Fixed Parameter Tractable algorithm based on tree width
I Uniform or Boltzmann-Gibbs sampling, to favor diversity and stability
I Multidimensional Boltzmann sampling for controlling free-energy, GC%. . .

https://github.com/yannponty/RNARedPrint

https://github.com/yannponty/RNARedPrint


Multidimensional Boltzmann sampling

Multidimensional Boltzmann sampling [Bodini, P, DMTCS 2011]

Input: Targeted free-energies (E?
` )k

`=1, weights (x`)k
`=1 such that E(E(w ;S`)) = E?

` ;8` :

P(w j x1 � � � xk ) �
k∏

`=1

xE(w ;S`)
` + Efficient rejection! O(nk=2) exact/O(�k ) approx.

Empirical efficiency for additive concentrated constraints (GC%, dinucleotides . . . )
! Partial functions! Hyper-edges, aka cliques1

General framework for integer-valued constraints; Concentration tests.

1But tree width%



Strangely enough, it actually works!
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RNARedPrint + Opt. RNABluePrint + Opt. RNARedPrint RNABluePrint

MultiDefect(S;R1 � � �Rk ) :=

∑k
`=1 E(S;R`)� EFE(S)

k
+

∑
1�`<j�k

jE(S;R`)� E(S;Rj )j

2
(k

2

)
where EFE = ensemble free-energy EFE(S) := ��T logZS .



Conclusion

Our contribution :
I General framework for generating constrained sequences

Ideas similar to/generalized from CTE framework (R. Dechter);
I Application to multiple RNA design, proven #P hard;
I Uses efficient rejection scheme for practical control of complex constraints;
I Practical efficiency (reasonable tree width).

Perspectives :
Complexity of sequence generation for k < 5 structures?

How to deal with additional sequence constraints? (DFA "product")

How to locally navigate the space of valid sequences? (Local search)

How to simplify dense graphs? (DCA potentials)

Forbidden sequences

d
O(2w')

O(dw*)
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AUUUU

Largest vertex set given tree-width budget?
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